Skip to main content
Top
Published in: Rheumatology International 9/2012

Open Access 01-09-2012 | Original Article

Tenascin-C fragments are endogenous inducers of cartilage matrix degradation

Authors: Nidhi Sofat, Saralili Dipa Robertson, Monika Hermansson, Jonathan Jones, Philip Mitchell, Robin Wait

Published in: Rheumatology International | Issue 9/2012

Login to get access

Abstract

Cartilage destruction is a hallmark of osteoarthritis (OA) and is characterized by increased protease activity resulting in the degradation of critical extracellular matrix (ECM) proteins essential for maintaining cartilage integrity. Tenascin-C (TN-C) is an ECM glycoprotein, and its expression is upregulated in OA cartilage. We aimed to investigate the presence of TN-C fragments in arthritic cartilage and establish whether they promote cartilage degradation. Expression of TN-C and its fragments was evaluated in cartilage from subjects undergoing joint replacement surgery for OA and RA compared with normal subjects by western blotting. The localization of TN-C in arthritic cartilage was also established by immunohistochemistry. Recombinant TN-C fragments were then tested to evaluate which regions of TN-C are responsible for cartilage-degrading activity in an ex vivo cartilage explant assay measuring glycosaminoglycan (GAG) release, aggrecanase and matrix metalloproteinase (MMP) activity. We found that specific TN-C fragments are highly upregulated in arthritic cartilage. Recombinant TN-C fragments containing the same regions as those identified from OA cartilage mediate cartilage degradation by the induction of aggrecanase activity. TN-C fragments mapping to the EGF-L and FN type III domains 3–8 of TN-C had the highest levels of aggrecan-degrading ability that was not observed either with full-length TN-C or with other domains of TN-C. TN-C fragments represent a novel mechanism for cartilage degradation in arthritis and may present new therapeutic targets for the inhibition of cartilage degradation.
Literature
1.
3.
go back to reference Mankin HJ, Lippiello L (1971) Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. J Bone Joint Surg Am 52:424–434 Mankin HJ, Lippiello L (1971) Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. J Bone Joint Surg Am 52:424–434
4.
go back to reference Goldring SR, Goldring MB (2004) The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop Relat Res 427:S27–S36PubMedCrossRef Goldring SR, Goldring MB (2004) The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop Relat Res 427:S27–S36PubMedCrossRef
5.
go back to reference Nagase H, Kashiwagi M (2003) Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 5:94–103PubMedCrossRef Nagase H, Kashiwagi M (2003) Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 5:94–103PubMedCrossRef
6.
go back to reference Kurz B, Jin M, Patwari P, Cheng DM, Lark MW, Grodzinsky AJ (2001) Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J Orthop Res 19:1140–1146PubMedCrossRef Kurz B, Jin M, Patwari P, Cheng DM, Lark MW, Grodzinsky AJ (2001) Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J Orthop Res 19:1140–1146PubMedCrossRef
7.
go back to reference Hunter DJ (2011) Pharmacologic therapy for osteoarthritis—the era of disease modification. Nat Rev Rheumatol 7(1):13–22PubMedCrossRef Hunter DJ (2011) Pharmacologic therapy for osteoarthritis—the era of disease modification. Nat Rev Rheumatol 7(1):13–22PubMedCrossRef
8.
go back to reference Okada Y (2001) Proteinases and matrix degradation. In: Ruddy S, Harris ED, Sledge C (eds) Kelley’s textbook of rheumatology. Saunders, Philadelphia, pp 55–73 Okada Y (2001) Proteinases and matrix degradation. In: Ruddy S, Harris ED, Sledge C (eds) Kelley’s textbook of rheumatology. Saunders, Philadelphia, pp 55–73
9.
