Skip to main content
Top
Published in: European Radiology 3/2012

01-03-2012 | Breast

Percutaneous removal of sentinel lymph nodes in a swine model using a breast lesion excision system and contrast-enhanced ultrasound

Authors: Ali R. Sever, Philippa Mills, Jean-Marc Hyvelin, Jennifer Weeks, Hatice Gumus, David Fish, Willem Mali, Susan E. Jones, Peter A. Jones, Haresh Devalia

Published in: European Radiology | Issue 3/2012

Login to get access

Abstract

Objectives

To investigate the feasibility of percutaneous removal of the entire sentinel lymph node (SLN) in an animal model using a breast lesion excision system after identifying these nodes using contrast-enhanced ultrasound (CEUS) and intradermal microbubbles.

Methods

Animal studies approval was obtained. SLNs were identified using CEUS and intradermal injection of microbubbles in two young pigs. Microbubbles were mixed with blue dye and injected around the mammary papillae to access lymphatic drainage to the superficial inguinal lymph nodes. When enhancing nodes were identified, the breast lesion excision system (BLES) was used to remove these nodes percutaneously. Both animals then underwent surgical lymph node dissection. Histopathological examination of all the samples was performed.

Results

Removal of the entire SLN was successful in three groins in the pigs. All three nodes were stained with blue dye. No other stained nodes were observed in the node dissection specimens. The nodal architecture of removed lymph nodes was well preserved on microscopy. There were no signs of excess trauma within the biopsy bed.

Conclusion

The results obtained from the swine model demonstrated that it is feasible to remove the entire SLN percutaneously under the guidance of CEUS and microbubbles.

