Skip to main content
Top
Published in: European Radiology 8/2015

01-08-2015 | Head and Neck

Assessment of an Advanced Monoenergetic Reconstruction Technique in Dual-Energy Computed Tomography of Head and Neck Cancer

Authors: Moritz H. Albrecht, Jan-Erik Scholtz, Johannes Kraft, Ralf W. Bauer, Moritz Kaup, Patricia Dewes, Andreas M. Bucher, Iris Burck, Jens Wagenblast, Thomas Lehnert, J. Matthias Kerl, Thomas J. Vogl, Julian L. Wichmann

Published in: European Radiology | Issue 8/2015

Login to get access

Abstract

Objectives

To define optimal keV settings for advanced monoenergetic (Mono+) dual-energy computed tomography (DECT) in patients with head and neck squamous cell carcinoma (SCC).

Methods

DECT data of 44 patients (34 men, mean age 55.5 ± 16.0 years) with histopathologically confirmed SCC were reconstructed as 40, 55, 70 keV Mono + and M_0.3 (30 % 80 kV) linearly blended series. Attenuation of tumour, sternocleidomastoid muscle, internal jugular vein, submandibular gland, and noise were measured. Three radiologists with >3 years of experience subjectively assessed image quality, lesion delineation, image sharpness, and noise.

Results

The highest lesion attenuation was shown for 40 keV series (248.1 ± 94.1 HU), followed by 55 keV (150.2 ± 55.5 HU; P = 0.001). Contrast-to-noise ratio (CNR) at 40 keV (19.09 ± 13.84) was significantly superior to all other reconstructions (55 keV, 10.25 ± 9.11; 70 keV, 7.68 ± 6.31; M_0.3, 5.49 ± 3.28; all P < 0.005). Subjective image quality was highest for 55 keV images (4.53; κ = 0.38, P = 0.003), followed by 40 keV (4.14; κ = 0.43, P < 0.001) and 70 keV reconstructions (4.06; κ = 0.32, P = 0.005), all superior (P < 0.004) to linear blending M_0.3 (3.81; κ = 0.280, P = 0.056).

Conclusions

Mono + DECT at low keV levels significantly improves CNR and subjective image quality in patients with head and neck SCC, as tumour CNR peaks at 40 keV, and 55 keV images are preferred by observers.

