Skip to main content
Top
Published in: Rheumatology International 3/2013

01-03-2013 | Original Article

IL-32 aggravates synovial inflammation and bone destruction and increases synovial natural killer cells in experimental arthritis models

Authors: Young-Eun Park, Geun-Tae Kim, Seung-Geun Lee, Seong-Hu Park, Seung-Hoon Baek, Sung-Il Kim, Ju-In Kim, Hua-Shu Jin

Published in: Rheumatology International | Issue 3/2013

Login to get access

Abstract

This study was performed to investigate the effects of IL-32 on joint inflammation, bone destruction, and synovial cytokine expressions, and on synovial natural killer (NK) cell expressions in collagen-induced arthritis (CIA). CIA was induced by type II collagen in DBA1 mice, and phosphate-buffered saline (PBS group) or IL-32 (IL-32 group) were injected into both knee joints at day 28 and 32, then mice were killed at day 35. Severity of synovial inflammation and bone destruction was determined by histological scoring method, and synovial cytokine expressions such as IL-1β, TNF-α, IL-17, IL-18, IFN-γ, IL-21, and IL-23 were measured by real-time RT-PCR and western blot. Synovial NK cell expressions were determined by real-time RT-PCR, western blot and immunohistochemistry, and chemokines and chemokine receptors expressions that are associated with NK cell migration were determined by real-time RT-PCR. Scores of synovial inflammation and bone destruction, synovial expressions of IL-1β, TNF-α, IL-18, and IFN-γ were significantly increased in IL-32 group compared with PBS group. Synovial expressions of NK cell, and chemokines (CCL2 and CXCL9) and chemokine receptors (CCR2 and CCR5) that are associated with NK cell migration were significantly increased in IL-32 group compared with PBS group. IL-32 aggravated joint inflammation and bone destruction and increased synovial expressions of inflammatory cytokine and NK cells in CIA. These results suggest that IL-32 play a role in joint inflammation and bone destruction, and IL-32 might be a new target for treatment of rheumatoid arthritis.
Literature
2.
go back to reference Senolt L, Vencovsky J, Pavelka K, Ospelt C, Gay S (2009) Prospective new biological therapies for rheumatoid arthritis. Autoimmun Rev 9(2):102–107PubMedCrossRef Senolt L, Vencovsky J, Pavelka K, Ospelt C, Gay S (2009) Prospective new biological therapies for rheumatoid arthritis. Autoimmun Rev 9(2):102–107PubMedCrossRef
3.
go back to reference Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA (2005) Interleukin-32: a cytokine and inducer of TNFalpha. Immunity 22:131–142PubMed Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA (2005) Interleukin-32: a cytokine and inducer of TNFalpha. Immunity 22:131–142PubMed
4.
go back to reference Joosten LA, Netea MG, Kim SH, Yoon DY, Oppers-Walgreen B, Radstake TR, Barrera P, van de Loo FA, Dinarello CA, van den Berg WB (2006) IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proc Natl Acad Sci USA 103:3298–3303PubMedCrossRef Joosten LA, Netea MG, Kim SH, Yoon DY, Oppers-Walgreen B, Radstake TR, Barrera P, van de Loo FA, Dinarello CA, van den Berg WB (2006) IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proc Natl Acad Sci USA 103:3298–3303PubMedCrossRef
5.
go back to reference Conti P, Youinou P, Theoharides TC (2007) Modulation of autoimmunity by the latest interleukins (with special emphasis on IL-32). Autoimmun Rev 6(3):131–137PubMedCrossRef Conti P, Youinou P, Theoharides TC (2007) Modulation of autoimmunity by the latest interleukins (with special emphasis on IL-32). Autoimmun Rev 6(3):131–137PubMedCrossRef
6.
go back to reference Dinarello CA, Kim SH (2006) IL-32, a novel cytokine with a possible role in disease. Ann Rheum Dis 65(Suppl 3):iii61–iii64 Dinarello CA, Kim SH (2006) IL-32, a novel cytokine with a possible role in disease. Ann Rheum Dis 65(Suppl 3):iii61–iii64
7.