Key Points

Intradermal injection of microbubbles and CEUS can identify sentinel lymph nodes
Ultrasound could then guide percutaneous removal of intact and complete SLNs
We have shown this was feasible in pigs but not yet in humans
This technique may eventually have the potential to reduce futile SLN biopsies.
Literature
1.
go back to reference Morton DL, Wen DR, Wong JH et al (1992) Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 127:392–399PubMedCrossRef Morton DL, Wen DR, Wong JH et al (1992) Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 127:392–399PubMedCrossRef
2.
go back to reference Cox CE, Pendas S, Cox JM et al (1998) Guidelines for sentinel node biopsy and lymphatic mapping of patients with breast cancer. Ann Surg 227:645–651, discussion 651–653PubMedCrossRef Cox CE, Pendas S, Cox JM et al (1998) Guidelines for sentinel node biopsy and lymphatic mapping of patients with breast cancer. Ann Surg 227:645–651, discussion 651–653PubMedCrossRef
3.
go back to reference Martin RC 2nd, Edwards MJ, Wong SL et al (2000) Practical guidelines for optimal gamma probe detection of sentinel lymph nodes in breast cancer: results of a multi-institutional study. For the University of Louisville Breast Cancer Study Group. Surgery 128:139–144PubMedCrossRef Martin RC 2nd, Edwards MJ, Wong SL et al (2000) Practical guidelines for optimal gamma probe detection of sentinel lymph nodes in breast cancer: results of a multi-institutional study. For the University of Louisville Breast Cancer Study Group. Surgery 128:139–144PubMedCrossRef
4.
go back to reference Goldberg BB, Merton DA, Liu JB et al (2004) Sentinel lymph nodes in a swine model with melanoma: contrast-enhanced lymphatic US. Radiology 230:727–734PubMedCrossRef Goldberg BB, Merton DA, Liu JB et al (2004) Sentinel lymph nodes in a swine model with melanoma: contrast-enhanced lymphatic US. Radiology 230:727–734PubMedCrossRef
5.
go back to reference Wang Y, Wang W, Li J, Tang J (2009) Gray-scale contrast-enhanced ultrasonography of sentinel lymph nodes in a metastatic breast cancer model. Acad Radiol 16:957–962PubMedCrossRef Wang Y, Wang W, Li J, Tang J (2009) Gray-scale contrast-enhanced ultrasonography of sentinel lymph nodes in a metastatic breast cancer model. Acad Radiol 16:957–962PubMedCrossRef
6.
go back to reference Sever A, Broillet A, Schneider M et al (2010) Dynamic visualization of lymphatic channels and sentinel lymph nodes using intradermal microbubbles and contrast-enhanced ultrasound in a Swine model and patients with breast cancer. J Ultrasound Med 29:1699–1704PubMed Sever A, Broillet A, Schneider M et al (2010) Dynamic visualization of lymphatic channels and sentinel lymph nodes using intradermal microbubbles and contrast-enhanced ultrasound in a Swine model and patients with breast cancer. J Ultrasound Med 29:1699–1704PubMed
7.
go back to reference Sever A, Jones S, Cox K, Weeks J, Mills P, Jones P (2009) Preoperative localization of sentinel lymph nodes using intradermal microbubbles and contrast-enhanced ultrasonography in patients with breast cancer. Br J Surg 96:1295–1299PubMedCrossRef Sever A, Jones S, Cox K, Weeks J, Mills P, Jones P (2009) Preoperative localization of sentinel lymph nodes using intradermal microbubbles and contrast-enhanced ultrasonography in patients with breast cancer. Br J Surg 96:1295–1299PubMedCrossRef
8.
go back to reference Sever AR, Mills P, Jones SE et al (2011) Preoperative sentinel node identification with ultrasound using microbubbles in patients with breast cancer. AJR Am J Roentgenol 196:251–256PubMedCrossRef Sever AR, Mills P, Jones SE et al (2011) Preoperative sentinel node identification with ultrasound using microbubbles in patients with breast cancer. AJR Am J Roentgenol 196:251–256PubMedCrossRef
9.
go back to reference Oruwari JU, Chung MA, Koelliker S, Steinhoff MM, Cady B (2002) Axillary staging using ultrasound-guided fine needle aspiration biopsy in locally advanced breast cancer. Am J Surg 184:307–309PubMedCrossRef Oruwari JU, Chung MA, Koelliker S, Steinhoff MM, Cady B (2002) Axillary staging using ultrasound-guided fine needle aspiration biopsy in locally advanced breast cancer. Am J Surg 184:307–309PubMedCrossRef
