Skip to main content
Top
Published in: European Radiology 2/2008

01-02-2008 | Cardiac

High-resolution myocardial stress perfusion at 3 T in patients with suspected coronary artery disease

Authors: Carsten Meyer, Katharina Strach, Daniel Thomas, Harold Litt, Claas P. Nähle, Klaus Tiemann, Ulrich Schwenger, Hans H. Schild, Torsten Sommer

Published in: European Radiology | Issue 2/2008

Login to get access

Abstract

To implement a high-resolution first-pass myocardial perfusion imaging protocol (HRPI) at 3 T, and to evaluate the feasibility, image quality and accuracy of this approach prospectively in patients with suspected CAD. We hypothesized that utilizing the gain in SNR at 3 T to increase spatial resolution would reduce partial volume effects and subendocardial dark rim artifacts in comparison to 1.5 T. HRPI studies were performed on 60 patients using a segmented k-space gradient echo sequence (in plane resolution 1.97 × 1.94 mm2). Semiquantitative assessment of dark rim artifacts was performed for the stress studies on a slice-by-slice basis. Qualitative visual analysis was compared to quantitative coronary angiography (QCA) results; hemodynamically significant CAD was defined as stenosis ≥70% at QCA. Dark rim artifacts appeared in 108 of 180 slices (average extent 1.3 ± 1.2 mm representing 11.8 ± 10.8% of the transmural myocardial thickness). Sensitivity, specifity, and test accuracy for the detection of significant CAD were 89%,79%, and 85%. HRPI studies at 3 T are feasible in a clinical setting, providing good image quality and high accuracy for detection of significant CAD. The presence of dark rim artifacts does not appear to represent a diagnostic problem when using a HRPI approach.
Literature
1.
go back to reference Hinton DP, Wald LL, Pitts J, Schmitt F (2003) Comparison of cardiac MRI on 1.5 and 3.0 tesla clinical whole body systems. Invest Radiol 38:436–442PubMedCrossRef Hinton DP, Wald LL, Pitts J, Schmitt F (2003) Comparison of cardiac MRI on 1.5 and 3.0 tesla clinical whole body systems. Invest Radiol 38:436–442PubMedCrossRef
2.
go back to reference Greenman RL, Shirosky JE, Mulkern RV, Rofsky NM (2003) Double inversion black-blood fast spin-echo imaging of the human heart: a comparison between 1.5 T and 3.0 T. J Magn Reson Imaging 17:648–655PubMedCrossRef Greenman RL, Shirosky JE, Mulkern RV, Rofsky NM (2003) Double inversion black-blood fast spin-echo imaging of the human heart: a comparison between 1.5 T and 3.0 T. J Magn Reson Imaging 17:648–655PubMedCrossRef
3.
go back to reference Noeske R, Seifert F, Rhein KH, Rinneberg H (2000) Human cardiac imaging at 3 T using phased array coils. Magn Reson Med 44:978–982PubMedCrossRef Noeske R, Seifert F, Rhein KH, Rinneberg H (2000) Human cardiac imaging at 3 T using phased array coils. Magn Reson Med 44:978–982PubMedCrossRef
4.
go back to reference Sommer T, Hackenbroch M, Hofer U, Schmiedel A, Willinek WA, Flacke S et al (2005) Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 234:718–725PubMedCrossRef Sommer T, Hackenbroch M, Hofer U, Schmiedel A, Willinek WA, Flacke S et al (2005) Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 234:718–725PubMedCrossRef
5.
go back to reference Wen H, Denison TJ, Singerman RW, Balaban RS (1997) The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. J Magn Reson 125:65–71PubMedCrossRef Wen H, Denison TJ, Singerman RW, Balaban RS (1997) The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. J Magn Reson 125:65–71PubMedCrossRef
6.
go back to reference Araoz PA, Glockner JF, McGee KP, Potter DD Jr, Valeti VU, Stanley DW et al (2005) 3 Tesla MR imaging provides improved contrast in first-pass myocardial perfusion imaging over a range of gadolinium doses. J Cardiovasc Magn Reson 7:559–564PubMedCrossRef Araoz PA, Glockner JF, McGee KP, Potter DD Jr, Valeti VU, Stanley DW et al (2005) 3 Tesla MR imaging provides improved contrast in first-pass myocardial perfusion imaging over a range of gadolinium doses. J Cardiovasc Magn Reson 7:559–564PubMedCrossRef
7.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American heart association. Int J Cardiovasc Imaging 18:539–542PubMed Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American heart association. Int J Cardiovasc Imaging 18:539–542PubMed
8.
