Skip to main content
Top
Published in: European Radiology 8/2006

01-08-2006 | Experimental

Evolving technology in bipolar perfused radiofrequency ablation: assessment of efficacy, predictability and safety in a pig liver model

Authors: Fernando Burdío, Ana Navarro, Ramón Sousa, José M. Burdío, Antonio Güemes, Ana Gonzalez, Ignacio Cruz, Tomás Castiella, Ricardo Lozano, Enrique Berjano, Joan Figueras, Miguel A. de Gregorio

Published in: European Radiology | Issue 8/2006

Login to get access

Abstract

Bipolar radiofrequency (RF) ablation, especially with perfusion of saline, has been shown to increase volume over monopolar conventional methods. The aims of this study are to study whether this method is linked to too flattened thermal lesions and premature rise of impedance and to elucidate some safety concerns. Eighteen RF ablations were performed using a 1.8-mm-diameter bipolar applicator in the liver of nine healthy pigs through laparotomy with or without temporary vascular occlusion [the Pringle maneuver (PGM)]: group A (n=9), without PGM; group B (n=9), with PGM. Hypertonic saline solutions (3% and 20 %) were injected through the applicator at a rate of 400 ml/h during the procedure. The pigs were followed up and they were euthanased on the 15th day. Impedance, current, power output, energy output, temperatures, diameters of thermal lesion, volume, sphericity ratio of thermal lesion were correlated among groups. Impedance at the end of the procedure (50.00 Ω±28.39 and 52.88 Ω±26.77, for groups A and B, respectively) was very similar to the starting impedance (50 Ω). In a median of 1 (range, 0–6) time per RF ablation procedure a reduction of 30 W from the selected power supply was observed during the RF ablation procedure linked to a slight increase of impedance. Volume and short diameter of thermal lesion were 21.28 cm3±11.78 and 2.85 cm±0.87 for group A, 87.51 cm3±25.20 and 4.31 cm±0.65 for group B. Continuous thermal between both electrodes were described with a global sphericity ratio of 1.91. One major complication (thermal injury to the stomach) was encountered in a case of cross-sectional necrosis of the targeted liver and attributed to heat diffusion after the procedure. This method has been shown to determine: (1) the relative control of impedance during the procedure; (2) ovoid and relatively large thermal lesions with less dependence upon closest vessels.
Literature
1.
go back to reference Curley SA, Marra P, Beaty K et al (2004) Early and late complications after radiofrequency ablation of malignant liver tumors in 608 patients. Ann Surg 239:450–458PubMedCrossRef Curley SA, Marra P, Beaty K et al (2004) Early and late complications after radiofrequency ablation of malignant liver tumors in 608 patients. Ann Surg 239:450–458PubMedCrossRef
2.
go back to reference Wood BJ, Ramkaransingh JR, Fojo T, Walther MM, Libutti SK (2002) Percutaneous tumor ablation with radiofrequency. Cancer 94:443–451PubMedCrossRef Wood BJ, Ramkaransingh JR, Fojo T, Walther MM, Libutti SK (2002) Percutaneous tumor ablation with radiofrequency. Cancer 94:443–451PubMedCrossRef
3.
4.
go back to reference De Baere T, Denys A, Wood BJ et al (2001) Radiofrequency liver ablation: experimental comparative study of water-cooled versus expandable systems. AJR Am J Roentgenol 176:187–192PubMed De Baere T, Denys A, Wood BJ et al (2001) Radiofrequency liver ablation: experimental comparative study of water-cooled versus expandable systems. AJR Am J Roentgenol 176:187–192PubMed
5.
go back to reference Montgomery RS, Rahal A, Dodd G et al (2004) Radiofrequency ablation of hepatic tumors: variability of lesion size using a single ablation device. AJR Am J Roentgenol 182:657–661PubMed Montgomery RS, Rahal A, Dodd G et al (2004) Radiofrequency ablation of hepatic tumors: variability of lesion size using a single ablation device. AJR Am J Roentgenol 182:657–661PubMed
6.
