Skip to main content
Top
Published in: European Radiology 2/2013

01-02-2013 | Computed Tomography

Computed tomography of the chest with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination: preliminary observations

Authors: Angeliki Neroladaki, Diomidis Botsikas, Sana Boudabbous, Christoph D. Becker, Xavier Montet

Published in: European Radiology | Issue 2/2013

Login to get access

Abstract

Objectives

The purpose of this study was to assess the diagnostic image quality of ultra-low-dose chest computed tomography (ULD-CT) obtained with a radiation dose comparable to chest radiography and reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) in comparison with standard dose diagnostic CT (SDD-CT) or low-dose diagnostic CT (LDD-CT) reconstructed with FBP alone.

Methods

Unenhanced chest CT images of 42 patients acquired with ULD-CT were compared with images obtained with SDD-CT or LDD-CT in the same examination. Noise measurements and image quality, based on conspicuity of chest lesions on all CT data sets were assessed on a five-point scale.

Results

The radiation dose of ULD-CT was 0.16 ± 0.006 mSv compared with 11.2 ± 2.7 mSv for SDD-CT (P < 0.0001) and 2.7 ± 0.9 mSv for LDD-CT. Image quality of ULD-CT increased significantly when using MBIR compared with FBP or ASIR (P < 0.001). ULD-CT reconstructed with MBIR enabled to detect as many non-calcified pulmonary nodules as seen on SDD-CT or LDD-CT. However, image quality of ULD-CT was clearly inferior for characterisation of ground glass opacities or emphysema.

Conclusion

Model-based iterative reconstruction allows detection of pulmonary nodules with ULD-CT with radiation exposure in the range of a posterior to anterior (PA) and lateral chest X-ray.