go back to reference Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, Little CB, Last K, Farmer PJ, Campbell IK, Fourie AM, Fosang AJ (2005) ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434:648–652PubMedCrossRef Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, Little CB, Last K, Farmer PJ, Campbell IK, Fourie AM, Fosang AJ (2005) ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434:648–652PubMedCrossRef
10.
go back to reference Lark MW, Bayne EK, Flanagan J, Harper CF, Hoerrner LA, Hutchinson NI, Singer I, Donatelli SA, Weidner JR, Williams HR, Mumford RA, Lohmander LS (1997) Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest 100:93–106PubMedCrossRef Lark MW, Bayne EK, Flanagan J, Harper CF, Hoerrner LA, Hutchinson NI, Singer I, Donatelli SA, Weidner JR, Williams HR, Mumford RA, Lohmander LS (1997) Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest 100:93–106PubMedCrossRef
11.
go back to reference Dodge GR, Poole AR (1989) Immunohistochemical detection and immunochemical analysis of type II collagen degradation in human normal, rheumatoid, and osteoarthritic articular cartilages and in explants of bovine articular cartilage cultured with interleukin 1. J Clin Invest 83:647–661PubMedCrossRef Dodge GR, Poole AR (1989) Immunohistochemical detection and immunochemical analysis of type II collagen degradation in human normal, rheumatoid, and osteoarthritic articular cartilages and in explants of bovine articular cartilage cultured with interleukin 1. J Clin Invest 83:647–661PubMedCrossRef
12.
go back to reference Aigner T, Zien A, Gehrsitz A, Gebhard PM, Mckenna L (2001) Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum 44:2777–2789PubMedCrossRef Aigner T, Zien A, Gehrsitz A, Gebhard PM, Mckenna L (2001) Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum 44:2777–2789PubMedCrossRef
13.
go back to reference Lee JH, Fitzgerald JB, Dimicco MA, Grodzinsky AJ (2005) Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum 52:2386–2395PubMedCrossRef Lee JH, Fitzgerald JB, Dimicco MA, Grodzinsky AJ (2005) Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum 52:2386–2395PubMedCrossRef
14.
go back to reference Loening AM, James IE, Levenston ME, Badger AM, Frank EH, Kurz B, Nuttall ME, Hung HH, Blake SM, Grodzinsky AJ, Lark MW (2000) Injurious mechanical compression of bovine articular cartilage induces chondrocyte apoptosis. Arch Biochem Biophys 381:205–212PubMedCrossRef Loening AM, James IE, Levenston ME, Badger AM, Frank EH, Kurz B, Nuttall ME, Hung HH, Blake SM, Grodzinsky AJ, Lark MW (2000) Injurious mechanical compression of bovine articular cartilage induces chondrocyte apoptosis. Arch Biochem Biophys 381:205–212PubMedCrossRef
15.
go back to reference Fichter M, Korner U, Schomburg J, Jennings L, Cole AA, Mollenhauer J (2006) Collagen degradation products modulate matrix metalloproteinase expression in cultured articular chondrocytes. J Orthop Res 24(1):63–70PubMedCrossRef Fichter M, Korner U, Schomburg J, Jennings L, Cole AA, Mollenhauer J (2006) Collagen degradation products modulate matrix metalloproteinase expression in cultured articular chondrocytes. J Orthop Res 24(1):63–70PubMedCrossRef
16.
go back to reference Heathfield TF, Onnerfjord P, Dahlberg L, Heinegard D (2004) Cleavage of fibromodulin in cartilage explants involves removal of the N-terminal tyrosine sulfate-rich region by proteolysis at a site that is sensitive to matrix metalloproteinase-13. J Biol Chem 279(8):6286–6295PubMedCrossRef Heathfield TF, Onnerfjord P, Dahlberg L, Heinegard D (2004) Cleavage of fibromodulin in cartilage explants involves removal of the N-terminal tyrosine sulfate-rich region by proteolysis at a site that is sensitive to matrix metalloproteinase-13. J Biol Chem 279(8):6286–6295PubMedCrossRef
17.
go back to reference Homandberg GA, Meyers R, Xie DL (1992) Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J Biol Chem 267:3597–3604PubMed Homandberg GA, Meyers R, Xie DL (1992) Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J Biol Chem 267:3597–3604PubMed
18.
