Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2010

01-08-2010

Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements

Authors: Gunnar Brix, Jürgen Griebel, Fabian Kiessling, Frederik Wenz

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Special Issue 1/2010

Login to get access

Abstract

Purpose

Technical developments in both magnetic resonance imaging (MRI) and computed tomography (CT) have helped to reduce scan times and expedited the development of dynamic contrast-enhanced (DCE) imaging techniques. Since the temporal change of the image signal following the administration of a diffusible, extracellular contrast agent (CA) is related to the local blood supply and the extravasation of the CA into the interstitial space, DCE imaging can be used to assess tissue microvasculature and microcirculation. It is the aim of this review to summarize the biophysical and tracer kinetic principles underlying this emerging imaging technique offering great potential for non-invasive characterization of tumour angiogenesis.

Methods

In the first part, the relevant contrast mechanisms are presented that form the basis to relate signal variations measured by serial CT and MRI to local tissue concentrations of the administered CA. In the second part, the concepts most widely used for tracer kinetic modelling of concentration-time courses derived from measured DCE image data sets are described in a consistent and unified manner to highlight their particular structure and assumptions as well as the relationships among them. Finally, the concepts presented are exemplified by the analysis of representative DCE data as well as discussed with respect to present and future applications in cancer diagnosis and therapy.

Results

Depending on the specific protocol used for the acquisition of DCE image data and the particular model applied for tracer kinetic analysis of the derived concentration-time courses, different aspects of tumour angiogenesis can be quantified in terms of well-defined physiological tissue parameters.

