Skip to main content
Top
Published in: European Radiology 5/2016

01-05-2016 | Cardiac

Clinical feasibility of a myocardial signal intensity threshold-based semi-automated cardiac magnetic resonance segmentation method

Authors: Akos Varga-Szemes, Giuseppe Muscogiuri, U. Joseph Schoepf, Julian L. Wichmann, Pal Suranyi, Carlo N. De Cecco, Paola M. Cannaò, Matthias Renker, Stefanie Mangold, Mary A. Fox, Balazs Ruzsics

Published in: European Radiology | Issue 5/2016

Login to get access

Abstract

Objectives

To assess the accuracy and efficiency of a threshold-based, semi-automated cardiac MRI segmentation algorithm in comparison with conventional contour-based segmentation and aortic flow measurements.

Methods

Short-axis cine images of 148 patients (55 ± 18 years, 81 men) were used to evaluate left ventricular (LV) volumes and mass (LVM) using conventional and threshold-based segmentations. Phase-contrast images were used to independently measure stroke volume (SV). LV parameters were evaluated by two independent readers.

Results

Evaluation times using the conventional and threshold-based methods were 8.4 ± 1.9 and 4.2 ± 1.3 min, respectively (P < 0.0001). LV parameters measured by the conventional and threshold-based methods, respectively, were end-diastolic volume (EDV) 146 ± 59 and 134 ± 53 ml; end-systolic volume (ESV) 64 ± 47 and 59 ± 46 ml; SV 82 ± 29 and 74 ± 28 ml (flow-based 74 ± 30 ml); ejection fraction (EF) 59 ± 16 and 58 ± 17 %; and LVM 141 ± 55 and 159 ± 58 g. Significant differences between the conventional and threshold-based methods were observed in EDV, ESV, and LVM mesurements; SV from threshold-based and flow-based measurements were in agreement (P > 0.05) but were significantly different from conventional analysis (P < 0.05). Excellent inter-observer agreement was observed.

Conclusions

Threshold-based LV segmentation provides improved accuracy and faster assessment compared to conventional contour-based methods.