Key Points

Mono + DECT combines increased contrast with reduced image noise, unlike linearly blended images.
Mono + DECT imaging allows for superior CNR and subjective image quality.
Head and neck tumour contrast-to-noise ratio peaks at 40 keV.
55 keV images are preferred over all other series by observers.
Literature
1.
go back to reference Sadick M, Schoenberg SO, Hoermann K, Sadick H (2012) Current oncologic concepts and emerging techniques for imaging of head and neck squamous cell cancer. GMS Curr Top Otorhinolaryngol Head Neck Surg 11:Doc08PubMedCentralPubMed Sadick M, Schoenberg SO, Hoermann K, Sadick H (2012) Current oncologic concepts and emerging techniques for imaging of head and neck squamous cell cancer. GMS Curr Top Otorhinolaryngol Head Neck Surg 11:Doc08PubMedCentralPubMed
2.
go back to reference Hermans R (2006) Staging of laryngeal and hypopharyngeal cancer: value of imaging studies. Eur Radiol 16:2386–2400PubMedCrossRef Hermans R (2006) Staging of laryngeal and hypopharyngeal cancer: value of imaging studies. Eur Radiol 16:2386–2400PubMedCrossRef
3.
go back to reference Tawfik AM, Kerl JM, Bauer RW et al (2012) Dual-energy CT of head and neck cancer: average weighting of low- and high-voltage acquisitions to improve lesion delineation and image quality-initial clinical experience. Invest Radiol 47:306–311PubMedCrossRef Tawfik AM, Kerl JM, Bauer RW et al (2012) Dual-energy CT of head and neck cancer: average weighting of low- and high-voltage acquisitions to improve lesion delineation and image quality-initial clinical experience. Invest Radiol 47:306–311PubMedCrossRef
4.
go back to reference Toepker M, Czerny C, Ringl H et al (2014) Can dual-energy CT improve the assessment of tumor margins in oral cancer? Oral Oncol 50:221–227PubMedCrossRef Toepker M, Czerny C, Ringl H et al (2014) Can dual-energy CT improve the assessment of tumor margins in oral cancer? Oral Oncol 50:221–227PubMedCrossRef
5.
go back to reference Geets X, Daisne J-F, Arcangeli S et al (2005) Inter-observer variability in the delineation of pharyngo-laryngeal tumor, parotid glands and cervical spinal cord: comparison between CT-scan and MRI. Radiother Oncol 77:25–31PubMedCrossRef Geets X, Daisne J-F, Arcangeli S et al (2005) Inter-observer variability in the delineation of pharyngo-laryngeal tumor, parotid glands and cervical spinal cord: comparison between CT-scan and MRI. Radiother Oncol 77:25–31PubMedCrossRef
6.
go back to reference Vogl TJ, Schulz B, Bauer RW et al (2012) Dual-energy CT applications in head and neck imaging. AJR Am J Roentgenol 199:S34–S39PubMedCrossRef Vogl TJ, Schulz B, Bauer RW et al (2012) Dual-energy CT applications in head and neck imaging. AJR Am J Roentgenol 199:S34–S39PubMedCrossRef
7.
go back to reference Tawfik AM, Kerl JM, Razek AA et al (2011) Image quality and radiation dose of dual-energy CT of the head and neck compared with a standard 120-kVp acquisition. AJNR Am J Neuroradiol 32:1994–1999PubMedCrossRef Tawfik AM, Kerl JM, Razek AA et al (2011) Image quality and radiation dose of dual-energy CT of the head and neck compared with a standard 120-kVp acquisition. AJNR Am J Neuroradiol 32:1994–1999PubMedCrossRef
8.
go back to reference Paul J, Vogl TJ, Mbalisike EC (2014) Oncological applications of dual-energy computed tomography imaging. J Comput Assist Tomogr 38:834–842PubMedCrossRef Paul J, Vogl TJ, Mbalisike EC (2014) Oncological applications of dual-energy computed tomography imaging. J Comput Assist Tomogr 38:834–842PubMedCrossRef
9.
go back to reference Paul J, Mbalisike EC, Nour-Eldin N-EA, Vogl TJ (2013) Dual-source 128-slice MDCT neck: radiation dose and image quality estimation of three different protocols. Eur J Radiol 82:787–796PubMedCrossRef Paul J, Mbalisike EC, Nour-Eldin N-EA, Vogl TJ (2013) Dual-source 128-slice MDCT neck: radiation dose and image quality estimation of three different protocols. Eur J Radiol 82:787–796PubMedCrossRef
10.
go back to reference De Cecco CN, Darnell A, Rengo M et al (2012) Dual-energy CT: oncologic applications. AJR Am J Roentgenol 199:S98–S105PubMedCrossRef De Cecco CN, Darnell A, Rengo M et al (2012) Dual-energy CT: oncologic applications. AJR Am J Roentgenol 199:S98–S105PubMedCrossRef
11.
go back to reference Simons D, Kachelriess M, Schlemmer H-P (2014) Recent developments of dual-energy CT in oncology. Eur Radiol 24:930–939PubMedCrossRef Simons D, Kachelriess M, Schlemmer H-P (2014) Recent developments of dual-energy CT in oncology. Eur Radiol 24:930–939PubMedCrossRef
12.
go back to reference Bamberg F, Dierks A, Nikolaou K et al (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21:1424–1429PubMedCrossRef Bamberg F, Dierks A, Nikolaou K et al (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21:1424–1429PubMedCrossRef
13.
go back to reference Stolzmann P, Winklhofer S, Schwendener N et al (2013) Monoenergetic computed tomography reconstructions reduce beam hardening artifacts from dental restorations. Forensic Sci Med Pathol 9:327–332PubMedCrossRef Stolzmann P, Winklhofer S, Schwendener N et al (2013) Monoenergetic computed tomography reconstructions reduce beam hardening artifacts from dental restorations. Forensic Sci Med Pathol 9:327–332PubMedCrossRef
14.
go back to reference Schneider D, Apfaltrer P, Sudarski S et al (2014) Optimization of kiloelectron volt settings in cerebral and cervical dual-energy CT angiography determined with virtual monoenergetic imaging. Acad Radiol 21:431–436PubMedCrossRef Schneider D, Apfaltrer P, Sudarski S et al (2014) Optimization of kiloelectron volt settings in cerebral and cervical dual-energy CT angiography determined with virtual monoenergetic imaging. Acad Radiol 21:431–436PubMedCrossRef