go back to reference Flodstrom-Tullberg M, Bryceson YT, Shi FD, Hoglund P, Liunggren HG (2009) Natural killer cells in human autoimmunity. Curr Opin Immunol 21(6):634–640PubMedCrossRef Flodstrom-Tullberg M, Bryceson YT, Shi FD, Hoglund P, Liunggren HG (2009) Natural killer cells in human autoimmunity. Curr Opin Immunol 21(6):634–640PubMedCrossRef
8.
go back to reference Yabuhara A, Yang FC, Nakazawa T, Iwasaki Y, Mori T, Koike K, Kawai H, Komiyama A (1996) A killing defect of natural killer cells as an underlying immunologic abnormality in childhood systemic lupus erythematosus. J Rheumatol 23:171–177PubMed Yabuhara A, Yang FC, Nakazawa T, Iwasaki Y, Mori T, Koike K, Kawai H, Komiyama A (1996) A killing defect of natural killer cells as an underlying immunologic abnormality in childhood systemic lupus erythematosus. J Rheumatol 23:171–177PubMed
9.
go back to reference Cameron AL, Kirby B, Griffiths CE (2003) Circulating natural killer cells in psoriasis. Br J Dermatol 149:160–164PubMedCrossRef Cameron AL, Kirby B, Griffiths CE (2003) Circulating natural killer cells in psoriasis. Br J Dermatol 149:160–164PubMedCrossRef
10.
go back to reference O’Gorman M, Smith R, Garrison A, Shamiyeh E, Pachman L (2002) Lymphocyte subsets in peripheral blood from newly diagnosed, untreated patients with juvenile dermatomyositis (JDM) are associated with disease activity scores (DAS). Arthr Rheum 46(suppl 9):S490 O’Gorman M, Smith R, Garrison A, Shamiyeh E, Pachman L (2002) Lymphocyte subsets in peripheral blood from newly diagnosed, untreated patients with juvenile dermatomyositis (JDM) are associated with disease activity scores (DAS). Arthr Rheum 46(suppl 9):S490
11.
go back to reference Grom AA, Villanueva J, Lee S, Goldmuntz EA, Passo MH, Filipovich A (2003) Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J Pediatr 142:292–296PubMedCrossRef Grom AA, Villanueva J, Lee S, Goldmuntz EA, Passo MH, Filipovich A (2003) Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J Pediatr 142:292–296PubMedCrossRef
12.
go back to reference Shibatomi K, Ida H, Yamasaki S, Nakashima T, Origuchi T, Kawakami A, Migita K, Kawabe Y, Tsujihata M, Anderson P, Eguchi K (2001) A novel role for interleukin-18 in human natural killer cell death: high serum levels and low natural killer cell numbers in patients with systemic autoimmune diseases. Arthr Rheum 44(4):884–892CrossRef Shibatomi K, Ida H, Yamasaki S, Nakashima T, Origuchi T, Kawakami A, Migita K, Kawabe Y, Tsujihata M, Anderson P, Eguchi K (2001) A novel role for interleukin-18 in human natural killer cell death: high serum levels and low natural killer cell numbers in patients with systemic autoimmune diseases. Arthr Rheum 44(4):884–892CrossRef
13.
go back to reference Lo CK, Lam QL, Sun L, Wang S, Ko KH, Xu H, Wu CY, Zheng BJ, Lu L (2008) Natural killer cell degeneration exacerbates experimental arthritis in mice via enhanced interleukin-17 production. Arthr Rheum 58(9):2700–2711CrossRef Lo CK, Lam QL, Sun L, Wang S, Ko KH, Xu H, Wu CY, Zheng BJ, Lu L (2008) Natural killer cell degeneration exacerbates experimental arthritis in mice via enhanced interleukin-17 production. Arthr Rheum 58(9):2700–2711CrossRef
14.
go back to reference Shoda H, Fujio K, Yamamoto K (2007) Rheumatoid arthritis and interleukin-32. Cell Mol Life Sci 64:2671–2679PubMedCrossRef Shoda H, Fujio K, Yamamoto K (2007) Rheumatoid arthritis and interleukin-32. Cell Mol Life Sci 64:2671–2679PubMedCrossRef
15.
go back to reference Kim YG, Lee CK, Oh JS, Kim SH, Kim KA, Yoo B (2010) Effect of interleukin-32gamma on differentiation of osteoclasts from CD14+ monocytes. Arthr Rheum 62(2):515–523 Kim YG, Lee CK, Oh JS, Kim SH, Kim KA, Yoo B (2010) Effect of interleukin-32gamma on differentiation of osteoclasts from CD14+ monocytes. Arthr Rheum 62(2):515–523
16.