go back to reference Knudson W, Casey B, Nishida Y, Eger W, Kuettner KE, Knudson CB (2000) Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis. Arthritis Rheum 43:1165–1174PubMedCrossRef Knudson W, Casey B, Nishida Y, Eger W, Kuettner KE, Knudson CB (2000) Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis. Arthritis Rheum 43:1165–1174PubMedCrossRef
19.
go back to reference Jones PL, Jones FS (2000) Tenascin-C in development and disease: gene regulation and cell function. Matrix Biol 19:581–596PubMedCrossRef Jones PL, Jones FS (2000) Tenascin-C in development and disease: gene regulation and cell function. Matrix Biol 19:581–596PubMedCrossRef
20.
go back to reference Salter DM (1993) Tenascin is increased in cartilage and synovium from arthritic knees. Br J Rheumatol 32:780–786PubMedCrossRef Salter DM (1993) Tenascin is increased in cartilage and synovium from arthritic knees. Br J Rheumatol 32:780–786PubMedCrossRef
21.
go back to reference Chevalier X, Groult N, Larget Piet B, Zardi L, Hornebeck W (1994) Tenascin distribution in articular cartilage from normal subjects and from patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 37(7):1013–1022PubMedCrossRef Chevalier X, Groult N, Larget Piet B, Zardi L, Hornebeck W (1994) Tenascin distribution in articular cartilage from normal subjects and from patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 37(7):1013–1022PubMedCrossRef
22.
go back to reference Cutolo M, Picasso M, Ponassi M, Sun MZ, Balza E (1992) Tenascin and fibronectin distribution in human normal and pathologic synovium. J Rheumatol 19:1439–1447PubMed Cutolo M, Picasso M, Ponassi M, Sun MZ, Balza E (1992) Tenascin and fibronectin distribution in human normal and pathologic synovium. J Rheumatol 19:1439–1447PubMed
23.
go back to reference McCachren SS, Lightner VA (1992) Expression of human tenascin in synovitis and its regulation by interleukin-1. Arthritis Rheumatism 35:1185–1196PubMedCrossRef McCachren SS, Lightner VA (1992) Expression of human tenascin in synovitis and its regulation by interleukin-1. Arthritis Rheumatism 35:1185–1196PubMedCrossRef
24.
go back to reference Hasegawa M, Nakoshi Y, Muraki M, Sudo A, Kinoshita N, Yoshida T, Uchida A (2007) Expression of large tenascin-c splice variants in synovial fluid of patients with rheumatoid arthritis. J Orthop Res 25:563–568PubMedCrossRef Hasegawa M, Nakoshi Y, Muraki M, Sudo A, Kinoshita N, Yoshida T, Uchida A (2007) Expression of large tenascin-c splice variants in synovial fluid of patients with rheumatoid arthritis. J Orthop Res 25:563–568PubMedCrossRef
25.
go back to reference Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, Drexler S, Sofat N, Kashiwagi M, Orend G, Brennan F, Foxwell B (2009) Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 15(7):774–781PubMedCrossRef Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, Drexler S, Sofat N, Kashiwagi M, Orend G, Brennan F, Foxwell B (2009) Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 15(7):774–781PubMedCrossRef
26.
go back to reference Okamura N, Hasegawa M, Nakoshi Y, Iino T, Sudo A, Imanaka-Yoshida K, Yoshida T, Uchida A (2010) Deficiency of tenascin-C delays articular cartilage repair in mice. Osteoarthr Cartilage 18(6):839–848 Okamura N, Hasegawa M, Nakoshi Y, Iino T, Sudo A, Imanaka-Yoshida K, Yoshida T, Uchida A (2010) Deficiency of tenascin-C delays articular cartilage repair in mice. Osteoarthr Cartilage 18(6):839–848
27.
go back to reference Wykcoff D, Rodbard A, Chrambach A (1977) Polyacrylamide gel electrophoresis in sodium dodecyl sulfate-containing buffers using multiphasic buffer systems: properties of the stack, valid Rf-measurement, and optimized procedure. Anal Biochem 78:459–482CrossRef Wykcoff D, Rodbard A, Chrambach A (1977) Polyacrylamide gel electrophoresis in sodium dodecyl sulfate-containing buffers using multiphasic buffer systems: properties of the stack, valid Rf-measurement, and optimized procedure. Anal Biochem 78:459–482CrossRef