go back to reference al-Saadi N, Gross M, Bornstedt A, Schnackenburg B, Klein C, Fleck E et al (2001) [Comparison of various parameters for determining an index of myocardial perfusion reserve in detecting coronary stenosis with cardiovascular magnetic resonance tomography]. Z Kardiol 90:824–834PubMedCrossRef al-Saadi N, Gross M, Bornstedt A, Schnackenburg B, Klein C, Fleck E et al (2001) [Comparison of various parameters for determining an index of myocardial perfusion reserve in detecting coronary stenosis with cardiovascular magnetic resonance tomography]. Z Kardiol 90:824–834PubMedCrossRef
9.
go back to reference Barkhausen J, Hunold P, Jochims M, Debatin JF (2004) Imaging of myocardial perfusion with magnetic resonance. J Magn Reson Imaging 19:750–757PubMedCrossRef Barkhausen J, Hunold P, Jochims M, Debatin JF (2004) Imaging of myocardial perfusion with magnetic resonance. J Magn Reson Imaging 19:750–757PubMedCrossRef
10.
go back to reference Storey P, Chen Q, Li W, Edelman RR, Prasad PV (2002) Band artifacts due to bulk motion. Magn Reson Med 48:1028–1036PubMedCrossRef Storey P, Chen Q, Li W, Edelman RR, Prasad PV (2002) Band artifacts due to bulk motion. Magn Reson Med 48:1028–1036PubMedCrossRef
11.
go back to reference Salerno M, Rehwald WG, Judd RM, Kim RJ (2007) Simulation of banding artifacts resulting from realistic cardiac motion during single shot myocardial perfusion. J Cardiovasc Magn Res 9:246–247 Salerno M, Rehwald WG, Judd RM, Kim RJ (2007) Simulation of banding artifacts resulting from realistic cardiac motion during single shot myocardial perfusion. J Cardiovasc Magn Res 9:246–247
12.
go back to reference Di Bella EV, Parker DL, Sinusas AJ (2005) On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med 54:1295–1299PubMedCrossRef Di Bella EV, Parker DL, Sinusas AJ (2005) On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med 54:1295–1299PubMedCrossRef
13.
go back to reference Strach K, Meyer C, Thomas D, Naehle CP, Schmitz C, Litt H et al (2007) High-resolution myocardial perfusion imaging at 3 T: comparison to 1.5 T in healthy volunteers. Eur Radiol 17(7):1829–1835PubMedCrossRef Strach K, Meyer C, Thomas D, Naehle CP, Schmitz C, Litt H et al (2007) High-resolution myocardial perfusion imaging at 3 T: comparison to 1.5 T in healthy volunteers. Eur Radiol 17(7):1829–1835PubMedCrossRef
14.
go back to reference Hunold P, Schlosser T, Barkhausen J (2006) Magnetic resonance cardiac perfusion imaging-a clinical perspective. Eur Radiol 16:1779–1788PubMedCrossRef Hunold P, Schlosser T, Barkhausen J (2006) Magnetic resonance cardiac perfusion imaging-a clinical perspective. Eur Radiol 16:1779–1788PubMedCrossRef
15.
go back to reference Panting JR, Gatehouse PD, Yang GZ, Grothues F, Firmin DN, Collins P et al (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346:1948–1953PubMedCrossRef Panting JR, Gatehouse PD, Yang GZ, Grothues F, Firmin DN, Collins P et al (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346:1948–1953PubMedCrossRef
16.
go back to reference Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K et al (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108:432–437PubMedCrossRef Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K et al (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108:432–437PubMedCrossRef
17.
go back to reference Paetsch I, Foll D, Langreck H, Herkommer B, Klein C, Schalla S et al (2004) Myocardial perfusion imaging using OMNISCAN: a dose finding study for visual assessment of stress-induced regional perfusion abnormalities. J Cardiovasc Magn Reson 6:803–809PubMedCrossRef Paetsch I, Foll D, Langreck H, Herkommer B, Klein C, Schalla S et al (2004) Myocardial perfusion imaging using OMNISCAN: a dose finding study for visual assessment of stress-induced regional perfusion abnormalities. J Cardiovasc Magn Reson 6:803–809PubMedCrossRef
18.
go back to reference Paetsch I, Jahnke C, Wahl A, Gebker R, Neuss M, Fleck E et al (2004) Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 110:835–842PubMedCrossRef Paetsch I, Jahnke C, Wahl A, Gebker R, Neuss M, Fleck E et al (2004) Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 110:835–842PubMedCrossRef
19.
go back to reference Sensky PR, Samani NJ, Reek C, Cherryman GR (2002) Magnetic resonance perfusion imaging in patients with coronary artery disease: a qualitative approach. Int J Cardiovasc Imaging 18:373–383; discussion 85–6PubMedCrossRef Sensky PR, Samani NJ, Reek C, Cherryman GR (2002) Magnetic resonance perfusion imaging in patients with coronary artery disease: a qualitative approach. Int J Cardiovasc Imaging 18:373–383; discussion 85–6PubMedCrossRef
20.