Conclusions

DCE imaging offers promising prospects for improved tumour diagnosis, individualization of cancer treatment as well as the evaluation of novel therapeutic concepts in preclinical and early-stage clinical trials.
Appendix
Available only for authorised users
Literature
2.
3.
4.
go back to reference Bassingthwaighte JB, Chinard FP, Crone C, Goresky CC, Lassen NA, Reneman RS, et al. Terminology for mass transport and exchange. Am J Physiol 1986;250:H539–45.PubMed Bassingthwaighte JB, Chinard FP, Crone C, Goresky CC, Lassen NA, Reneman RS, et al. Terminology for mass transport and exchange. Am J Physiol 1986;250:H539–45.PubMed
5.
go back to reference Rescigno A, Thakur AK, Brill AB, Mariani G. Tracer kinetics: a proposal for unified symbols and nomenclature. Phys Med Biol 1990;35:449–65.CrossRef Rescigno A, Thakur AK, Brill AB, Mariani G. Tracer kinetics: a proposal for unified symbols and nomenclature. Phys Med Biol 1990;35:449–65.CrossRef
6.
go back to reference Bassingthwaighte JB, Goresky CA. Modeling in the analysis of solute and water exchange in the microvasculature. In: Renkin EM, Michel CC, Geiger SR, editors. Handbook of physiology. Section 2. The cardiovascular system. Bethesda: American Physiological Society; 1984. p. 549–626. Bassingthwaighte JB, Goresky CA. Modeling in the analysis of solute and water exchange in the microvasculature. In: Renkin EM, Michel CC, Geiger SR, editors. Handbook of physiology. Section 2. The cardiovascular system. Bethesda: American Physiological Society; 1984. p. 549–626.
7.
go back to reference King RB, Raymond GM, Bassingthwaighte JB. Modeling blood flow heterogeneity. Ann Biomed Eng 1996;24:352–72.CrossRefPubMed King RB, Raymond GM, Bassingthwaighte JB. Modeling blood flow heterogeneity. Ann Biomed Eng 1996;24:352–72.CrossRefPubMed
8.
go back to reference Griess H. Chemistry of X-ray contrast agents. In: Dawson P, Cosgrove DO, Grainger RG, editors. Textbook of contrast media. Oxford: Isis Medical Media; 1999. p. 15–22. Griess H. Chemistry of X-ray contrast agents. In: Dawson P, Cosgrove DO, Grainger RG, editors. Textbook of contrast media. Oxford: Isis Medical Media; 1999. p. 15–22.
9.
go back to reference Bushberg JT, Seibert JA, Leidholdt EM, Boone JM. The essential physics of medical imaging. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2002. Bushberg JT, Seibert JA, Leidholdt EM, Boone JM. The essential physics of medical imaging. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2002.
10.
go back to reference Dawson P. Gadolinium chelates: chemistry. In: Dawson P, Cosgrove DO, Grainger RG, editors. Textbook of contrast media. Oxford: Isis Medical Media; 1999. p. 291–318. Dawson P. Gadolinium chelates: chemistry. In: Dawson P, Cosgrove DO, Grainger RG, editors. Textbook of contrast media. Oxford: Isis Medical Media; 1999. p. 291–318.
11.
go back to reference Morgan LO, Nolle AW. Proton spin relaxation in aqueous solutions of paramagnetic ions. II. Cr+++, Mn++, Ni++, Cu++, and Gd+++. J Chem Phys 1959;31:365–8.CrossRef Morgan LO, Nolle AW. Proton spin relaxation in aqueous solutions of paramagnetic ions. II. Cr+++, Mn++, Ni++, Cu++, and Gd+++. J Chem Phys 1959;31:365–8.CrossRef
12.
go back to reference Gadian DG, Payne JA, Bryant DJ, Young IR, Carr DH, Bydder GM. Gadolinium-DTPA as a contrast agent in MR imaging—theoretical projections and practical observations. J Comput Assist Tomogr 1985;9:242–51.CrossRefPubMed Gadian DG, Payne JA, Bryant DJ, Young IR, Carr DH, Bydder GM. Gadolinium-DTPA as a contrast agent in MR imaging—theoretical projections and practical observations. J Comput Assist Tomogr 1985;9:242–51.CrossRefPubMed
13.
go back to reference Strich G, Hagan PL, Gerber KH, Slutsky RA. Tissue distribution and magnetic resonance spin lattice relaxation effects of gadolinium-DTPA. Radiology 1985;154:723–6.PubMed Strich G, Hagan PL, Gerber KH, Slutsky RA. Tissue distribution and magnetic resonance spin lattice relaxation effects of gadolinium-DTPA. Radiology 1985;154:723–6.PubMed
14.
go back to reference Koenig SH, Spiller M, Brown RD, Wolf GL. Relaxation of water protons in the intra- and extracellular regions of blood containing Gd(DTPA). Magn Reson Med 1986;3:791–5.CrossRefPubMed Koenig SH, Spiller M, Brown RD, Wolf GL. Relaxation of water protons in the intra- and extracellular regions of blood containing Gd(DTPA). Magn Reson Med 1986;3:791–5.CrossRefPubMed
15.
go back to reference Donahue KM, Weisskoff RM, Burstein D. Water diffusion and exchange as they influence contrast enhancement. J Magn Reson Imaging 1997;7:102–10.CrossRefPubMed Donahue KM, Weisskoff RM, Burstein D. Water diffusion and exchange as they influence contrast enhancement. J Magn Reson Imaging 1997;7:102–10.CrossRefPubMed
16.
go back to reference Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, et al. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 1988;6:164–74.CrossRefPubMed Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, et al. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 1988;6:164–74.CrossRefPubMed
17.
go back to reference Rosen BR, Belliveau JW, Chien D. Perfusion imaging by nuclear magnetic resonance. Magn Reson Q 1989;5:263–81.PubMed Rosen BR, Belliveau JW, Chien D. Perfusion imaging by nuclear magnetic resonance. Magn Reson Q 1989;5:263–81.PubMed