go back to reference Mabilleau G, Sabokbar A (2009) Interleukin-32 promotes osteoclast differentiation but not osteoclast activation. PLoS ONE 4(1):e4173PubMedCrossRef Mabilleau G, Sabokbar A (2009) Interleukin-32 promotes osteoclast differentiation but not osteoclast activation. PLoS ONE 4(1):e4173PubMedCrossRef
17.
go back to reference Harris ED (1990) Rheumatoid arthritis: pathophysiology and implications for treatment. N Engl J Med 322:1277–1289PubMedCrossRef Harris ED (1990) Rheumatoid arthritis: pathophysiology and implications for treatment. N Engl J Med 322:1277–1289PubMedCrossRef
18.
go back to reference Davis LS, Schulze-Koops H, Lipsky PE (1999) Human CD4+ T cell differentiation and effector function: implications for autoimmunity. Immunol Res 19(1):25–34PubMedCrossRef Davis LS, Schulze-Koops H, Lipsky PE (1999) Human CD4+ T cell differentiation and effector function: implications for autoimmunity. Immunol Res 19(1):25–34PubMedCrossRef
19.
go back to reference Kotzin BL, Kappler J (1998) Targeting the T cell receptor in rheumatoid arthritis. Arthr Rheum 41:1906–1910CrossRef Kotzin BL, Kappler J (1998) Targeting the T cell receptor in rheumatoid arthritis. Arthr Rheum 41:1906–1910CrossRef
20.
go back to reference Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793PubMedCrossRef Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793PubMedCrossRef
21.
go back to reference Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17:138–146PubMedCrossRef Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17:138–146PubMedCrossRef
22.
go back to reference Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W, Murphy E, Sathe M, Cua DJ, Kastelein RA, Rennick D (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116:1310–1316PubMedCrossRef Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W, Murphy E, Sathe M, Cua DJ, Kastelein RA, Rennick D (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116:1310–1316PubMedCrossRef
23.
go back to reference Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352PubMedCrossRef Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352PubMedCrossRef
24.
go back to reference Kohno K, Kurimoto M (1998) Interleukin 18, a cytokine which resembles IL-1 structurally and IL-12 functionally but exerts its effect independently of both. Clin Immunol Immunopathol 86(1):11–15PubMedCrossRef Kohno K, Kurimoto M (1998) Interleukin 18, a cytokine which resembles IL-1 structurally and IL-12 functionally but exerts its effect independently of both. Clin Immunol Immunopathol 86(1):11–15PubMedCrossRef
25.
go back to reference Udagewa N, Horwood NJ, Elliott J, Mackay A, Owens J, Okamura H, Kurimoto M, Chambers TJ, Martin TJ, Gillespie MT (1997) Interleukin-18 (interferon-gamma-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-gamma to inhibit osteoclast formation. J Exp Med 185(6):1005–1012CrossRef Udagewa N, Horwood NJ, Elliott J, Mackay A, Owens J, Okamura H, Kurimoto M, Chambers TJ, Martin TJ, Gillespie MT (1997) Interleukin-18 (interferon-gamma-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-gamma to inhibit osteoclast formation. J Exp Med 185(6):1005–1012CrossRef
26.
go back to reference Olee T, Hashimoto S, Quach J, Lotz M (1999) IL-18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses. J Immunol 162(2):1096–1100PubMed Olee T, Hashimoto S, Quach J, Lotz M (1999) IL-18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses. J Immunol 162(2):1096–1100PubMed
27.
go back to reference Okamura H, Kashiwamura S, Tsutsui H, Yoshimoto T, Nakanishi K (1998) Regulation of interferon-gamma production by IL-12 and IL-18. Curr Opin Immunol 10(3):258–264CrossRef Okamura H, Kashiwamura S, Tsutsui H, Yoshimoto T, Nakanishi K (1998) Regulation of interferon-gamma production by IL-12 and IL-18. Curr Opin Immunol 10(3):258–264CrossRef
28.