go back to reference Wolff SD, Schwitter J, Coulden R, Friedrich MG, Bluemke DA, Biederman RW et al (2004) Myocardial first-pass perfusion magnetic resonance imaging: a multicenter dose-ranging study. Circulation 110:732–737PubMedCrossRef Wolff SD, Schwitter J, Coulden R, Friedrich MG, Bluemke DA, Biederman RW et al (2004) Myocardial first-pass perfusion magnetic resonance imaging: a multicenter dose-ranging study. Circulation 110:732–737PubMedCrossRef
21.
go back to reference Elkington AG, Gatehouse PD, Cannell TM, Moon JC, Prasad SK, Firmin DN et al (2005) Comparison of hybrid echo-planar imaging and FLASH myocardial perfusion cardiovascular MR imaging. Radiology 235:237–243PubMedCrossRef Elkington AG, Gatehouse PD, Cannell TM, Moon JC, Prasad SK, Firmin DN et al (2005) Comparison of hybrid echo-planar imaging and FLASH myocardial perfusion cardiovascular MR imaging. Radiology 235:237–243PubMedCrossRef
22.
go back to reference Hunold P, Maderwald S, Eggebrecht H, Vogt FM, Barkhausen J (2004) Steady-state free precession sequences in myocardial first-pass perfusion MR imaging: comparison with TurboFLASH imaging. Eur Radiol 14:409–416PubMedCrossRef Hunold P, Maderwald S, Eggebrecht H, Vogt FM, Barkhausen J (2004) Steady-state free precession sequences in myocardial first-pass perfusion MR imaging: comparison with TurboFLASH imaging. Eur Radiol 14:409–416PubMedCrossRef
23.
go back to reference Plein S, Radjenovic A, Ridgway JP, Barmby D, Greenwood JP, Ball SG et al (2005) Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology 235:423–430PubMedCrossRef Plein S, Radjenovic A, Ridgway JP, Barmby D, Greenwood JP, Ball SG et al (2005) Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology 235:423–430PubMedCrossRef
24.
go back to reference Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, Knusel PR et al (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103:2230–2235PubMed Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, Knusel PR et al (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103:2230–2235PubMed
25.
go back to reference Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ et al (2005) T1, T2 relaxation and magnetization transfer in tissue at 3 T. Magn Reson Med 54:507–512PubMedCrossRef Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ et al (2005) T1, T2 relaxation and magnetization transfer in tissue at 3 T. Magn Reson Med 54:507–512PubMedCrossRef
26.
go back to reference Kim D, Axel L (2006) Multislice, dual-imaging sequence for increasing the dynamic range of the contrast-enhanced blood signal and CNR of myocardial enhancement at 3 T. J Magn Reson Imaging 23:81–86PubMedCrossRef Kim D, Axel L (2006) Multislice, dual-imaging sequence for increasing the dynamic range of the contrast-enhanced blood signal and CNR of myocardial enhancement at 3 T. J Magn Reson Imaging 23:81–86PubMedCrossRef
27.
go back to reference Lin W, An H, Chen Y, Nicholas P, Zhai G, Gerig G et al (2003) Practical consideration for 3-T imaging. Magn Reson Imaging Clin N Am 11:615–639, viPubMedCrossRef Lin W, An H, Chen Y, Nicholas P, Zhai G, Gerig G et al (2003) Practical consideration for 3-T imaging. Magn Reson Imaging Clin N Am 11:615–639, viPubMedCrossRef
28.
go back to reference Pattany PM (2004) 3-T MR imaging: the pros and cons. AJNR Am J Neuroradiol 25:1455–1456PubMed Pattany PM (2004) 3-T MR imaging: the pros and cons. AJNR Am J Neuroradiol 25:1455–1456PubMed
29.
go back to reference Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834PubMed Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834PubMed
30.
go back to reference Wang Y, Moin K, Akinboboye O, Reichek N (2005) Myocardial first pass perfusion: steady-state free precession versus spoiled gradient echo and segmented echo planar imaging. Magn Reson Med 54:1123–1129PubMedCrossRef Wang Y, Moin K, Akinboboye O, Reichek N (2005) Myocardial first pass perfusion: steady-state free precession versus spoiled gradient echo and segmented echo planar imaging. Magn Reson Med 54:1123–1129PubMedCrossRef
31.
go back to reference Schar M, Kozerke S, Fischer SE, Boesiger P (2004) Cardiac SSFP imaging at 3 tesla. Magn Reson Med 51:799–806PubMedCrossRef Schar M, Kozerke S, Fischer SE, Boesiger P (2004) Cardiac SSFP imaging at 3 tesla. Magn Reson Med 51:799–806PubMedCrossRef
Metadata
Title
High-resolution myocardial stress perfusion at 3 T in patients with suspected coronary artery disease
Authors
Carsten Meyer
Katharina Strach
Daniel Thomas
Harold Litt
Claas P. Nähle
Klaus Tiemann
Ulrich Schwenger
Hans H. Schild
Torsten Sommer
Publication date
01-02-2008
Publisher
Springer-Verlag
Published in
European Radiology / Issue 2/2008
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-007-0746-3

Other articles of this Issue 2/2008

European Radiology 2/2008 Go to the issue