18.
go back to reference Nekolla S, Gneiting T, Syha J, Deichmann R, Haase A. T1 maps by K-space reduced snapshot-FLASH MRI. J Comput Assist Tomogr 1992;16:327–32.CrossRefPubMed Nekolla S, Gneiting T, Syha J, Deichmann R, Haase A. T1 maps by K-space reduced snapshot-FLASH MRI. J Comput Assist Tomogr 1992;16:327–32.CrossRefPubMed
19.
go back to reference Hoffmann U, Brix G, Knopp MV, Heß T, Lorenz WJ. Pharmacokinetic mapping of the breast: a new method for dynamic MR mammography. Magn Reson Med 1995;33:506–14.CrossRefPubMed Hoffmann U, Brix G, Knopp MV, Heß T, Lorenz WJ. Pharmacokinetic mapping of the breast: a new method for dynamic MR mammography. Magn Reson Med 1995;33:506–14.CrossRefPubMed
20.
go back to reference Stepanow B, Blüml S, Brix G. Comparison of T1 measurements by means of TurboFLASH techniques performed on a conventional whole-body MR imager. SMRM, 12th Scientific Meeting, Book of Abstracts 1993;2:742. Stepanow B, Blüml S, Brix G. Comparison of T1 measurements by means of TurboFLASH techniques performed on a conventional whole-body MR imager. SMRM, 12th Scientific Meeting, Book of Abstracts 1993;2:742.
21.
go back to reference Brix G, Kiessling F, Lucht R, Darai S, Wasser K, Delorme S, et al. Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 2004;52:420–9.CrossRefPubMed Brix G, Kiessling F, Lucht R, Darai S, Wasser K, Delorme S, et al. Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 2004;52:420–9.CrossRefPubMed
22.
go back to reference Fisel CR, Ackerman JL, Buxton RB, Garrido L, Belliveau JW, Rosen BR, et al. MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 1991;17:336–47.CrossRefPubMed Fisel CR, Ackerman JL, Buxton RB, Garrido L, Belliveau JW, Rosen BR, et al. MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 1991;17:336–47.CrossRefPubMed
23.
go back to reference Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 1954;6:731–44.PubMed Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 1954;6:731–44.PubMed
24.
go back to reference Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962;10:393–407. Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962;10:393–407.
25.
go back to reference Zierler KL. Theory of use of indicators to measure blood flow and extracellular volume and calculation of transcapillary movement of tracers. Circ Res 1963;12:464–71. Zierler KL. Theory of use of indicators to measure blood flow and extracellular volume and calculation of transcapillary movement of tracers. Circ Res 1963;12:464–71.
26.
go back to reference Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965;16:309–21.PubMed Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965;16:309–21.PubMed
27.
go back to reference Rempp K, Brix G, Wenz F, Becker C, Gückel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193:637–41.PubMed Rempp K, Brix G, Wenz F, Becker C, Gückel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193:637–41.PubMed
28.
go back to reference Stritzke P, King MA, Vaknine R, Goldsmith SJ. Deconvolution using orthogonal polynomials in nuclear medicine: a method for forming quantitative functional images from kinetic studies. IEEE Trans Med Imaging 1990;9:11–23.CrossRefPubMed Stritzke P, King MA, Vaknine R, Goldsmith SJ. Deconvolution using orthogonal polynomials in nuclear medicine: a method for forming quantitative functional images from kinetic studies. IEEE Trans Med Imaging 1990;9:11–23.CrossRefPubMed
29.
go back to reference Schreiber W, Gückel F, Stritzke P, Schmiedek P, Schwarz A, Brix G. Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging. J Cereb Blood Flow Metab 1998;18:1143–56.CrossRefPubMed Schreiber W, Gückel F, Stritzke P, Schmiedek P, Schwarz A, Brix G. Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging. J Cereb Blood Flow Metab 1998;18:1143–56.CrossRefPubMed
30.
go back to reference Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 1996;36:715–25.CrossRefPubMed Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 1996;36:715–25.CrossRefPubMed
31.
go back to reference Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 2003;50:1237–47.CrossRefPubMed Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 2003;50:1237–47.CrossRefPubMed
32.
go back to reference Griebel J, Pahernik S, Lucht R, DeVries R, Englmeier KH, Dellian M, Brix G. Perfusion and permeability: can both parameters be evaluated separately from dynamic MR data. Proc Int Soc Magn Reson Med 2001:629. Griebel J, Pahernik S, Lucht R, DeVries R, Englmeier KH, Dellian M, Brix G. Perfusion and permeability: can both parameters be evaluated separately from dynamic MR data. Proc Int Soc Magn Reson Med 2001:629.
33.
go back to reference Wu O, Østergaard L, Koroshetz WJ, Schwamm LE, O’Donnell J, Schaefer PW, et al. Effects of tracer arrival time on flow estimates in MR perfusion-weighted imaging. Magn Reson Med 2003;50:856–64.CrossRefPubMed Wu O, Østergaard L, Koroshetz WJ, Schwamm LE, O’Donnell J, Schaefer PW, et al. Effects of tracer arrival time on flow estimates in MR perfusion-weighted imaging. Magn Reson Med 2003;50:856–64.CrossRefPubMed
34.
go back to reference Miles KA. Measurement of tissue perfusion by dynamic computed tomography. Br J Radiol 1991;64:409–12.CrossRefPubMed Miles KA. Measurement of tissue perfusion by dynamic computed tomography. Br J Radiol 1991;64:409–12.CrossRefPubMed