Key Points

Radiation dose is a key concern with the increased use of thoracic CT
Ultra-low-dose chest CT approximates the radiation dose of conventional chest radiography
Ultra-low-dose chest CT can be of diagnostic quality
Solid pulmonary nodules are clearly depicted on ultra-low-dose chest CT
Literature
1.
go back to reference Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRef Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRef
2.
go back to reference Brenner DJ (2004) Radiation risks potentially associated with low-dose CT screening of adult smokers for lung cancer. Radiology 231:440–445PubMedCrossRef Brenner DJ (2004) Radiation risks potentially associated with low-dose CT screening of adult smokers for lung cancer. Radiology 231:440–445PubMedCrossRef
3.
go back to reference Lee S, Yoon SW, Yoo SM et al (2011) Comparison of image quality and radiation dose between combined automatic tube current modulation and fixed tube current technique in CT of abdomen and pelvis. Acta Radiol 52:1101–1106PubMedCrossRef Lee S, Yoon SW, Yoo SM et al (2011) Comparison of image quality and radiation dose between combined automatic tube current modulation and fixed tube current technique in CT of abdomen and pelvis. Acta Radiol 52:1101–1106PubMedCrossRef
4.
go back to reference Leipsic J, Nguyen G, Brown J, Sin D, Mayo JR (2010) A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. AJR Am J Roentgenol 195:1095–1099PubMedCrossRef Leipsic J, Nguyen G, Brown J, Sin D, Mayo JR (2010) A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. AJR Am J Roentgenol 195:1095–1099PubMedCrossRef
5.
go back to reference Pontana F, Duhamel A, Pagniez J et al (2011) Chest computed tomography using iterative reconstruction vs filtered back projection (Part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol 21:636–643PubMedCrossRef Pontana F, Duhamel A, Pagniez J et al (2011) Chest computed tomography using iterative reconstruction vs filtered back projection (Part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol 21:636–643PubMedCrossRef
6.
go back to reference Pontana F, Pagniez J, Flohr T et al (2011) Chest computed tomography using iterative reconstruction vs filtered back projection (Part 1): evaluation of image noise reduction in 32 patients. Eur Radiol 21:627–635PubMedCrossRef Pontana F, Pagniez J, Flohr T et al (2011) Chest computed tomography using iterative reconstruction vs filtered back projection (Part 1): evaluation of image noise reduction in 32 patients. Eur Radiol 21:627–635PubMedCrossRef
7.
go back to reference Prakash P, Kalra MK, Digumarthy SR et al (2010) Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. J Comput Assist Tomogr 34:40–45PubMedCrossRef Prakash P, Kalra MK, Digumarthy SR et al (2010) Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. J Comput Assist Tomogr 34:40–45PubMedCrossRef
8.
go back to reference Sato J, Akahane M, Inano S, et al. (2011) Effect of radiation dose and adaptive statistical iterative reconstruction on image quality of pulmonary computed tomography. Jpn J Radiol Sato J, Akahane M, Inano S, et al. (2011) Effect of radiation dose and adaptive statistical iterative reconstruction on image quality of pulmonary computed tomography. Jpn J Radiol
9.
go back to reference Singh S, Kalra MK, Gilman MD et al (2011) Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology 259:565–573PubMedCrossRef Singh S, Kalra MK, Gilman MD et al (2011) Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology 259:565–573PubMedCrossRef
10.
go back to reference Scheffel H, Stolzmann P, Schlett CL, et al. (2011) Coronary artery plaques: Cardiac CT with model-based and adaptive-statistical iterative reconstruction technique. Eur J Radiol Scheffel H, Stolzmann P, Schlett CL, et al. (2011) Coronary artery plaques: Cardiac CT with model-based and adaptive-statistical iterative reconstruction technique. Eur J Radiol
11.
go back to reference Bankier AA, Schaefer-Prokop C, De Maertelaer V et al (2007) Air trapping: comparison of standard-dose and simulated low-dose thin-section CT techniques. Radiology 242:898–906PubMedCrossRef Bankier AA, Schaefer-Prokop C, De Maertelaer V et al (2007) Air trapping: comparison of standard-dose and simulated low-dose thin-section CT techniques. Radiology 242:898–906PubMedCrossRef
12.
go back to reference Muangman N, Maitreesorrasan N, Totanarungroj K (2011) Comparison of low dose and standard dose MDCT in detection of metastatic pulmonary nodules. J Med Assoc Thai 94:215–223PubMed Muangman N, Maitreesorrasan N, Totanarungroj K (2011) Comparison of low dose and standard dose MDCT in detection of metastatic pulmonary nodules. J Med Assoc Thai 94:215–223PubMed
13.
go back to reference Hansell DM, Bankier AA, MacMahon H, McLoud TC, Muller NL, Remy J (2008) Fleischner Society: glossary of terms for thoracic imaging. Radiology 246:697–722PubMedCrossRef Hansell DM, Bankier AA, MacMahon H, McLoud TC, Muller NL, Remy J (2008) Fleischner Society: glossary of terms for thoracic imaging. Radiology 246:697–722PubMedCrossRef
14.
go back to reference Huda W, Magill D, He W (2011) CT effective dose per dose length product using ICRP 103 weighting factors. Med Phys 38:1261–1265PubMedCrossRef Huda W, Magill D, He W (2011) CT effective dose per dose length product using ICRP 103 weighting factors. Med Phys 38:1261–1265PubMedCrossRef
15.
go back to reference Pan X, Sidky EY, Vannier M (2009) Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Probl 25:1230009PubMedCrossRef Pan X, Sidky EY, Vannier M (2009) Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Probl 25:1230009PubMedCrossRef
16.
go back to reference Katsura M, Matsuda I, Akahane M et al (2012) Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique. Eur Radiol 22:1613-1623 Katsura M, Matsuda I, Akahane M et al (2012) Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique. Eur Radiol 22:1613-1623
17.
go back to reference Bacher K, Smeets P, Bonnarens K, De Hauwere A, Verstraete K, Thierens H (2003) Dose reduction in patients undergoing chest imaging: digital amorphous silicon flat-panel detector radiography versus conventional film-screen radiography and phosphor-based computed radiography. AJR Am J Roentgenol 181:923–929PubMed Bacher K, Smeets P, Bonnarens K, De Hauwere A, Verstraete K, Thierens H (2003) Dose reduction in patients undergoing chest imaging: digital amorphous silicon flat-panel detector radiography versus conventional film-screen radiography and phosphor-based computed radiography. AJR Am J Roentgenol 181:923–929PubMed
18.
go back to reference Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–263PubMedCrossRef Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–263PubMedCrossRef
19.
go back to reference Quaia E, Baratella E, Cernic S et al (2012) Analysis of the impact of digital tomosynthesis on the radiological investigation of patients with suspected pulmonary lesions on chest radiography. Eur Radiol. doi:10.1007/s00330-012-2440-3 Quaia E, Baratella E, Cernic S et al (2012) Analysis of the impact of digital tomosynthesis on the radiological investigation of patients with suspected pulmonary lesions on chest radiography. Eur Radiol. doi:10.​1007/​s00330-012-2440-3
20.
go back to reference Samara ET, Aroua A, Bochud FO et al (2012) Exposure of the Swiss population by medical x-rays: 2008 review. Health Phys 102:263–270PubMed Samara ET, Aroua A, Bochud FO et al (2012) Exposure of the Swiss population by medical x-rays: 2008 review. Health Phys 102:263–270PubMed
21.
go back to reference Schuncke A, Neitzel U (2005) Retrospective patient dose analysis of a digital radiography system in routine clinical use. Radiat Prot Dosimetry 114:131–134PubMedCrossRef Schuncke A, Neitzel U (2005) Retrospective patient dose analysis of a digital radiography system in routine clinical use. Radiat Prot Dosimetry 114:131–134PubMedCrossRef
22.
go back to reference Saghir Z, Dirksen A, Ashraf H et al (2012) CT screening for lung cancer brings forward early disease. The randomised Danish Lung Cancer Screening Trial: status after five annual screening rounds with low-dose CT. Thorax 67:296–301PubMedCrossRef Saghir Z, Dirksen A, Ashraf H et al (2012) CT screening for lung cancer brings forward early disease. The randomised Danish Lung Cancer Screening Trial: status after five annual screening rounds with low-dose CT. Thorax 67:296–301PubMedCrossRef
23.
go back to reference Yu Z, Thibault JB, Bouman CA, Sauer KD, Hsieh J (2011) Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization. IEEE Trans Image Process 20:161–175PubMedCrossRef Yu Z, Thibault JB, Bouman CA, Sauer KD, Hsieh J (2011) Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization. IEEE Trans Image Process 20:161–175PubMedCrossRef
Metadata
Title
Computed tomography of the chest with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination: preliminary observations
Authors
Angeliki Neroladaki
Diomidis Botsikas
Sana Boudabbous
Christoph D. Becker
Xavier Montet
Publication date
01-02-2013
Publisher
Springer-Verlag
Published in
European Radiology / Issue 2/2013
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-012-2627-7

Other articles of this Issue 2/2013

European Radiology 2/2013 Go to the issue