go back to reference Denys AL, De Baere T, KuochV et al (2003) Radiofrequency tissue ablation of the liver: in vivo and ex vivo experiments wit four different systems. Eur Radiol 13:2346–2352PubMedCrossRef Denys AL, De Baere T, KuochV et al (2003) Radiofrequency tissue ablation of the liver: in vivo and ex vivo experiments wit four different systems. Eur Radiol 13:2346–2352PubMedCrossRef
7.
go back to reference Mulier S, Mulier P, Ni Y et al (2002) Complications of radiofrequency coagulation of liver tumors. Br J Surg 89:1206–1222PubMedCrossRef Mulier S, Mulier P, Ni Y et al (2002) Complications of radiofrequency coagulation of liver tumors. Br J Surg 89:1206–1222PubMedCrossRef
8.
go back to reference Mulier S, Miao Y, Mulier et al (2005) Electrodes and multiple electrode systems for radiofrquency ablation: a proposal for updated terminology. Eur Radiol 15:798–808PubMedCrossRef Mulier S, Miao Y, Mulier et al (2005) Electrodes and multiple electrode systems for radiofrquency ablation: a proposal for updated terminology. Eur Radiol 15:798–808PubMedCrossRef
9.
go back to reference Burdío F, Güemes A, Burdío JM et al (1999) Hepatic lesion ablation using bipolar saline-enhanced radiofrequency in the audible spectrum. Acad Radiol 6:680–686PubMedCrossRef Burdío F, Güemes A, Burdío JM et al (1999) Hepatic lesion ablation using bipolar saline-enhanced radiofrequency in the audible spectrum. Acad Radiol 6:680–686PubMedCrossRef
10.
go back to reference Burdío F, Güemes A, Burdío JM et al (2003) Large ablation with bipolar saline-enhanced radiofrequency. An experimental study in in-vivo porcine liver with a novel approach. J Surg Res 110:193–201PubMedCrossRef Burdío F, Güemes A, Burdío JM et al (2003) Large ablation with bipolar saline-enhanced radiofrequency. An experimental study in in-vivo porcine liver with a novel approach. J Surg Res 110:193–201PubMedCrossRef
11.
go back to reference Burdío F, Güemes A, Burdío JM et al (2003) A bipolar saline-enhanced electrode for radiofrequency ablation. Results of an experimental study in In vivo porcine liver. Radiology 229:447–456PubMedCrossRef Burdío F, Güemes A, Burdío JM et al (2003) A bipolar saline-enhanced electrode for radiofrequency ablation. Results of an experimental study in In vivo porcine liver. Radiology 229:447–456PubMedCrossRef
12.
go back to reference Lee JM, Han JK, Kim SH et al (2005) Bipolar radiofrequency ablation in ex vivo bovine liver with the open-perfused system versus the cooled-wet system. Eur Radiol 15:759–764PubMedCrossRef Lee JM, Han JK, Kim SH et al (2005) Bipolar radiofrequency ablation in ex vivo bovine liver with the open-perfused system versus the cooled-wet system. Eur Radiol 15:759–764PubMedCrossRef
13.
go back to reference Han JK, Lee JM, Kim SH et al (2005) Radiofrequency ablation in the liver using two cooled-wet electrodes in the bipolar mode. Eur Radiol 15:2163–2170PubMedCrossRef Han JK, Lee JM, Kim SH et al (2005) Radiofrequency ablation in the liver using two cooled-wet electrodes in the bipolar mode. Eur Radiol 15:2163–2170PubMedCrossRef
14.
go back to reference Pereira PL, Trübenbach J, Schenck M et al (2004) Radiofrequency ablation: in vivo comparison of four commercially available devices in pig livers. Radiology 232:482–490PubMedCrossRef Pereira PL, Trübenbach J, Schenck M et al (2004) Radiofrequency ablation: in vivo comparison of four commercially available devices in pig livers. Radiology 232:482–490PubMedCrossRef
15.
go back to reference Brieger J, Pereira PL, Trübenbach J et al (2003) In vivo efficiency of four commercial monopolar radiofrequency systems. Invest Radiol 38:609–616PubMedCrossRef Brieger J, Pereira PL, Trübenbach J et al (2003) In vivo efficiency of four commercial monopolar radiofrequency systems. Invest Radiol 38:609–616PubMedCrossRef
16.
go back to reference Jain MK, Wolf PF (1999) Temperature-controlled and constant-power radio-frequency ablation: what affects lesion growth? IEEE Trans Biomed Eng 46:1405–1412PubMedCrossRef Jain MK, Wolf PF (1999) Temperature-controlled and constant-power radio-frequency ablation: what affects lesion growth? IEEE Trans Biomed Eng 46:1405–1412PubMedCrossRef
17.