Key Points

Threshold-based left ventricular segmentation provides time-efficient assessment of left ventricular parameters
The threshold-based method can discriminate between blood and papillary muscles
This method provides improved accuracy compared to aortic flow measurements as a reference
Literature
1.
go back to reference Grothues F, Smith GC, Moon JC et al (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90:29–34CrossRefPubMed Grothues F, Smith GC, Moon JC et al (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90:29–34CrossRefPubMed
2.
go back to reference Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329CrossRefPubMed Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329CrossRefPubMed
3.
go back to reference Papavassiliu T, Kuhl HP, Schroder M et al (2005) Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology 236:57–64CrossRefPubMed Papavassiliu T, Kuhl HP, Schroder M et al (2005) Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology 236:57–64CrossRefPubMed
4.
go back to reference Chuang ML, Gona P, Hautvast GL et al (2012) Correlation of trabeculae and papillary muscles with clinical and cardiac characteristics and impact on CMR measures of LV anatomy and function. JACC Cardiovasc Imaging 5:1115–1123CrossRefPubMedPubMedCentral Chuang ML, Gona P, Hautvast GL et al (2012) Correlation of trabeculae and papillary muscles with clinical and cardiac characteristics and impact on CMR measures of LV anatomy and function. JACC Cardiovasc Imaging 5:1115–1123CrossRefPubMedPubMedCentral
5.
go back to reference Weinsaft JW, Cham MD, Janik M et al (2008) Left ventricular papillary muscles and trabeculae are significant determinants of cardiac MRI volumetric measurements: effects on clinical standards in patients with advanced systolic dysfunction. Int J Cardiol 126:359–365CrossRefPubMed Weinsaft JW, Cham MD, Janik M et al (2008) Left ventricular papillary muscles and trabeculae are significant determinants of cardiac MRI volumetric measurements: effects on clinical standards in patients with advanced systolic dysfunction. Int J Cardiol 126:359–365CrossRefPubMed
6.
go back to reference Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15:169–184CrossRefPubMed Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15:169–184CrossRefPubMed
7.
go back to reference Jaspers K, Freling HG, van Wijk K, Romijn EI, Greuter MJ, Willems TP (2013) Improving the reproducibility of MR-derived left ventricular volume and function measurements with a semi-automatic threshold-based segmentation algorithm. Int J Cardiovasc Imaging 29:617–623CrossRefPubMed Jaspers K, Freling HG, van Wijk K, Romijn EI, Greuter MJ, Willems TP (2013) Improving the reproducibility of MR-derived left ventricular volume and function measurements with a semi-automatic threshold-based segmentation algorithm. Int J Cardiovasc Imaging 29:617–623CrossRefPubMed
8.
go back to reference Mahnken AH, Muhlenbruch G, Koos R et al (2006) Automated vs. manual assessment of left ventricular function in cardiac multidetector row computed tomography: comparison with magnetic resonance imaging. Eur Radiol 16:1416–1423CrossRefPubMed Mahnken AH, Muhlenbruch G, Koos R et al (2006) Automated vs. manual assessment of left ventricular function in cardiac multidetector row computed tomography: comparison with magnetic resonance imaging. Eur Radiol 16:1416–1423CrossRefPubMed
9.
go back to reference Jeltsch M, Ranft S, Klass O, Aschoff AJ, Hoffmann MH (2008) Evaluation of accordance of magnetic resonance volumetric and flow measurements in determining ventricular stroke volume in cardiac patients. Acta Radiol 49:530–539CrossRefPubMed Jeltsch M, Ranft S, Klass O, Aschoff AJ, Hoffmann MH (2008) Evaluation of accordance of magnetic resonance volumetric and flow measurements in determining ventricular stroke volume in cardiac patients. Acta Radiol 49:530–539CrossRefPubMed
10.
go back to reference Gatehouse PD, Rolf MP, Graves MJ et al (2010) Flow measurement by cardiovascular magnetic resonance: a multi-center multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 12:5CrossRefPubMedPubMedCentral Gatehouse PD, Rolf MP, Graves MJ et al (2010) Flow measurement by cardiovascular magnetic resonance: a multi-center multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 12:5CrossRefPubMedPubMedCentral
11.
go back to reference Misra N, Shah AM, Lai WW (2011) Correction of phase offset errors in cardiovascular magnetic resonance using background subtraction from stationary tissue. J Cardiovasc Magn Reson 13(Suppl 1):P213CrossRefPubMedCentral Misra N, Shah AM, Lai WW (2011) Correction of phase offset errors in cardiovascular magnetic resonance using background subtraction from stationary tissue. J Cardiovasc Magn Reson 13(Suppl 1):P213CrossRefPubMedCentral
12.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRefPubMed Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRefPubMed
13.
go back to reference Codella NC, Weinsaft JW, Cham MD, Janik M, Prince MR, Wang Y (2008) Left ventricle: automated segmentation by using myocardial effusion threshold reduction and intravoxel computation at MR imaging. Radiology 248:1004–1012CrossRefPubMed Codella NC, Weinsaft JW, Cham MD, Janik M, Prince MR, Wang Y (2008) Left ventricle: automated segmentation by using myocardial effusion threshold reduction and intravoxel computation at MR imaging. Radiology 248:1004–1012CrossRefPubMed
14.
go back to reference Codella NC, Cham MD, Wong R et al (2010) Rapid and accurate left ventricular chamber quantification using a novel CMR segmentation algorithm: a clinical validation study. J Magn Reson Imaging 31:845–853CrossRefPubMed Codella NC, Cham MD, Wong R et al (2010) Rapid and accurate left ventricular chamber quantification using a novel CMR segmentation algorithm: a clinical validation study. J Magn Reson Imaging 31:845–853CrossRefPubMed