15.
go back to reference Apfaltrer P, Sudarski S, Schneider D et al (2014) Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography. Eur J Radiol 83:322–328PubMedCrossRef Apfaltrer P, Sudarski S, Schneider D et al (2014) Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography. Eur J Radiol 83:322–328PubMedCrossRef
16.
go back to reference Wichmann JL, Nöske E-M, Kraft J et al (2014) Virtual monoenergetic dual-energy computed tomography: optimization of kiloelectron volt settings in head and neck cancer. Invest Radiol 49:735–741PubMedCrossRef Wichmann JL, Nöske E-M, Kraft J et al (2014) Virtual monoenergetic dual-energy computed tomography: optimization of kiloelectron volt settings in head and neck cancer. Invest Radiol 49:735–741PubMedCrossRef
17.
go back to reference Grant KL, Flohr TG, Krauss B et al (2014) Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol 49:586–592PubMedCrossRef Grant KL, Flohr TG, Krauss B et al (2014) Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol 49:586–592PubMedCrossRef
18.
go back to reference Schabel C, Bongers M, Sedlmair M et al (2014) Assessment of the hepatic veins in poor contrast conditions using dual energy CT: evaluation of a novel monoenergetic extrapolation software algorithm. Röfo 186:591–597PubMed Schabel C, Bongers M, Sedlmair M et al (2014) Assessment of the hepatic veins in poor contrast conditions using dual energy CT: evaluation of a novel monoenergetic extrapolation software algorithm. Röfo 186:591–597PubMed
19.
go back to reference Szucs-Farkas Z, Kurmann L, Strautz T et al (2008) Patient exposure and image quality of low-dose pulmonary computed tomography angiography: comparison of 100- and 80-kVp protocols. Invest Radiol 43:871–876PubMedCrossRef Szucs-Farkas Z, Kurmann L, Strautz T et al (2008) Patient exposure and image quality of low-dose pulmonary computed tomography angiography: comparison of 100- and 80-kVp protocols. Invest Radiol 43:871–876PubMedCrossRef
20.
go back to reference Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46CrossRef Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46CrossRef
21.
go back to reference Delesalle M-A, Pontana F, Duhamel A et al (2013) Spectral optimization of chest CT angiography with reduced iodine load: experience in 80 patients evaluated with dual-source, dual-energy CT. Radiology 267:256–266PubMedCrossRef Delesalle M-A, Pontana F, Duhamel A et al (2013) Spectral optimization of chest CT angiography with reduced iodine load: experience in 80 patients evaluated with dual-source, dual-energy CT. Radiology 267:256–266PubMedCrossRef
22.
go back to reference Marin D, Nelson RC, Samei E et al (2009) Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection–initial clinical experience. Radiology 251:771–779PubMedCrossRef Marin D, Nelson RC, Samei E et al (2009) Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection–initial clinical experience. Radiology 251:771–779PubMedCrossRef
23.
go back to reference Davenport MS, Khalatbari S, Cohan RH et al (2013) Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate. Radiology 268:719–728PubMedCrossRef Davenport MS, Khalatbari S, Cohan RH et al (2013) Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate. Radiology 268:719–728PubMedCrossRef
24.
go back to reference Sudarski S, Apfaltrer P, Nance JW et al (2014) Objective and subjective image quality of liver parenchyma and hepatic metastases with virtual monoenergetic dual-source dual-energy CT reconstructions: an analysis in patients with gastrointestinal stromal tumor. Acad Radiol 21:514–522PubMedCrossRef Sudarski S, Apfaltrer P, Nance JW et al (2014) Objective and subjective image quality of liver parenchyma and hepatic metastases with virtual monoenergetic dual-source dual-energy CT reconstructions: an analysis in patients with gastrointestinal stromal tumor. Acad Radiol 21:514–522PubMedCrossRef
25.
go back to reference Behrendt FF, Schmidt B, Plumhans C et al (2009) Image fusion in dual energy computed tomography: effect on contrast enhancement, signal-to-noise ratio and image quality in computed tomography angiography. Invest Radiol 44:1–6PubMedCrossRef Behrendt FF, Schmidt B, Plumhans C et al (2009) Image fusion in dual energy computed tomography: effect on contrast enhancement, signal-to-noise ratio and image quality in computed tomography angiography. Invest Radiol 44:1–6PubMedCrossRef
26.
go back to reference Wichmann JL, Kraft J, Nöske E-M, et al (2014) Low-tube-voltage 80-kVp neck CT: evaluation of diagnostic accuracy and interobserver agreement. Am J Neuroradiol Wichmann JL, Kraft J, Nöske E-M, et al (2014) Low-tube-voltage 80-kVp neck CT: evaluation of diagnostic accuracy and interobserver agreement. Am J Neuroradiol
Metadata
Title
Assessment of an Advanced Monoenergetic Reconstruction Technique in Dual-Energy Computed Tomography of Head and Neck Cancer
Authors
Moritz H. Albrecht
Jan-Erik Scholtz
Johannes Kraft
Ralf W. Bauer
Moritz Kaup
Patricia Dewes
Andreas M. Bucher
Iris Burck
Jens Wagenblast
Thomas Lehnert
J. Matthias Kerl
Thomas J. Vogl
Julian L. Wichmann
Publication date
01-08-2015
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 8/2015
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-3627-1

Other articles of this Issue 8/2015

European Radiology 8/2015 Go to the issue