35.
go back to reference Brix G, Zwick S, Griebel J, Fink C, Kiessling F. Estimation of tissue perfusion by dynamic contrast-enhanced imaging: simulation-based evaluation of the steepest-slope method. Eur Radiolody, doi:10.1007/s00330-010-1787-6. Brix G, Zwick S, Griebel J, Fink C, Kiessling F. Estimation of tissue perfusion by dynamic contrast-enhanced imaging: simulation-based evaluation of the steepest-slope method. Eur Radiolody, doi:10.​1007/​s00330-010-1787-6.
36.
go back to reference Dawson P. Functional and physiological imaging. In: Dawson P, Cosgrove DO, Grainger RG, editors. Textbook of contrast media. Oxford: Isis Medical Media; 1999. p. 75–93. Dawson P. Functional and physiological imaging. In: Dawson P, Cosgrove DO, Grainger RG, editors. Textbook of contrast media. Oxford: Isis Medical Media; 1999. p. 75–93.
37.
go back to reference Blomley MJK, Coulden R, Bufkin C, Lipton MJ, Dawson P. Contrast bolus dynamic computed tomography for the measurement of solid organ perfusion. Invest Radiol 1993;28:S72–7.CrossRefPubMed Blomley MJK, Coulden R, Bufkin C, Lipton MJ, Dawson P. Contrast bolus dynamic computed tomography for the measurement of solid organ perfusion. Invest Radiol 1993;28:S72–7.CrossRefPubMed
38.
go back to reference Cobelli C, Foster D, Toffolo G. Tracer kinetics in biomedical research. From data to model. New York: Kluwer Academic/Plenum Publishers; 2000. Cobelli C, Foster D, Toffolo G. Tracer kinetics in biomedical research. From data to model. New York: Kluwer Academic/Plenum Publishers; 2000.
39.
go back to reference Morales MF, Smith RE. On the theory of blood-tissue exchange of inert gases. VI. Validity of approximate uptake expressions. Bull Math Biophys 1948;10:191–200.CrossRefPubMed Morales MF, Smith RE. On the theory of blood-tissue exchange of inert gases. VI. Validity of approximate uptake expressions. Bull Math Biophys 1948;10:191–200.CrossRefPubMed
40.
go back to reference Brix G, Bahner M, Hoffmann U, Horvath A, Schreiber W. Regional blood flow, capillary permeability, and compartment volumes: measurement with dynamic computed tomography—initial experience. Radiology 1999;210:269–76.PubMed Brix G, Bahner M, Hoffmann U, Horvath A, Schreiber W. Regional blood flow, capillary permeability, and compartment volumes: measurement with dynamic computed tomography—initial experience. Radiology 1999;210:269–76.PubMed
41.
go back to reference Brix G, Zwick S, Kiessling F, Griebel J. Pharmacokinetic analysis of tissue microcirculation using nested models: multimodel inference and parameter identifiability. Med Phys 2009;36:2923–33.CrossRefPubMed Brix G, Zwick S, Kiessling F, Griebel J. Pharmacokinetic analysis of tissue microcirculation using nested models: multimodel inference and parameter identifiability. Med Phys 2009;36:2923–33.CrossRefPubMed
42.
go back to reference Peters AM, Myers MJ. Physiological measurements with radionuclides in clinical practice. Oxford: Oxford University Press; 1998. Peters AM, Myers MJ. Physiological measurements with radionuclides in clinical practice. Oxford: Oxford University Press; 1998.
43.
go back to reference Kety SS. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 1951;3:1–41.PubMed Kety SS. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 1951;3:1–41.PubMed
44.
go back to reference Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 1959;197:1205–10.PubMed Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 1959;197:1205–10.PubMed
45.
go back to reference Crone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand 1963;58:292–305.CrossRefPubMed Crone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand 1963;58:292–305.CrossRefPubMed
46.
go back to reference Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997;7:91–101.CrossRefPubMed Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997;7:91–101.CrossRefPubMed
47.
go back to reference Tofts PA, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 1991;17:357–67.CrossRefPubMed Tofts PA, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 1991;17:357–67.CrossRefPubMed
48.
go back to reference Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 1991;15:621–8.CrossRefPubMed Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 1991;15:621–8.CrossRefPubMed
49.
go back to reference Zwick S, Brix G, Tofts PS, Strecker R, Kopp-Schneider A, Laue H, et al. Simulation-based comparison of two approaches frequently used for dynamic contrast-enhanced MRI. Eur Radiol 2010;20:432–42.CrossRefPubMed Zwick S, Brix G, Tofts PS, Strecker R, Kopp-Schneider A, Laue H, et al. Simulation-based comparison of two approaches frequently used for dynamic contrast-enhanced MRI. Eur Radiol 2010;20:432–42.CrossRefPubMed
50.
go back to reference Burnham KP, Anderson DR. Model selection and multimodel inference. A practical information-theoretical approach. 2nd ed. New York: Springer; 2002. Burnham KP, Anderson DR. Model selection and multimodel inference. A practical information-theoretical approach. 2nd ed. New York: Springer; 2002.
51.
go back to reference Buckley DL. Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 2002;47:601–6.CrossRefPubMed Buckley DL. Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 2002;47:601–6.CrossRefPubMed
52.
