Skip to main content
Top
Published in: European Radiology 4/2010

Open Access 01-04-2010 | Magnetic Resonance

Fluid attenuated inversion recovery (FLAIR) MRI at 7.0 Tesla: comparison with 1.5 and 3.0 Tesla

Authors: Jaco J. M. Zwanenburg, Jeroen Hendrikse, Fredy Visser, Taro Takahara, Peter R. Luijten

Published in: European Radiology | Issue 4/2010

Login to get access

Abstract

Purpose

To assess fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) at three field strengths, regarding signal-to-noise ratio (SNR), contrast and signal homogeneity, in order to determine the potential gain and current challenges of FLAIR at ultra-high field strength (7 T).

Methods

FLAIR images of five healthy volunteers (age 24 ± 4 years, 4 male) were acquired at 1.5 T, 3 T and 7 T. Image homogeneity and visibility of normal brain structures were evaluated. SNR of grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) were measured in regions not affected by transmit field heterogeneity.

Results

The SNR (mean ± SD) at 7 T (GM 168 ± 15, WM 125 ± 11) increased slightly more than proportionally, compared with at 1.5 T (GM 30 ± 3, WM 22 ± 2) and 3 T (GM 62 ± 7, WM 44 ± 4). Relative contrast between GM and WM at 7 T (1.35 ± 0.07) was slightly less than at 3 T (1.42 ± 0.14) or 1.5 T (1.37 ± 0.07). Several major fibre bundles became visible at 7 T. One incidentally observed white matter lesion was well visible at all field strengths.