28.
go back to reference Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRef Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRef
29.
go back to reference Meyer TS, Lambert BL (1965) Use of Coomassie brilliant blue R250 for the electrophoresis of microgram quantities of parotid saliva proteins on acrylamide-gel strips. Biochim Biophys Acta 107:144–145PubMedCrossRef Meyer TS, Lambert BL (1965) Use of Coomassie brilliant blue R250 for the electrophoresis of microgram quantities of parotid saliva proteins on acrylamide-gel strips. Biochim Biophys Acta 107:144–145PubMedCrossRef
30.
go back to reference Shevchenko A, Wilm M, Vorm O, Mann M (1980) Mass spectrometric sequencing of proteins silver stained polyacrylamide gels. Anal Chem 68:850–858CrossRef Shevchenko A, Wilm M, Vorm O, Mann M (1980) Mass spectrometric sequencing of proteins silver stained polyacrylamide gels. Anal Chem 68:850–858CrossRef
31.
go back to reference Gendron C, Kashiwagi M, Hughes C, Caterson B, Nagase H (2003) TIMP-3 inhibits aggrecanase-mediated glycosaminoglycan release from cartilage explants stimulated by catabolic factors. FEBS Lett 555:431–436PubMedCrossRef Gendron C, Kashiwagi M, Hughes C, Caterson B, Nagase H (2003) TIMP-3 inhibits aggrecanase-mediated glycosaminoglycan release from cartilage explants stimulated by catabolic factors. FEBS Lett 555:431–436PubMedCrossRef
32.
go back to reference Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177PubMedCrossRef Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177PubMedCrossRef
33.
go back to reference Sofat N (2009) Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int J Exp Pathol 90:463–479PubMedCrossRef Sofat N (2009) Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int J Exp Pathol 90:463–479PubMedCrossRef
34.
go back to reference Nakoshi Y, Hasegawa M, Akeda K, Iino T, Sudo A, Yoshida T, Uchida A (2010) Distribution and role of tenascin-C in human osteoarthritic cartilage. J Orthop Sci 15(5):666–673PubMedCrossRef Nakoshi Y, Hasegawa M, Akeda K, Iino T, Sudo A, Yoshida T, Uchida A (2010) Distribution and role of tenascin-C in human osteoarthritic cartilage. J Orthop Sci 15(5):666–673PubMedCrossRef
35.
go back to reference Zhen EY, Brittain IJ, Laska DA, Mitchell PG, Sumer EU, Karsdal MA, Duffen KL (2008) Characterization of metalloproteinase cleavage products of human articular cartilage. Arthritis Rheum 58(8):2420–2431PubMedCrossRef Zhen EY, Brittain IJ, Laska DA, Mitchell PG, Sumer EU, Karsdal MA, Duffen KL (2008) Characterization of metalloproteinase cleavage products of human articular cartilage. Arthritis Rheum 58(8):2420–2431PubMedCrossRef
36.
go back to reference Latijnhouwers MAHE, Bergers M, Veenhuis RT, Beekman B, Ankersmit-Ter Horst MFP, Schalkwijk J (1998) Tenascin-C degradation in chronic wounds is dependent on serine proteinase activity. Arch Dermatol Res 290:490–496PubMedCrossRef Latijnhouwers MAHE, Bergers M, Veenhuis RT, Beekman B, Ankersmit-Ter Horst MFP, Schalkwijk J (1998) Tenascin-C degradation in chronic wounds is dependent on serine proteinase activity. Arch Dermatol Res 290:490–496PubMedCrossRef
37.
go back to reference Wallner K, Li C, Shah PK, Wu K-J, Schwartz SM, Sharifi BG (2004) EGF-like domain of tenascin-C is proapoptotic for cultured smooth muscle cells. Arterioscler Thromb Vasc Biol 24:1416–1421PubMedCrossRef Wallner K, Li C, Shah PK, Wu K-J, Schwartz SM, Sharifi BG (2004) EGF-like domain of tenascin-C is proapoptotic for cultured smooth muscle cells. Arterioscler Thromb Vasc Biol 24:1416–1421PubMedCrossRef
38.
go back to reference Prieto AL, Andersson-Fissone C, Crossin KL (1992) Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin. J Cell Biol 111:685–698CrossRef Prieto AL, Andersson-Fissone C, Crossin KL (1992) Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin. J Cell Biol 111:685–698CrossRef
39.