go back to reference Johnson JA, Wilson TA. A model for capillary exchange. Am J Physiol 1966;210:1299–303.PubMed Johnson JA, Wilson TA. A model for capillary exchange. Am J Physiol 1966;210:1299–303.PubMed
53.
go back to reference St Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab 1998;18:1365–77.CrossRefPubMed St Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab 1998;18:1365–77.CrossRefPubMed
54.
go back to reference Vaupel P, Höckel M. Blood supply, oxygenation status and metabolic micromilieu of breast cancer: characterization and therapeutic relevance. Int J Oncol 2000;17:869–79.PubMed Vaupel P, Höckel M. Blood supply, oxygenation status and metabolic micromilieu of breast cancer: characterization and therapeutic relevance. Int J Oncol 2000;17:869–79.PubMed
55.
go back to reference Vaupel P. Blood flow and oxygenation status of head and neck carcinomas. Adv Exp Med Biol 1997;428:89–95.PubMed Vaupel P. Blood flow and oxygenation status of head and neck carcinomas. Adv Exp Med Biol 1997;428:89–95.PubMed
56.
go back to reference Warner E, Messersmith H, Causer P, Eisen A, Shumak R, Plewes D. Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Ann Intern Med 2008;148:671–9.PubMed Warner E, Messersmith H, Causer P, Eisen A, Shumak R, Plewes D. Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Ann Intern Med 2008;148:671–9.PubMed
57.
go back to reference Turnbull LW. Dynamic contrast-enhanced MRI in the diagnosis and management of breast cancer. NMR Biomed 2009;22:28–39.CrossRefPubMed Turnbull LW. Dynamic contrast-enhanced MRI in the diagnosis and management of breast cancer. NMR Biomed 2009;22:28–39.CrossRefPubMed
58.
go back to reference Kurhanewicz J, Vigneron D, Carroll P, Coakley F. Multiparametric magnetic resonance imaging in prostate cancer: present and future. Curr Opin Urol 2008;18:71–7.CrossRefPubMed Kurhanewicz J, Vigneron D, Carroll P, Coakley F. Multiparametric magnetic resonance imaging in prostate cancer: present and future. Curr Opin Urol 2008;18:71–7.CrossRefPubMed
59.
go back to reference Hawighorst H, Knapstein PG, Knopp MV, Weikel W, Brix G, Zuna I, et al. Uterine cervical carcinoma: comparison of standard and pharmacokinetic analysis of time-intensity curves for assessment of tumor angiogenesis and patient survival. Cancer Res 1998;58:3598–602.PubMed Hawighorst H, Knapstein PG, Knopp MV, Weikel W, Brix G, Zuna I, et al. Uterine cervical carcinoma: comparison of standard and pharmacokinetic analysis of time-intensity curves for assessment of tumor angiogenesis and patient survival. Cancer Res 1998;58:3598–602.PubMed
60.
go back to reference Mazaheri Y, Shukla-Dave A, Hricak H, Fine SW, Zhang J, Inurrigarro G, et al. Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging—correlation with pathologic findings. Radiology 2008;246:480–8.CrossRefPubMed Mazaheri Y, Shukla-Dave A, Hricak H, Fine SW, Zhang J, Inurrigarro G, et al. Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging—correlation with pathologic findings. Radiology 2008;246:480–8.CrossRefPubMed
61.
go back to reference Lim HK, Kim JK, Kim KA. Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection—a multireader study. Radiology 2009;250:145–51.CrossRefPubMed Lim HK, Kim JK, Kim KA. Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection—a multireader study. Radiology 2009;250:145–51.CrossRefPubMed
62.
go back to reference Padhani AR. Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 2002;16:407–22.CrossRefPubMed Padhani AR. Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 2002;16:407–22.CrossRefPubMed
63.
go back to reference Hillengass J, Wasser K, Delorme S, Kiessling F, Zechmann C, Benner A, et al. Lumbar bone marrow microcirculation measurements from dynamic contrast-enhanced magnetic resonance imaging is a predictor of event-free survival in progressive multiple myeloma. Clin Cancer Res 2007;13:475–81.CrossRefPubMed Hillengass J, Wasser K, Delorme S, Kiessling F, Zechmann C, Benner A, et al. Lumbar bone marrow microcirculation measurements from dynamic contrast-enhanced magnetic resonance imaging is a predictor of event-free survival in progressive multiple myeloma. Clin Cancer Res 2007;13:475–81.CrossRefPubMed
64.
go back to reference Hillengass J, Zechmann C, Bauerle T, Wagner-Gund B, Heiss C, Benner A, et al. Dynamic contrast-enhanced magnetic resonance imaging identifies a subgroup of patients with asymptomatic monoclonal plasma cell disease and pathologic microcirculation. Clin Cancer Res 2009;15:3118–25.CrossRefPubMed Hillengass J, Zechmann C, Bauerle T, Wagner-Gund B, Heiss C, Benner A, et al. Dynamic contrast-enhanced magnetic resonance imaging identifies a subgroup of patients with asymptomatic monoclonal plasma cell disease and pathologic microcirculation. Clin Cancer Res 2009;15:3118–25.CrossRefPubMed
65.
go back to reference Sahani DV, Holalkere NS, Mueller PR, Zhu AX. Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue—initial experience. Radiology 2007;243:736–43.CrossRefPubMed Sahani DV, Holalkere NS, Mueller PR, Zhu AX. Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue—initial experience. Radiology 2007;243:736–43.CrossRefPubMed
66.
