Skip to main content
Top
Published in: Rheumatology International 8/2012

01-08-2012 | Original Article

G109T polymorphism of SLC22A12 gene is associated with serum uric acid level, but not with metabolic syndrome

Authors: Won Cheoul Jang, Youn Hyoung Nam, Young Chang Ahn, Su Min Park, Il Kyu Yoon, Jung-Yoon Choe, Sung-Hoon Park, Minyoung Her, Seong-Kyu Kim

Published in: Rheumatology International | Issue 8/2012

Login to get access

Abstract

SLC22A12 gene, encoding urate transport 1, has been known to be responsible to urate metabolism. This study sought to determine the association between the novel G109T polymorphism in SLC22A12 with serum uric acid and the development of metabolic syndrome in Korean male subjects. A total of 132 healthy male subjects were enrolled in this study. Metabolic syndrome was determined using the modified guidelines for metabolic syndrome proposed by the National Cholesterol Education Program’s Third Adult Treatment Panel. Genotyping for the SLC22A12 gene was assessed using denaturing high-performance liquid chromatography analysis. Serum uric acid and fractional excretion of uric acid (FEUA) from blood and urine samples were measured. Frequencies of the 109GG, 109GT, and 109TT genotypes were 57.6, 38.6, and 3.8%, respectively. Serum uric acid levels and FEUAs were significantly different among the three genotypes of the G109T polymorphism (P = 0.035 and P = 0.033, respectively). In addition, subjects of genotypes with the T allele had lower uric acid levels and higher FEUAs compared to those with the 109GG genotype (P = 0.007 and P = 0.031, respectively). The G109T polymorphism of the SLC22A12 gene has no association with metabolic syndrome. However, a number of metabolic syndrome components were related to serum uric acid level (r = 0.285, P = 0.001) and also significantly different between genotype with and without T allele (P = 0.008). The novel G109T polymorphism of the SLC22A12 gene is related to serum uric acid level, but not to the development of metabolic syndrome.
Literature
1.
2.
go back to reference Hediger MA, Johnson RJ, Miyazaki H et al (2005) Molecular physiology of urate transport. Physiology 20:125–133PubMedCrossRef Hediger MA, Johnson RJ, Miyazaki H et al (2005) Molecular physiology of urate transport. Physiology 20:125–133PubMedCrossRef
3.
go back to reference Pérez-Ruiz F, Calabozo M, Erauskin GG et al (2002) Renal under excretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Rheum 15:610–613CrossRef Pérez-Ruiz F, Calabozo M, Erauskin GG et al (2002) Renal under excretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Rheum 15:610–613CrossRef
4.
go back to reference Terkeltaub R, Bushinsky DA, Becker MA (2006) Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Res Ther 8(Suppl 1):S4PubMedCrossRef Terkeltaub R, Bushinsky DA, Becker MA (2006) Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Res Ther 8(Suppl 1):S4PubMedCrossRef
5.
go back to reference Enomoto A, Kimura H, Chairoungdua A et al (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417:447–452PubMed Enomoto A, Kimura H, Chairoungdua A et al (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417:447–452PubMed
6.
go back to reference Hosoyamada M, Ichida K, Enomoto A et al (2004) Function and localization of urate transporter 1 in mouse kidney. J Am Soc Nephrol 15:261–268PubMedCrossRef Hosoyamada M, Ichida K, Enomoto A et al (2004) Function and localization of urate transporter 1 in mouse kidney. J Am Soc Nephrol 15:261–268PubMedCrossRef
7.
go back to reference Ichida K, Hosoyamada M, Hisatome I et al (2004) Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol 15:164–173PubMedCrossRef Ichida K, Hosoyamada M, Hisatome I et al (2004) Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol 15:164–173PubMedCrossRef
8.
go back to reference Iwai N, Mino Y, Hosoyamada M et al (2004) A high prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese. Kidney Int 66:935–944PubMedCrossRef Iwai N, Mino Y, Hosoyamada M et al (2004) A high prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese. Kidney Int 66:935–944PubMedCrossRef