go back to reference Takeda K, Tsutsui H, Yoshimoto T, Adachi O, Yoshida N, Kishimoto T, Okamura H, Nakanishi K, Akira S (1998) Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 8(3):383–390PubMedCrossRef Takeda K, Tsutsui H, Yoshimoto T, Adachi O, Yoshida N, Kishimoto T, Okamura H, Nakanishi K, Akira S (1998) Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 8(3):383–390PubMedCrossRef
29.
go back to reference Gracie JA, Forsey RJ, Chan WL, Gilmour A, Leung BP, Greer MR, Kennedy K, Carter R, Wei XQ, Xu D, Field M, Foulis A, Liew FY, Mclnners IB (1999) A proinflammatory role for IL-18 in rheumatoid arthritis. J Clin Invest 104(10):1393–1401PubMedCrossRef Gracie JA, Forsey RJ, Chan WL, Gilmour A, Leung BP, Greer MR, Kennedy K, Carter R, Wei XQ, Xu D, Field M, Foulis A, Liew FY, Mclnners IB (1999) A proinflammatory role for IL-18 in rheumatoid arthritis. J Clin Invest 104(10):1393–1401PubMedCrossRef
31.
go back to reference Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640PubMedCrossRef Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640PubMedCrossRef
32.
go back to reference Robertson MJ, Ritz J (1990) Biology and clinical relevance of human natural killer cells. Blood 76:2421–2438PubMed Robertson MJ, Ritz J (1990) Biology and clinical relevance of human natural killer cells. Blood 76:2421–2438PubMed
33.
go back to reference Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272:50–53PubMedCrossRef Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272:50–53PubMedCrossRef
34.
35.
go back to reference Su HC, Nguyen KB, Salazar-Mather TP, Ruzek MC, Dalod MY, Biron CA (2001) NK cell functions restrain T cell responses during viral infections. Eur J Immunol 31:3048–3055PubMedCrossRef Su HC, Nguyen KB, Salazar-Mather TP, Ruzek MC, Dalod MY, Biron CA (2001) NK cell functions restrain T cell responses during viral infections. Eur J Immunol 31:3048–3055PubMedCrossRef
36.
go back to reference Zitvogel L (2002) Dendritic and natural killer cells cooperate in the control/switch of innate immunity. J Exp Med 195:F9–F14PubMedCrossRef Zitvogel L (2002) Dendritic and natural killer cells cooperate in the control/switch of innate immunity. J Exp Med 195:F9–F14PubMedCrossRef
37.
go back to reference Zhang B, Yamamura T, Kondo T, Fujiwara M, Tabira T (1997) Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J Exp Med 186:1677–1687PubMedCrossRef Zhang B, Yamamura T, Kondo T, Fujiwara M, Tabira T (1997) Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J Exp Med 186:1677–1687PubMedCrossRef
38.
go back to reference Nilsson N, Bremell T, Tarkowski A, Carlsten H (1999) Protective role of NK1.1+ cells in experimental Staphylococcus aureus arthritis. Clin Exp Immunol 117:63–69PubMedCrossRef Nilsson N, Bremell T, Tarkowski A, Carlsten H (1999) Protective role of NK1.1+ cells in experimental Staphylococcus aureus arthritis. Clin Exp Immunol 117:63–69PubMedCrossRef
39.
go back to reference Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354(6):610–621PubMedCrossRef Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354(6):610–621PubMedCrossRef
40.
go back to reference Szekanecz Z, Kim J, Koch AE (2003) Chemokines and chemokine receptors in rheumatoid arthritis. Semin Immunol 15(1):15–21PubMedCrossRef Szekanecz Z, Kim J, Koch AE (2003) Chemokines and chemokine receptors in rheumatoid arthritis. Semin Immunol 15(1):15–21PubMedCrossRef
Metadata
Title
IL-32 aggravates synovial inflammation and bone destruction and increases synovial natural killer cells in experimental arthritis models
Authors
Young-Eun Park
Geun-Tae Kim
Seung-Geun Lee
Seong-Hu Park
Seung-Hoon Baek
Sung-Il Kim
Ju-In Kim
Hua-Shu Jin
Publication date
01-03-2013
Publisher
Springer-Verlag
Published in
Rheumatology International / Issue 3/2013
Print ISSN: 0172-8172
Electronic ISSN: 1437-160X
DOI
https://doi.org/10.1007/s00296-012-2385-5

Other articles of this Issue 3/2013

Rheumatology International 3/2013 Go to the issue