10.
go back to reference Abe H, Schmidt RA, Kulkarni K, Sennett CA, Mueller JS, Newstead GM (2009) Axillary lymph nodes suspicious for breast cancer metastasis: sampling with US-guided 14-gauge core-needle biopsy–clinical experience in 100 patients. Radiology 250:41–49PubMedCrossRef Abe H, Schmidt RA, Kulkarni K, Sennett CA, Mueller JS, Newstead GM (2009) Axillary lymph nodes suspicious for breast cancer metastasis: sampling with US-guided 14-gauge core-needle biopsy–clinical experience in 100 patients. Radiology 250:41–49PubMedCrossRef
11.
go back to reference Mills P, Sever A, Weeks J, Fish D, Jones S, Jones P (2010) Axillary ultrasound assessment in primary breast cancer: an audit of 653 cases. Breast J 16:460–463PubMedCrossRef Mills P, Sever A, Weeks J, Fish D, Jones S, Jones P (2010) Axillary ultrasound assessment in primary breast cancer: an audit of 653 cases. Breast J 16:460–463PubMedCrossRef
12.
go back to reference Lee MC, Eatrides J, Chau A et al (2011) Consequences of axillary ultrasound in patients with T2 or greater invasive breast cancers. Ann Surg Oncol 18:72–77PubMedCrossRef Lee MC, Eatrides J, Chau A et al (2011) Consequences of axillary ultrasound in patients with T2 or greater invasive breast cancers. Ann Surg Oncol 18:72–77PubMedCrossRef
13.
go back to reference Alvarez S, Añorbe E, Alcorta P, López F, Alonso I, Cortés J (2006) Role of sonography in the diagnosis of axillary lymph node metastases in breast cancer: a systematic review. AJR Am J Roentgenol 186:1342–1348PubMedCrossRef Alvarez S, Añorbe E, Alcorta P, López F, Alonso I, Cortés J (2006) Role of sonography in the diagnosis of axillary lymph node metastases in breast cancer: a systematic review. AJR Am J Roentgenol 186:1342–1348PubMedCrossRef
14.
go back to reference Britton PD, Goud A, Godward S et al (2009) Use of ultrasound-guided axillary node core biopsy in staging of early breast cancer. Eur Radiol 19:561–569PubMedCrossRef Britton PD, Goud A, Godward S et al (2009) Use of ultrasound-guided axillary node core biopsy in staging of early breast cancer. Eur Radiol 19:561–569PubMedCrossRef
15.
go back to reference Britton PD, Provenzano E, Barter S et al (2009) Ultrasound guided percutaneous axillary lymph node core biopsy: how often is the sentinel lymph node being biopsied? Breast 18:13–16PubMedCrossRef Britton PD, Provenzano E, Barter S et al (2009) Ultrasound guided percutaneous axillary lymph node core biopsy: how often is the sentinel lymph node being biopsied? Breast 18:13–16PubMedCrossRef
16.
go back to reference March DE, Coughlin BF, Barham RB et al (2003) Breast masses: removal of all US evidence during biopsy by using a handheld vacuum-assisted device–initial experience. Radiology 227:549–555PubMedCrossRef March DE, Coughlin BF, Barham RB et al (2003) Breast masses: removal of all US evidence during biopsy by using a handheld vacuum-assisted device–initial experience. Radiology 227:549–555PubMedCrossRef
17.
go back to reference Fine RE, Boyd BA, Whitworth PW, Kim JA, Harness JK, Burak WE (2002) Percutaneous removal of benign breast masses using a vacuum-assisted hand-held device with ultrasound guidance. Am J Surg 184:332–336PubMedCrossRef Fine RE, Boyd BA, Whitworth PW, Kim JA, Harness JK, Burak WE (2002) Percutaneous removal of benign breast masses using a vacuum-assisted hand-held device with ultrasound guidance. Am J Surg 184:332–336PubMedCrossRef
18.
go back to reference Makita T, Saito Y, Watanabe M (1985) Regional anatomy of swine. The Yamaguchi J Vet Med 12:33–58 Makita T, Saito Y, Watanabe M (1985) Regional anatomy of swine. The Yamaguchi J Vet Med 12:33–58
19.
go back to reference Lyman GH, Giuliano AE, Somerfield MR et al (2005) American Society of Clinical Oncology. American Society of Clinical Oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer. J Clin Oncol 23:7703–7720PubMedCrossRef Lyman GH, Giuliano AE, Somerfield MR et al (2005) American Society of Clinical Oncology. American Society of Clinical Oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer. J Clin Oncol 23:7703–7720PubMedCrossRef
20.