go back to reference Spring J, Beck K, Chiquet-Ehrisman R (1989) Two contrary functions of tenascin: dissection of the active sites by recombinant tenascin fragments. Cell 59:325–334PubMedCrossRef Spring J, Beck K, Chiquet-Ehrisman R (1989) Two contrary functions of tenascin: dissection of the active sites by recombinant tenascin fragments. Cell 59:325–334PubMedCrossRef
40.
go back to reference Siri A, Knauper V, Veirana N, Caocci F, Murphy G, Zardi L (1995) Different susceptibility of small and large human tenascin-C isoforms to degradation by matrix metalloproteinases. J Biol Chem 270:8650–8654PubMedCrossRef Siri A, Knauper V, Veirana N, Caocci F, Murphy G, Zardi L (1995) Different susceptibility of small and large human tenascin-C isoforms to degradation by matrix metalloproteinases. J Biol Chem 270:8650–8654PubMedCrossRef
41.
go back to reference Spring J, Beck K, Chiquet-Ehrisman R (1989) Two contrary functions of tenascin: dissection of the active sites by recombinant tenascin fragments. Cell 59:325–334PubMedCrossRef Spring J, Beck K, Chiquet-Ehrisman R (1989) Two contrary functions of tenascin: dissection of the active sites by recombinant tenascin fragments. Cell 59:325–334PubMedCrossRef
42.
go back to reference Weber P, Zimmerman DR, Winterhalter KH, Vaughan L (1995) Tenascin-C binds heparin by its fibronectin type III domain five. J Biol Chem 270:4619–4623PubMedCrossRef Weber P, Zimmerman DR, Winterhalter KH, Vaughan L (1995) Tenascin-C binds heparin by its fibronectin type III domain five. J Biol Chem 270:4619–4623PubMedCrossRef
43.
go back to reference Day JM, Olin AI, Murdoch AD, Canfield A, Sasaki T, Timpl R, Hardingham TE, Aspberg A (2004) Alternative splicing in the aggrecan G3 domain influences binding interactions with tenascin-C and other extracellular matrix proteins. J Biol Chem 279:12511–12518PubMedCrossRef Day JM, Olin AI, Murdoch AD, Canfield A, Sasaki T, Timpl R, Hardingham TE, Aspberg A (2004) Alternative splicing in the aggrecan G3 domain influences binding interactions with tenascin-C and other extracellular matrix proteins. J Biol Chem 279:12511–12518PubMedCrossRef
44.
go back to reference Echtermeyer F, Betrand J, Dreier R et al (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med 15(9):1072–1076PubMedCrossRef Echtermeyer F, Betrand J, Dreier R et al (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med 15(9):1072–1076PubMedCrossRef
45.
go back to reference Salter DM, Hughes DE, Simpson R, Gardner DL (1992) Integrin expression by human articular chondrocytes. Br J Rheumatol 31:231–234PubMedCrossRef Salter DM, Hughes DE, Simpson R, Gardner DL (1992) Integrin expression by human articular chondrocytes. Br J Rheumatol 31:231–234PubMedCrossRef
46.
go back to reference Zhang Q, Hui W, Litherland GJ et al (2008) Differential Toll-like receptor-dependent collagenase expression in chondrocytes. Ann Rheum Dis 67(11):1633–1641PubMedCrossRef Zhang Q, Hui W, Litherland GJ et al (2008) Differential Toll-like receptor-dependent collagenase expression in chondrocytes. Ann Rheum Dis 67(11):1633–1641PubMedCrossRef
47.
go back to reference Hashimoto G, Shimoda M, Okada Y (2004) ADAMTS4 (aggrecanase-1) interaction with the COOH-terminal domain of fibronectin inhibits proteolysis of aggrecan. J Biol Chem 279:32483–32491PubMedCrossRef Hashimoto G, Shimoda M, Okada Y (2004) ADAMTS4 (aggrecanase-1) interaction with the COOH-terminal domain of fibronectin inhibits proteolysis of aggrecan. J Biol Chem 279:32483–32491PubMedCrossRef
Metadata
Title
Tenascin-C fragments are endogenous inducers of cartilage matrix degradation
Authors
Nidhi Sofat
Saralili Dipa Robertson
Monika Hermansson
Jonathan Jones
Philip Mitchell
Robin Wait
Publication date
01-09-2012
Publisher
Springer-Verlag
Published in
Rheumatology International / Issue 9/2012
Print ISSN: 0172-8172
Electronic ISSN: 1437-160X
DOI
https://doi.org/10.1007/s00296-011-2067-8

Other articles of this Issue 9/2012

Rheumatology International 9/2012 Go to the issue