go back to reference d’Assignies G, Couvelard A, Bahrami S, Vullierme MP, Hammel P, Hentic O, et al. Pancreatic endocrine tumors: tumor blood flow assessed with perfusion CT reflects angiogenesis and correlates with prognostic factors. Radiology 2009;250:407–16.CrossRefPubMed d’Assignies G, Couvelard A, Bahrami S, Vullierme MP, Hammel P, Hentic O, et al. Pancreatic endocrine tumors: tumor blood flow assessed with perfusion CT reflects angiogenesis and correlates with prognostic factors. Radiology 2009;250:407–16.CrossRefPubMed
67.
go back to reference Ash L, Teknos TN, Gandhi D, Patel S, Mukherji SK. Head and neck squamous cell carcinoma: CT perfusion can help noninvasively predict intratumoral microvessel density. Radiology 2009;251:422–8.CrossRefPubMed Ash L, Teknos TN, Gandhi D, Patel S, Mukherji SK. Head and neck squamous cell carcinoma: CT perfusion can help noninvasively predict intratumoral microvessel density. Radiology 2009;251:422–8.CrossRefPubMed
68.
go back to reference Bisdas S, Baghi M, Smolarz A, Pihno NC, Lehnert T, Knecht R, et al. Quantitative measurements of perfusion and permeability of oropharyngeal and oral cavity cancer, recurrent disease, and associated lymph nodes using first-pass contrast-enhanced computed tomography studies. Invest Radiol 2007;42:172–9.CrossRefPubMed Bisdas S, Baghi M, Smolarz A, Pihno NC, Lehnert T, Knecht R, et al. Quantitative measurements of perfusion and permeability of oropharyngeal and oral cavity cancer, recurrent disease, and associated lymph nodes using first-pass contrast-enhanced computed tomography studies. Invest Radiol 2007;42:172–9.CrossRefPubMed
69.
go back to reference Goh V, Halligan S, Daley F, Wellsted DM, Guenther T, Bartram CI. Colorectal tumor vascularity: quantitative assessment with multidetector CT—do tumor perfusion measurements reflect angiogenesis? Radiology 2008;249:510–7.CrossRefPubMed Goh V, Halligan S, Daley F, Wellsted DM, Guenther T, Bartram CI. Colorectal tumor vascularity: quantitative assessment with multidetector CT—do tumor perfusion measurements reflect angiogenesis? Radiology 2008;249:510–7.CrossRefPubMed
70.
go back to reference Padhani AR. MRI for assessing antivascular cancer treatments. Br J Radiol 2003;76:60–80.CrossRef Padhani AR. MRI for assessing antivascular cancer treatments. Br J Radiol 2003;76:60–80.CrossRef
71.
go back to reference Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH. Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 2005;97:172–87.CrossRefPubMed Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH. Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 2005;97:172–87.CrossRefPubMed
72.
go back to reference Kiessling F, Jugold M, Woenne EC, Brix G. Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging. Eur Radiol 2007;17:2136–48.CrossRefPubMed Kiessling F, Jugold M, Woenne EC, Brix G. Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging. Eur Radiol 2007;17:2136–48.CrossRefPubMed
73.
go back to reference Kiessling F, Farhan N, Lichy M, Vosseler S, Heilmann M, Krix M, et al. Dynamic contrast-enhanced magnetic resonance imaging rapidly indicates vessel regression in human squamous cell carcinomas grown in nude mice caused by VEGF receptor 2 blockade with DC101. Neoplasia 2004;6:213–23.CrossRefPubMed Kiessling F, Farhan N, Lichy M, Vosseler S, Heilmann M, Krix M, et al. Dynamic contrast-enhanced magnetic resonance imaging rapidly indicates vessel regression in human squamous cell carcinomas grown in nude mice caused by VEGF receptor 2 blockade with DC101. Neoplasia 2004;6:213–23.CrossRefPubMed
74.
go back to reference Brasch R, Turetschek K. MRI characterization of tumors and grading angiogenesis using macromolecular contrast media: status report. Eur J Radiol 2000;34:148–55.CrossRefPubMed Brasch R, Turetschek K. MRI characterization of tumors and grading angiogenesis using macromolecular contrast media: status report. Eur J Radiol 2000;34:148–55.CrossRefPubMed
75.
go back to reference Turetschek K, Preda A, Novikov V, Brasch RC, Weinmann HJ, Wunderbaldinger P, et al. Tumor microvascular changes in antiangiogenic treatment: assessment by magnetic resonance contrast media of different molecular weights. J Magn Reson Imaging 2004;20:138–44.CrossRefPubMed Turetschek K, Preda A, Novikov V, Brasch RC, Weinmann HJ, Wunderbaldinger P, et al. Tumor microvascular changes in antiangiogenic treatment: assessment by magnetic resonance contrast media of different molecular weights. J Magn Reson Imaging 2004;20:138–44.CrossRefPubMed
76.
go back to reference Morgan B, Thomas AL, Drevs J, Hennig J, Buchert M, Jivan A, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 2003;21:3955–64.CrossRefPubMed Morgan B, Thomas AL, Drevs J, Hennig J, Buchert M, Jivan A, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 2003;21:3955–64.CrossRefPubMed
77.
go back to reference O’Connor JP, Jackson A, Parker GJ, Jayson GC. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 2007;96:189–95.CrossRefPubMed O’Connor JP, Jackson A, Parker GJ, Jayson GC. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 2007;96:189–95.CrossRefPubMed
78.
go back to reference Meijerink MR, van Cruijsen H, Hoekman K, Kater M, van Schaik C, van Waesberghe JH, et al. The use of perfusion CT for the evaluation of therapy combining AZD2171 with gefitinib in cancer patients. Eur Radiol 2007;17:1700–13.CrossRefPubMed Meijerink MR, van Cruijsen H, Hoekman K, Kater M, van Schaik C, van Waesberghe JH, et al. The use of perfusion CT for the evaluation of therapy combining AZD2171 with gefitinib in cancer patients. Eur Radiol 2007;17:1700–13.CrossRefPubMed