Conclusion

Image homogeneity remains challenging and should be improved by future technical developments. FLAIR imaging at 7 T yields a high SNR,with better contrast for WM substructures and the iron-bearing basal ganglia, and has potential for good conspicuity of WM lesions.
Literature
1.
go back to reference Hajnal JV, De CB, Lewis PD, Baudouin CJ, Cowan FM, Pennock JM, Young IR, Bydder GM (1992) High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences. J Comput Assist Tomogr 16:506–513PubMedCrossRef Hajnal JV, De CB, Lewis PD, Baudouin CJ, Cowan FM, Pennock JM, Young IR, Bydder GM (1992) High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences. J Comput Assist Tomogr 16:506–513PubMedCrossRef
2.
3.
go back to reference Moraal B, Roosendaal SD, Pouwels PJ, Vrenken H, van Schijndel RA, Meier DS, Guttmann CR, Geurts JJ, Barkhof F (2008) Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis. Eur Radiol 18:2311–2320CrossRefPubMed Moraal B, Roosendaal SD, Pouwels PJ, Vrenken H, van Schijndel RA, Meier DS, Guttmann CR, Geurts JJ, Barkhof F (2008) Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis. Eur Radiol 18:2311–2320CrossRefPubMed
4.
go back to reference Chagla GH, Busse RF, Sydnor R, Rowley HA, Turski PA (2008) Three-dimensional fluid attenuated inversion recovery imaging with isotropic resolution and nonselective adiabatic inversion provides improved three-dimensional visualization and cerebrospinal fluid suppression compared to two-dimensional flair at 3 tesla. Invest Radiol 43:547–551CrossRefPubMed Chagla GH, Busse RF, Sydnor R, Rowley HA, Turski PA (2008) Three-dimensional fluid attenuated inversion recovery imaging with isotropic resolution and nonselective adiabatic inversion provides improved three-dimensional visualization and cerebrospinal fluid suppression compared to two-dimensional flair at 3 tesla. Invest Radiol 43:547–551CrossRefPubMed
5.
go back to reference Tkac I, Gruetter R (2005) Methodology of H-1 NMR spectroscopy of the human brain at very high magnetic fields. Appl Magn Reson 29:139–157CrossRefPubMed Tkac I, Gruetter R (2005) Methodology of H-1 NMR spectroscopy of the human brain at very high magnetic fields. Appl Magn Reson 29:139–157CrossRefPubMed
6.
go back to reference Duyn JH, van GP, Li TQ, de Zwart JA, Koretsky AP, Fukunaga M (2007) High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A 104:11796–11801CrossRefPubMed Duyn JH, van GP, Li TQ, de Zwart JA, Koretsky AP, Fukunaga M (2007) High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A 104:11796–11801CrossRefPubMed
7.
go back to reference Cho ZH, Kang CK, Han JY, Kim SH, Kim KN, Hong SM, Park CW, Kim YB (2008) Observation of the Lenticulostriate Arteries in the Human Brain In Vivo Using 7.0T MR Angiography. Stroke. doi:10.1161/STROKEAHA.107.508002 Cho ZH, Kang CK, Han JY, Kim SH, Kim KN, Hong SM, Park CW, Kim YB (2008) Observation of the Lenticulostriate Arteries in the Human Brain In Vivo Using 7.0T MR Angiography. Stroke. doi:10.​1161/​STROKEAHA.​107.​508002
8.
go back to reference Hendrikse J, Zwanenburg JJ, Visser F, Takahara T, Luijten P (2008) Noninvasive depiction of the lenticulostriate arteries with time-of-flight MR angiography at 7.0 T. Cerebrovasc Dis 26:624–629CrossRefPubMed Hendrikse J, Zwanenburg JJ, Visser F, Takahara T, Luijten P (2008) Noninvasive depiction of the lenticulostriate arteries with time-of-flight MR angiography at 7.0 T. Cerebrovasc Dis 26:624–629CrossRefPubMed
9.
go back to reference Gati JS, Menon RS, Ugurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38:296–302CrossRefPubMed Gati JS, Menon RS, Ugurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38:296–302CrossRefPubMed
10.
go back to reference Yacoub E, Shmuel A, Pfeuffer J, van de Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594CrossRefPubMed Yacoub E, Shmuel A, Pfeuffer J, van de Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594CrossRefPubMed
11.
go back to reference Tallantyre EC, Brookes MJ, Dixon JE, Morgan PS, Evangelou N, Morris PG (2008) Demonstrating the perivascular distribution of MS lesions in vivo with 7-Tesla MRI. Neurology 70:2076–2078CrossRefPubMed Tallantyre EC, Brookes MJ, Dixon JE, Morgan PS, Evangelou N, Morris PG (2008) Demonstrating the perivascular distribution of MS lesions in vivo with 7-Tesla MRI. Neurology 70:2076–2078CrossRefPubMed
12.
go back to reference Garwood M, Delabarre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153:155–177CrossRefPubMed Garwood M, Delabarre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153:155–177CrossRefPubMed
13.
go back to reference Rooney WD, Johnson G, Li X, Cohen ER, Kim SG, Ugurbil K, Springer CS Jr (2007) Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 57:308–318CrossRefPubMed Rooney WD, Johnson G, Li X, Cohen ER, Kim SG, Ugurbil K, Springer CS Jr (2007) Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 57:308–318CrossRefPubMed
14.
go back to reference Phal PM, Usmanov A, Nesbit GM, Anderson JC, Spencer D, Wang P, Helwig JA, Roberts C, Hamilton BE (2008) Qualitative comparison of 3-T and 1.5-T MRI in the evaluation of epilepsy. AJR Am J Roentgenol 191:890–895CrossRefPubMed Phal PM, Usmanov A, Nesbit GM, Anderson JC, Spencer D, Wang P, Helwig JA, Roberts C, Hamilton BE (2008) Qualitative comparison of 3-T and 1.5-T MRI in the evaluation of epilepsy. AJR Am J Roentgenol 191:890–895CrossRefPubMed
15.
go back to reference Runge VM, Case RS, Sonnier HL (2006) Advances in clinical 3-tesla neuroimaging. Invest Radiol 41:63–67CrossRefPubMed Runge VM, Case RS, Sonnier HL (2006) Advances in clinical 3-tesla neuroimaging. Invest Radiol 41:63–67CrossRefPubMed
16.
go back to reference Schwindt W, Kugel H, Bachmann R, Kloska S, Allkemper T, Maintz D, Pfleiderer B, Tombach B, Heindel W (2003) Magnetic resonance imaging protocols for examination of the neurocranium at 3 T. Eur Radiol 13:2170–2179CrossRefPubMed Schwindt W, Kugel H, Bachmann R, Kloska S, Allkemper T, Maintz D, Pfleiderer B, Tombach B, Heindel W (2003) Magnetic resonance imaging protocols for examination of the neurocranium at 3 T. Eur Radiol 13:2170–2179CrossRefPubMed
17.
go back to reference Bachmann R, Reilmann R, Schwindt W, Kugel H, Heindel W, Kramer S (2006) FLAIR imaging for multiple sclerosis: a comparative MR study at 1.5 and 3.0 Tesla. Eur Radiol 16:915–921CrossRefPubMed Bachmann R, Reilmann R, Schwindt W, Kugel H, Heindel W, Kramer S (2006) FLAIR imaging for multiple sclerosis: a comparative MR study at 1.5 and 3.0 Tesla. Eur Radiol 16:915–921CrossRefPubMed
18.
go back to reference Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618CrossRefPubMed Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618CrossRefPubMed
19.
go back to reference Wiesinger F, van de Moortele PF, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP (2006) Potential and feasibility of parallel MRI at high field. NMR Biomed 19:368–378CrossRefPubMed Wiesinger F, van de Moortele PF, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP (2006) Potential and feasibility of parallel MRI at high field. NMR Biomed 19:368–378CrossRefPubMed
Metadata
Title
Fluid attenuated inversion recovery (FLAIR) MRI at 7.0 Tesla: comparison with 1.5 and 3.0 Tesla
Authors
Jaco J. M. Zwanenburg
Jeroen Hendrikse
Fredy Visser
Taro Takahara
Peter R. Luijten
Publication date
01-04-2010
Publisher
Springer-Verlag
Published in
European Radiology / Issue 4/2010
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-009-1620-2

Other articles of this Issue 4/2010

European Radiology 4/2010 Go to the issue