go back to reference Kim T, Giuliano AE, Lyman GH (2006) Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma: a metaanalysis. Cancer 106:4–16PubMedCrossRef Kim T, Giuliano AE, Lyman GH (2006) Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma: a metaanalysis. Cancer 106:4–16PubMedCrossRef
21.
go back to reference Suga K, Yuan Y, Okada M et al (2004) Breast sentinel lymph node mapping at CT lymphography with iopamidol: preliminary experience. Radiology 230:543–552PubMedCrossRef Suga K, Yuan Y, Okada M et al (2004) Breast sentinel lymph node mapping at CT lymphography with iopamidol: preliminary experience. Radiology 230:543–552PubMedCrossRef
22.
go back to reference Tangoku A, Yamamoto S, Suga K et al (2004) Sentinel lymph node biopsy using computed tomography-lymphography in patients with breast cancer. Surgery 135:258–265PubMedCrossRef Tangoku A, Yamamoto S, Suga K et al (2004) Sentinel lymph node biopsy using computed tomography-lymphography in patients with breast cancer. Surgery 135:258–265PubMedCrossRef
23.
go back to reference Suga K, Yuan Y, Ogasawara N, Okada M, Matsunaga N (2003) Localization of breast sentinel lymph nodes by MR lymphography with a conventional gadolinium contrast agent. Preliminary observations in dogs and humans. Acta Radiol 44:35–42PubMedCrossRef Suga K, Yuan Y, Ogasawara N, Okada M, Matsunaga N (2003) Localization of breast sentinel lymph nodes by MR lymphography with a conventional gadolinium contrast agent. Preliminary observations in dogs and humans. Acta Radiol 44:35–42PubMedCrossRef
24.
go back to reference Yamagami T, Yuen S, Sawai K, Nishimura T (2004) MR imaging-guided axillary node biopsy for breast cancer: initial findings. Eur Radiol 14:151–156PubMedCrossRef Yamagami T, Yuen S, Sawai K, Nishimura T (2004) MR imaging-guided axillary node biopsy for breast cancer: initial findings. Eur Radiol 14:151–156PubMedCrossRef
25.
go back to reference Yang WT, Chang J, Metreweli C (2000) Patients with breast cancer: differences in color Doppler flow and gray-scale US features of benign and malignant axillary lymph nodes. Radiology 215:568–573PubMed Yang WT, Chang J, Metreweli C (2000) Patients with breast cancer: differences in color Doppler flow and gray-scale US features of benign and malignant axillary lymph nodes. Radiology 215:568–573PubMed
26.
go back to reference Nathanson SD, Burke M, Slater R, Kapke A (2007) Preoperative identification of the sentinel lymph node in breast cancer. Ann Surg Oncol 14:3102–3110PubMedCrossRef Nathanson SD, Burke M, Slater R, Kapke A (2007) Preoperative identification of the sentinel lymph node in breast cancer. Ann Surg Oncol 14:3102–3110PubMedCrossRef
27.
go back to reference Allen SD, Nerurkar A, Della Rovere GU (2011) The breast lesion excision system (BLES): a novel technique in the diagnostic and therapeutic management of small indeterminate breast lesions? Eur Radiol 21:919–924PubMedCrossRef Allen SD, Nerurkar A, Della Rovere GU (2011) The breast lesion excision system (BLES): a novel technique in the diagnostic and therapeutic management of small indeterminate breast lesions? Eur Radiol 21:919–924PubMedCrossRef
28.
go back to reference Seror JY, Lesieur B, Scheuer-Niro B, Zerat L, Rouzier R, Uzan S (2011) Predictive factors for complete excision and underestimation of one-pass en bloc excision of non-palpable breast lesions with the Intact® breast lesion excision system. Eur J Radiol. doi:10.1016/j.ejrad.2011.01.049 Seror JY, Lesieur B, Scheuer-Niro B, Zerat L, Rouzier R, Uzan S (2011) Predictive factors for complete excision and underestimation of one-pass en bloc excision of non-palpable breast lesions with the Intact® breast lesion excision system. Eur J Radiol. doi:10.​1016/​j.​ejrad.​2011.​01.​049
Metadata
Title
Percutaneous removal of sentinel lymph nodes in a swine model using a breast lesion excision system and contrast-enhanced ultrasound
Authors
Ali R. Sever
Philippa Mills
Jean-Marc Hyvelin
Jennifer Weeks
Hatice Gumus
David Fish
Willem Mali
Susan E. Jones
Peter A. Jones
Haresh Devalia
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
European Radiology / Issue 3/2012
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-011-2293-1

Other articles of this Issue 3/2012

European Radiology 3/2012 Go to the issue