79.
go back to reference Loo CE, Teertstra HJ, Rodenhuis S, van de Vijver MJ, Hannemann J, Muller SH, et al. Dynamic contrast-enhanced MRI for prediction of breast cancer response to neoadjuvant chemotherapy: initial results. AJR Am J Roentgenol 2008;191:1331–8.CrossRefPubMed Loo CE, Teertstra HJ, Rodenhuis S, van de Vijver MJ, Hannemann J, Muller SH, et al. Dynamic contrast-enhanced MRI for prediction of breast cancer response to neoadjuvant chemotherapy: initial results. AJR Am J Roentgenol 2008;191:1331–8.CrossRefPubMed
80.
go back to reference Park MS, Klotz E, Kim MJ, Song SY, Park SW, Cha SW, et al. Perfusion CT: noninvasive surrogate marker for stratification of pancreatic cancer response to concurrent chemo- and radiation therapy. Radiology 2009;250:110–7.CrossRefPubMed Park MS, Klotz E, Kim MJ, Song SY, Park SW, Cha SW, et al. Perfusion CT: noninvasive surrogate marker for stratification of pancreatic cancer response to concurrent chemo- and radiation therapy. Radiology 2009;250:110–7.CrossRefPubMed
81.
go back to reference Kiessling F, Boese J, Corvinus C, Ederle JR, Zuna I, Schoenberg SO, et al. Perfusion CT in patients with advanced bronchial carcinomas: a novel chance for characterization and treatment monitoring? Eur Radiol 2004;14:1226–33.PubMed Kiessling F, Boese J, Corvinus C, Ederle JR, Zuna I, Schoenberg SO, et al. Perfusion CT in patients with advanced bronchial carcinomas: a novel chance for characterization and treatment monitoring? Eur Radiol 2004;14:1226–33.PubMed
82.
go back to reference Nagashima T, Sakakibara M, Nakamura R, Arai M, Kadowaki M, Kazama T, et al. Dynamic enhanced MRI predicts chemosensitivity in breast cancer patients. Eur J Radiol 2006;60:270–4.CrossRefPubMed Nagashima T, Sakakibara M, Nakamura R, Arai M, Kadowaki M, Kazama T, et al. Dynamic enhanced MRI predicts chemosensitivity in breast cancer patients. Eur J Radiol 2006;60:270–4.CrossRefPubMed
83.
go back to reference Neff T, Kiessling F, Brix G, Baudendistel K, Zechmann C, Giesel FL, et al. An optimized workflow for the integration of biological information into radiotherapy planning: experiences with T1w DCE-MRI. Phys Med Biol 2005;50:4209–23.CrossRefPubMed Neff T, Kiessling F, Brix G, Baudendistel K, Zechmann C, Giesel FL, et al. An optimized workflow for the integration of biological information into radiotherapy planning: experiences with T1w DCE-MRI. Phys Med Biol 2005;50:4209–23.CrossRefPubMed
84.
go back to reference Khoo VS, Joon DL. New developments in MRI for target volume delineation in radiotherapy. Br J Radiol 2006;79:S2–15.CrossRefPubMed Khoo VS, Joon DL. New developments in MRI for target volume delineation in radiotherapy. Br J Radiol 2006;79:S2–15.CrossRefPubMed
85.
go back to reference MacManus M, Nestle U, Rosenzweig KE, Carrio I, Messa C, Belohlavek O, et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 2009;91:85–94.CrossRefPubMed MacManus M, Nestle U, Rosenzweig KE, Carrio I, Messa C, Belohlavek O, et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 2009;91:85–94.CrossRefPubMed
86.
go back to reference Nestle U, Weber W, Hentschel M, Grosu AL. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2009;54:R1–25.CrossRefPubMed Nestle U, Weber W, Hentschel M, Grosu AL. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2009;54:R1–25.CrossRefPubMed
87.
go back to reference Koukourakis MI. Tumour angiogenesis and response to radiotherapy. Anticancer Res 2001;21:4285–300.PubMed Koukourakis MI. Tumour angiogenesis and response to radiotherapy. Anticancer Res 2001;21:4285–300.PubMed
88.
go back to reference Loncaster JA, Carrington BM, Sykes JR, Jones AP, Todd SM, Cooper R, et al. Prediction of radiotherapy outcome using dynamic contrast enhanced MRI of carcinoma of the cervix. Int J Radiat Oncol Biol Phys 2002;54:759–67.PubMed Loncaster JA, Carrington BM, Sykes JR, Jones AP, Todd SM, Cooper R, et al. Prediction of radiotherapy outcome using dynamic contrast enhanced MRI of carcinoma of the cervix. Int J Radiat Oncol Biol Phys 2002;54:759–67.PubMed
89.
go back to reference Newbold K, Castellano I, Charles-Edwards E, Mears D, Sohaib A, Leach M, et al. An exploratory study into the role of dynamic contrast-enhanced magnetic resonance imaging or perfusion computed tomography for detection of intratumoral hypoxia in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2009;74:29–37.PubMed Newbold K, Castellano I, Charles-Edwards E, Mears D, Sohaib A, Leach M, et al. An exploratory study into the role of dynamic contrast-enhanced magnetic resonance imaging or perfusion computed tomography for detection of intratumoral hypoxia in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2009;74:29–37.PubMed
90.
go back to reference Hall EJ. Radiobiology for the radiologist. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2000. Hall EJ. Radiobiology for the radiologist. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2000.
91.
go back to reference Hawighorst H, Knopp MV, Debus J, Hoffmann U, Grandy M, Griebel J, et al. Pharmacokinetic MRI for assessment of malignant glioma response to stereotactic radiotherapy: initial results. J Magn Reson Imaging 1998;8:783–8.CrossRefPubMed Hawighorst H, Knopp MV, Debus J, Hoffmann U, Grandy M, Griebel J, et al. Pharmacokinetic MRI for assessment of malignant glioma response to stereotactic radiotherapy: initial results. J Magn Reson Imaging 1998;8:783–8.CrossRefPubMed