9.
go back to reference Jang WC, Nam YH, Park SM et al (2008) T6092C polymorphism of SLC22A12 gene is associated with serum uric acid concentrations in Korean male subjects. Clin Chim Acta 398:140–144PubMedCrossRef Jang WC, Nam YH, Park SM et al (2008) T6092C polymorphism of SLC22A12 gene is associated with serum uric acid concentrations in Korean male subjects. Clin Chim Acta 398:140–144PubMedCrossRef
10.
go back to reference Shima Y, Teruya K, Ohta H (2006) Association between intronic SNP in urate-anion exchanger gene, SLC22A12, and serum uric acid levels in Japanese. Life Sci 79:2234–2237PubMedCrossRef Shima Y, Teruya K, Ohta H (2006) Association between intronic SNP in urate-anion exchanger gene, SLC22A12, and serum uric acid levels in Japanese. Life Sci 79:2234–2237PubMedCrossRef
11.
go back to reference Taniguchi A, Urano W, Yamanaka M et al (2005) A common mutation in an organic anion transporter gene, SLC22A12, is a suppressing factor for the development of gout. Arthritis Rheum 52:2576–2577PubMedCrossRef Taniguchi A, Urano W, Yamanaka M et al (2005) A common mutation in an organic anion transporter gene, SLC22A12, is a suppressing factor for the development of gout. Arthritis Rheum 52:2576–2577PubMedCrossRef
12.
go back to reference Vázquez-Mellado J, Jiménez-Vaca AL, Cuevas-Covarrubias S et al (2007) Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout. Rheumatology (Oxford) 46:215–219CrossRef Vázquez-Mellado J, Jiménez-Vaca AL, Cuevas-Covarrubias S et al (2007) Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout. Rheumatology (Oxford) 46:215–219CrossRef
13.
go back to reference Culleton BF (2001) Uric acid and cardiovascular disease: a renal–cardiac relationship? Curr Opin Nephrol Hypertens 10:371–375PubMedCrossRef Culleton BF (2001) Uric acid and cardiovascular disease: a renal–cardiac relationship? Curr Opin Nephrol Hypertens 10:371–375PubMedCrossRef
14.
go back to reference Forman JP, Choi H, Curhan GC (2009) Uric acid and insulin sensitivity and risk of incident hypertension. Arch Intern Med 169:155–162PubMedCrossRef Forman JP, Choi H, Curhan GC (2009) Uric acid and insulin sensitivity and risk of incident hypertension. Arch Intern Med 169:155–162PubMedCrossRef
15.
go back to reference Culleton BF, Larson MG, Kannel WB et al (1999) Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med 131:7–13PubMed Culleton BF, Larson MG, Kannel WB et al (1999) Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med 131:7–13PubMed
16.
go back to reference Ioachimescu AG, Brennan DM, Hoar BM et al (2008) Serum uric acid is an independent predictor of all-cause mortality in patients at high risk of cardiovascular disease: a preventive cardiology information system (PreCIS) database cohort study. Arthritis Rheum 58:623–630PubMedCrossRef Ioachimescu AG, Brennan DM, Hoar BM et al (2008) Serum uric acid is an independent predictor of all-cause mortality in patients at high risk of cardiovascular disease: a preventive cardiology information system (PreCIS) database cohort study. Arthritis Rheum 58:623–630PubMedCrossRef
17.
go back to reference Bieber JD, Terkeltaub RA (2004) Gout: on the brink of novel therapeutic options for an ancient disease. Arthritis Rheum 50:2400–2414PubMedCrossRef Bieber JD, Terkeltaub RA (2004) Gout: on the brink of novel therapeutic options for an ancient disease. Arthritis Rheum 50:2400–2414PubMedCrossRef
18.
go back to reference Cirillo P, Sato W, Reungjui S et al (2006) Uric acid, the metabolic syndrome, and renal disease. J Am Soc Nephrol 17:S165–S168PubMedCrossRef Cirillo P, Sato W, Reungjui S et al (2006) Uric acid, the metabolic syndrome, and renal disease. J Am Soc Nephrol 17:S165–S168PubMedCrossRef
19.
go back to reference Rathmann W, Haastert B, Icks A et al (2007) Ten-year change in serum uric acid and its relation to changes in other metabolic risk factors in young black and white adults: the CARDIA study. Eur J Epidemiol 22:439–445PubMedCrossRef Rathmann W, Haastert B, Icks A et al (2007) Ten-year change in serum uric acid and its relation to changes in other metabolic risk factors in young black and white adults: the CARDIA study. Eur J Epidemiol 22:439–445PubMedCrossRef