go back to reference Tungjitkusolmun S, Staelin T, Haemmerich et al (2002) Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Trans Biomed Eng 49:3–9PubMedCrossRef Tungjitkusolmun S, Staelin T, Haemmerich et al (2002) Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Trans Biomed Eng 49:3–9PubMedCrossRef
18.
go back to reference Tucker RD, Platz CE, Sievert CE et al (1990) In vivo evaluation of monopolar versus bipolar electrosurgical polypectomy snares. Am J Gastroenterol 851386–1390PubMed Tucker RD, Platz CE, Sievert CE et al (1990) In vivo evaluation of monopolar versus bipolar electrosurgical polypectomy snares. Am J Gastroenterol 851386–1390PubMed
19.
go back to reference Tucker RD, Hollenhorst MJ (1993) Bipolar electrosurgical devices. Endosc Surg Allied Technol 1:110–113PubMed Tucker RD, Hollenhorst MJ (1993) Bipolar electrosurgical devices. Endosc Surg Allied Technol 1:110–113PubMed
20.
go back to reference Becker CD, Jamenson M, Fache JS et al (1989) Catheter for endoluminal bipolar electrocoagulation. Radiology 170:561–562PubMed Becker CD, Jamenson M, Fache JS et al (1989) Catheter for endoluminal bipolar electrocoagulation. Radiology 170:561–562PubMed
21.
go back to reference Haemmerich D, Staelin ST, Tungjitkusolmun S et al (2001) Hepatic bipolar radiofrequency ablation between separated multiprong electrodes. IEEE Trans Biomed Eng 48:1145–1152PubMedCrossRef Haemmerich D, Staelin ST, Tungjitkusolmun S et al (2001) Hepatic bipolar radiofrequency ablation between separated multiprong electrodes. IEEE Trans Biomed Eng 48:1145–1152PubMedCrossRef
22.
go back to reference Haemmerich D, Tungjitkusolmun S, Staelin ST et al (2002) Finite-element of hepatic multiple probe radio-frequency ablation. IEEE Trans Biomed Eng 49:836–842PubMedCrossRef Haemmerich D, Tungjitkusolmun S, Staelin ST et al (2002) Finite-element of hepatic multiple probe radio-frequency ablation. IEEE Trans Biomed Eng 49:836–842PubMedCrossRef
23.
go back to reference Haemmerich D, Wright AW, Mahvi DM et al (2003) Hepatic bipolar radiofrequency ablation creates coagulation zones close to blood vessels: a finite element study. Med Biol Eng Comput 41:317–323PubMedCrossRef Haemmerich D, Wright AW, Mahvi DM et al (2003) Hepatic bipolar radiofrequency ablation creates coagulation zones close to blood vessels: a finite element study. Med Biol Eng Comput 41:317–323PubMedCrossRef
24.
go back to reference Burdío F, Navarro A, Sousa R et al (2005) Premature roll-off in radiofrequency ablation using bipolar saline-enhanced electrodes. Eur Radiol 15:1495–1496PubMedCrossRef Burdío F, Navarro A, Sousa R et al (2005) Premature roll-off in radiofrequency ablation using bipolar saline-enhanced electrodes. Eur Radiol 15:1495–1496PubMedCrossRef
25.
go back to reference McGahan JP, Gu WZ, Brock JM et al (1996) Hepatic ablation using bipolar radiofrequency electrocautery. Acad Radiol 3:418–422PubMedCrossRef McGahan JP, Gu WZ, Brock JM et al (1996) Hepatic ablation using bipolar radiofrequency electrocautery. Acad Radiol 3:418–422PubMedCrossRef
26.
go back to reference Curley SA, Davidson BS, Fleming et al (1997) Laparoscopically guided bipolar radiofrequency ablation of areas of porcine liver. Surg Endos 11:729–733CrossRef Curley SA, Davidson BS, Fleming et al (1997) Laparoscopically guided bipolar radiofrequency ablation of areas of porcine liver. Surg Endos 11:729–733CrossRef
27.
go back to reference Burdio F, Burdio JM, Navarro A et al (2004) Electric influence of NaCl concentration into the tissue in radiofrequency ablation. Radiology 232:932PubMedCrossRef Burdio F, Burdio JM, Navarro A et al (2004) Electric influence of NaCl concentration into the tissue in radiofrequency ablation. Radiology 232:932PubMedCrossRef
28.
go back to reference Chang CK, Hendy MP, Smith JM et al (2002) Radiofrequency ablation of the porcine liver with complete hepatic vascular occlusion. Ann Surg Oncol 9:594–598PubMedCrossRef Chang CK, Hendy MP, Smith JM et al (2002) Radiofrequency ablation of the porcine liver with complete hepatic vascular occlusion. Ann Surg Oncol 9:594–598PubMedCrossRef
29.