92.
go back to reference Fuss M, Wenz F, Essig M, Muenter M, Debus J, Herman TS, et al. Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast enhanced MRI (DSC-MRI) is predictive of local tumor control following radiation therapy. Int J Radiat Oncol Biol Phys 2001;51:478–82.PubMed Fuss M, Wenz F, Essig M, Muenter M, Debus J, Herman TS, et al. Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast enhanced MRI (DSC-MRI) is predictive of local tumor control following radiation therapy. Int J Radiat Oncol Biol Phys 2001;51:478–82.PubMed
93.
go back to reference Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008;247:490–8.CrossRefPubMed Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008;247:490–8.CrossRefPubMed
94.
go back to reference Zahra MA, Tan LT, Priest AN, Graves MJ, Arends M, Crawford RA, et al. Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer. Int J Radiat Oncol Biol Phys 2009;74:766–73.PubMed Zahra MA, Tan LT, Priest AN, Graves MJ, Arends M, Crawford RA, et al. Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer. Int J Radiat Oncol Biol Phys 2009;74:766–73.PubMed
95.
go back to reference Cao Y, Popovtzer A, Li D, Chepeha DB, Moyer JS, Prince ME, et al. Early prediction of outcome in advanced head-and-neck cancer based on tumor blood volume alterations during therapy: a prospective study. Int J Radiat Oncol Biol Phys 2008;72:1287–90.PubMed Cao Y, Popovtzer A, Li D, Chepeha DB, Moyer JS, Prince ME, et al. Early prediction of outcome in advanced head-and-neck cancer based on tumor blood volume alterations during therapy: a prospective study. Int J Radiat Oncol Biol Phys 2008;72:1287–90.PubMed
96.
go back to reference Devries AF, Griebel J, Kremser C, Judmaier W, Gneiting T, Kreczy A, et al. Tumor microcirculation evaluated by dynamic magnetic resonance imaging predicts therapy outcome for primary rectal carcinoma. Cancer Res 2001;61:2513–6.PubMed Devries AF, Griebel J, Kremser C, Judmaier W, Gneiting T, Kreczy A, et al. Tumor microcirculation evaluated by dynamic magnetic resonance imaging predicts therapy outcome for primary rectal carcinoma. Cancer Res 2001;61:2513–6.PubMed
97.
go back to reference Hawighorst H, Engenhart R, Knopp MV, Brix G, Grandy M, Essig M, et al. Intracranial meningeomas: time- and dose-dependent effects of irradiation on tumor microcirculation monitored by dynamic MR imaging. Magn Reson Imaging 1997;15:423–32.CrossRefPubMed Hawighorst H, Engenhart R, Knopp MV, Brix G, Grandy M, Essig M, et al. Intracranial meningeomas: time- and dose-dependent effects of irradiation on tumor microcirculation monitored by dynamic MR imaging. Magn Reson Imaging 1997;15:423–32.CrossRefPubMed
98.
go back to reference de Lussanet QG, Backes WH, Griffioen AW, Padhani AR, Baeten CI, van Baardwijk A, et al. Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer. Int J Radiat Oncol Biol Phys 2005;63:1309–15.CrossRefPubMed de Lussanet QG, Backes WH, Griffioen AW, Padhani AR, Baeten CI, van Baardwijk A, et al. Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer. Int J Radiat Oncol Biol Phys 2005;63:1309–15.CrossRefPubMed
99.
go back to reference Sahani DV, Kalva SP, Hamberg LM, Hahn PF, Willett CG, Saini S, et al. Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: initial observations. Radiology 2005;234:785–92.CrossRefPubMed Sahani DV, Kalva SP, Hamberg LM, Hahn PF, Willett CG, Saini S, et al. Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: initial observations. Radiology 2005;234:785–92.CrossRefPubMed
100.
go back to reference Wenz F, Rempp K, Heß T, Debus J, Brix G, Engenhart R, et al. Effect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 1996;166:187–93.PubMed Wenz F, Rempp K, Heß T, Debus J, Brix G, Engenhart R, et al. Effect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 1996;166:187–93.PubMed
101.
go back to reference Fuss M, Wenz F, Scholdei R, Essig M, Debus J, Knopp MV, et al. Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol Biol Phys 2000;48:53–8.CrossRefPubMed Fuss M, Wenz F, Scholdei R, Essig M, Debus J, Knopp MV, et al. Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol Biol Phys 2000;48:53–8.CrossRefPubMed
102.
go back to reference Pucar DM, Hricak H, Shukla-Dave A, Kuroiwa K, Drobnjak M, Eastharn K, et al. Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys 2007;69:62–8.PubMed Pucar DM, Hricak H, Shukla-Dave A, Kuroiwa K, Drobnjak M, Eastharn K, et al. Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys 2007;69:62–8.PubMed
103.
go back to reference Kanwal RP. Generalized functions: theory and applications. 3rd ed. Boston: Birkhäuser; 2004. Kanwal RP. Generalized functions: theory and applications. 3rd ed. Boston: Birkhäuser; 2004.
Metadata
Title
Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements
Authors
Gunnar Brix
Jürgen Griebel
Fabian Kiessling
Frederik Wenz
Publication date
01-08-2010
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue Special Issue 1/2010
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-010-1448-7

Other articles of this Special Issue 1/2010

European Journal of Nuclear Medicine and Molecular Imaging 1/2010 Go to the issue