20.
go back to reference Nakagawa T, Hu H, Zharikov S et al (2006) A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 290:F625–F631PubMedCrossRef Nakagawa T, Hu H, Zharikov S et al (2006) A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 290:F625–F631PubMedCrossRef
21.
go back to reference Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) (2001) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285:2486–97 Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) (2001) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285:2486–97
22.
go back to reference World Health Organisation, Western Pacific Region, The Asia-Pacific Perspective (2000) Redefining obesity and its treatment, WHO/IASO/IOTF 2000 World Health Organisation, Western Pacific Region, The Asia-Pacific Perspective (2000) Redefining obesity and its treatment, WHO/IASO/IOTF 2000
23.
go back to reference Lipkowitz MS, Leal-Pinto E, Rappoport JZ et al (2001) Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter. J Clin Invest 107:1103–1115PubMedCrossRef Lipkowitz MS, Leal-Pinto E, Rappoport JZ et al (2001) Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter. J Clin Invest 107:1103–1115PubMedCrossRef
24.
go back to reference Graessler J, Graessler A, Unger S et al (2006) Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum 54:292–300PubMedCrossRef Graessler J, Graessler A, Unger S et al (2006) Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum 54:292–300PubMedCrossRef
25.
go back to reference Munan L, Kelly A, Petitclerc C (1976) Population serum urate levels and their correlates. The Sherbrooke regional study. Am J Epidemiol 103:369–382PubMed Munan L, Kelly A, Petitclerc C (1976) Population serum urate levels and their correlates. The Sherbrooke regional study. Am J Epidemiol 103:369–382PubMed
26.
go back to reference Fang J, Alderman MH (2000) Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971–1992. National Health and Nutrition Examination Survey. JAMA 283:2404–2410PubMedCrossRef Fang J, Alderman MH (2000) Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971–1992. National Health and Nutrition Examination Survey. JAMA 283:2404–2410PubMedCrossRef
27.
go back to reference Choe JY, Park SH, Kim JY et al (2008) Change in serum uric acid between baseline and 1-year follow-up and its associated factors in male subjects. Clin Rheumatol 27:483–489PubMedCrossRef Choe JY, Park SH, Kim JY et al (2008) Change in serum uric acid between baseline and 1-year follow-up and its associated factors in male subjects. Clin Rheumatol 27:483–489PubMedCrossRef
29.
go back to reference Rho YH, Woo JH, Choi SJ et al (2008) Association between serum uric acid and the Adult Treatment Panel III-defined metabolic syndrome: results from a single hospital database. Metabolism 57:71–76PubMedCrossRef Rho YH, Woo JH, Choi SJ et al (2008) Association between serum uric acid and the Adult Treatment Panel III-defined metabolic syndrome: results from a single hospital database. Metabolism 57:71–76PubMedCrossRef
30.
go back to reference Lin JD, Chiou WK, Chang HY et al (2007) Serum uric acid and leptin levels in metabolic syndrome: a quandary over the role of uric acid. Metabolism 56:751–756PubMedCrossRef Lin JD, Chiou WK, Chang HY et al (2007) Serum uric acid and leptin levels in metabolic syndrome: a quandary over the role of uric acid. Metabolism 56:751–756PubMedCrossRef
Metadata
Title
G109T polymorphism of SLC22A12 gene is associated with serum uric acid level, but not with metabolic syndrome
Authors
Won Cheoul Jang
Youn Hyoung Nam
Young Chang Ahn
Su Min Park
Il Kyu Yoon
Jung-Yoon Choe
Sung-Hoon Park
Minyoung Her
Seong-Kyu Kim
Publication date
01-08-2012
Publisher
Springer-Verlag
Published in
Rheumatology International / Issue 8/2012
Print ISSN: 0172-8172
Electronic ISSN: 1437-160X
DOI
https://doi.org/10.1007/s00296-011-1952-5

Other articles of this Issue 8/2012

Rheumatology International 8/2012 Go to the issue