go back to reference Goldberg SN, Stein MC, Gazelle GS et al (1999) Percutaneous radiofrequency tissue ablation: optimizacion of pulsed radiofrequency technique to increase coagulation necrosis. J Vasc Interv Radiol 10:907–916PubMedCrossRef Goldberg SN, Stein MC, Gazelle GS et al (1999) Percutaneous radiofrequency tissue ablation: optimizacion of pulsed radiofrequency technique to increase coagulation necrosis. J Vasc Interv Radiol 10:907–916PubMedCrossRef
30.
go back to reference Ahmad SA (2004) Limitations of radiofrequency ablation in treating liver metastases: lesson in geometry. Ann Surg Oncol 11:358–359PubMedCrossRef Ahmad SA (2004) Limitations of radiofrequency ablation in treating liver metastases: lesson in geometry. Ann Surg Oncol 11:358–359PubMedCrossRef
31.
go back to reference Chinn SB, Lee FT, Kennedy GD, Chinn C et al (2001) Effect of vascular occlusion on radiofrequency ablation of the liver: results in a porcine liver. AJR Am J Roentgenol 176:789–795PubMed Chinn SB, Lee FT, Kennedy GD, Chinn C et al (2001) Effect of vascular occlusion on radiofrequency ablation of the liver: results in a porcine liver. AJR Am J Roentgenol 176:789–795PubMed
32.
go back to reference Boehm T, Malich A, Goldberg SN et al (2002) Radio-frequency tumor ablation: internally cooled electrode versus saline-enhanced technique in an aggressive rabbit tumor model. Radiology 222:805–813PubMedCrossRef Boehm T, Malich A, Goldberg SN et al (2002) Radio-frequency tumor ablation: internally cooled electrode versus saline-enhanced technique in an aggressive rabbit tumor model. Radiology 222:805–813PubMedCrossRef
33.
go back to reference Hansen PD, Rogers S, Corless CL et al (1999) Radiofrequency ablations in a pig liver model. J Surg Res 87:114–121PubMedCrossRef Hansen PD, Rogers S, Corless CL et al (1999) Radiofrequency ablations in a pig liver model. J Surg Res 87:114–121PubMedCrossRef
34.
go back to reference Scudamore CH, Buczkowski AK, Nagy A et al (1997) Possible injuries to intrahepatic and perihepatic structures with radiofrequency probe. Surg Endosc 11:193 Scudamore CH, Buczkowski AK, Nagy A et al (1997) Possible injuries to intrahepatic and perihepatic structures with radiofrequency probe. Surg Endosc 11:193
35.
go back to reference Kettenbach J, Köstler W, Rücklinger E et al (2003) Percutaneous saline-enhanced radiofrequency ablation of unresectable hepatic tumors: initial experience in 26 patients. AJR Am J Roentgenol 180:1537–1545PubMed Kettenbach J, Köstler W, Rücklinger E et al (2003) Percutaneous saline-enhanced radiofrequency ablation of unresectable hepatic tumors: initial experience in 26 patients. AJR Am J Roentgenol 180:1537–1545PubMed
36.
go back to reference Rhim H, Dodd G, Chintapalli KN et al (2004) Radiofrequency thermal ablation of abdominal tumors: lessons learned from complications. Radiographics 24:41–52PubMedCrossRef Rhim H, Dodd G, Chintapalli KN et al (2004) Radiofrequency thermal ablation of abdominal tumors: lessons learned from complications. Radiographics 24:41–52PubMedCrossRef
37.
go back to reference Guillams AR, Lees WR (2003) CT monitoring of contrast doped saline for perfusion radiofrequency electrodes in the ablation of liver tumors (abstract). Presented at the 89th Scientific Assembly of RSNA, Chicago, November 30-December 5, p 589 Guillams AR, Lees WR (2003) CT monitoring of contrast doped saline for perfusion radiofrequency electrodes in the ablation of liver tumors (abstract). Presented at the 89th Scientific Assembly of RSNA, Chicago, November 30-December 5, p 589
Metadata
Title
Evolving technology in bipolar perfused radiofrequency ablation: assessment of efficacy, predictability and safety in a pig liver model
Authors
Fernando Burdío
Ana Navarro
Ramón Sousa
José M. Burdío
Antonio Güemes
Ana Gonzalez
Ignacio Cruz
Tomás Castiella
Ricardo Lozano
Enrique Berjano
Joan Figueras
Miguel A. de Gregorio
Publication date
01-08-2006
Publisher
Springer-Verlag
Published in
European Radiology / Issue 8/2006
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-005-0131-z

Other articles of this Issue 8/2006

European Radiology 8/2006 Go to the issue