15.
go back to reference Lu YL, Connelly KA, Dick AJ, Wright GA, Radau PE (2013) Automatic functional analysis of left ventricle in cardiac cine MRI. Quant Imaging Med Surg 3:200–209PubMedPubMedCentral Lu YL, Connelly KA, Dick AJ, Wright GA, Radau PE (2013) Automatic functional analysis of left ventricle in cardiac cine MRI. Quant Imaging Med Surg 3:200–209PubMedPubMedCentral
16.
go back to reference Kurkure U, Pednekar A, Muthupillai R, Flamm SD, Kakadiaris Ast IA (2009) Localization and segmentation of left ventricle in cardiac cine-MR images. IEEE Trans Biomed Eng 56:1360–1370CrossRefPubMed Kurkure U, Pednekar A, Muthupillai R, Flamm SD, Kakadiaris Ast IA (2009) Localization and segmentation of left ventricle in cardiac cine-MR images. IEEE Trans Biomed Eng 56:1360–1370CrossRefPubMed
17.
go back to reference Rezaee MR, van der Zwet PJ, Lelieveldt BP, van der Geest RJ, Reiber JH (2000) A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering. IEEE Trans Image Process 9:1238–1248CrossRefPubMed Rezaee MR, van der Zwet PJ, Lelieveldt BP, van der Geest RJ, Reiber JH (2000) A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering. IEEE Trans Image Process 9:1238–1248CrossRefPubMed
18.
go back to reference Kaus MR, von Berg J, Weese J, Niessen W, Pekar V (2004) Automated segmentation of the left ventricle in cardiac MRI. Med Image Anal 8:245–254CrossRefPubMed Kaus MR, von Berg J, Weese J, Niessen W, Pekar V (2004) Automated segmentation of the left ventricle in cardiac MRI. Med Image Anal 8:245–254CrossRefPubMed
19.
go back to reference Cordero-Grande L, Vegas-Sanchez-Ferrero G, Casaseca-de-la-Higuera P et al (2011) Unsupervised 4D myocardium segmentation with a Markov random field based deformable model. Med Image Anal 15:283–301CrossRefPubMed Cordero-Grande L, Vegas-Sanchez-Ferrero G, Casaseca-de-la-Higuera P et al (2011) Unsupervised 4D myocardium segmentation with a Markov random field based deformable model. Med Image Anal 15:283–301CrossRefPubMed
20.
go back to reference Mitchell SC, Lelieveldt BP, van der Geest RJ, Bosch HG, Reiber JH, Sonka M (2011) Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging 20:415–423CrossRef Mitchell SC, Lelieveldt BP, van der Geest RJ, Bosch HG, Reiber JH, Sonka M (2011) Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging 20:415–423CrossRef
21.
go back to reference O'Brien SP, Ghita O, Whelan PF (2011) A novel model-based 3D + time left ventricular segmentation technique. IEEE Trans Med Imaging 30:461–474CrossRefPubMed O'Brien SP, Ghita O, Whelan PF (2011) A novel model-based 3D + time left ventricular segmentation technique. IEEE Trans Med Imaging 30:461–474CrossRefPubMed
22.
go back to reference Paragios N (2003) A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans Med Imaging 22:773–776CrossRefPubMed Paragios N (2003) A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans Med Imaging 22:773–776CrossRefPubMed
23.
go back to reference Ben Ayed I, Lu Y, Li S, Ross I (2008) Left ventricle tracking using overlap priors. Med Image Comput Comput Assist Interv 11(Pt 1):1025–1033PubMed Ben Ayed I, Lu Y, Li S, Ross I (2008) Left ventricle tracking using overlap priors. Med Image Comput Comput Assist Interv 11(Pt 1):1025–1033PubMed
24.
go back to reference Lin X, Cowan B, Young A (2005) Model-based graph cut method for segmentation of the left ventricle. Conf Proc IEEE Eng Med Biol Soc 3:3059–3062PubMed Lin X, Cowan B, Young A (2005) Model-based graph cut method for segmentation of the left ventricle. Conf Proc IEEE Eng Med Biol Soc 3:3059–3062PubMed
25.
go back to reference Cocosco CA, Niessen WJ, Netsch T et al (2008) Automatic image-driven segmentation of the ventricles in cardiac cine MRI. J Magn Reson Imaging 28:366–374CrossRefPubMed Cocosco CA, Niessen WJ, Netsch T et al (2008) Automatic image-driven segmentation of the ventricles in cardiac cine MRI. J Magn Reson Imaging 28:366–374CrossRefPubMed
26.
go back to reference Codella NC, Lee HY, Fieno DS et al (2012) Improved left ventricular mass quantification with partial voxel interpolation: in vivo and necropsy validation of a novel cardiac MRI segmentation algorithm. Circ Cardiovasc Imaging 5:137–146CrossRefPubMedPubMedCentral Codella NC, Lee HY, Fieno DS et al (2012) Improved left ventricular mass quantification with partial voxel interpolation: in vivo and necropsy validation of a novel cardiac MRI segmentation algorithm. Circ Cardiovasc Imaging 5:137–146CrossRefPubMedPubMedCentral
27.
go back to reference Cheng JY (2011) Image based background magnetic field correction for aortic and pulmonary artery flow measurement using phase contrast. J Cardiovasc Magn Reson 13(Suppl 1):P355CrossRefPubMedCentral Cheng JY (2011) Image based background magnetic field correction for aortic and pulmonary artery flow measurement using phase contrast. J Cardiovasc Magn Reson 13(Suppl 1):P355CrossRefPubMedCentral
Metadata
Title
Clinical feasibility of a myocardial signal intensity threshold-based semi-automated cardiac magnetic resonance segmentation method
Authors
Akos Varga-Szemes
Giuseppe Muscogiuri
U. Joseph Schoepf
Julian L. Wichmann
Pal Suranyi
Carlo N. De Cecco
Paola M. Cannaò
Matthias Renker
Stefanie Mangold
Mary A. Fox
Balazs Ruzsics
Publication date
01-05-2016
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 5/2016
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-3952-4

Other articles of this Issue 5/2016

European Radiology 5/2016 Go to the issue