Skip to main content
Top
Published in: Seminars in Immunopathology 2/2020

Open Access 01-04-2020 | Human Papillomavirus | Review

Epigenetic regulation of human papillomavirus transcription in the productive virus life cycle

Authors: Megan Burley, Sally Roberts, Joanna L. Parish

Published in: Seminars in Immunopathology | Issue 2/2020

Login to get access

Abstract

Human papillomaviruses (HPV) are a large family of viruses which contain a circular, double-stranded DNA genome of approximately 8000 base pairs. The viral DNA is chromatinized by the recruitment of cellular histones which are subject to host cell–mediated post-translational epigenetic modification recognized as an important mechanism of virus transcription regulation. The HPV life cycle is dependent on the terminal differentiation of the target cell within epithelia—the keratinocyte. The virus life cycle begins in the undifferentiated basal compartment of epithelia where the viral chromatin is maintained in an epigenetically repressed state, stabilized by distal chromatin interactions between the viral enhancer and early gene region. Migration of the infected keratinocyte towards the surface of the epithelium induces cellular differentiation which disrupts chromatin looping and stimulates epigenetic remodelling of the viral chromatin. These epigenetic changes result in enhanced virus transcription and activation of the virus late promoter facilitating transcription of the viral capsid proteins. In this review article, we discuss the complexity of virus- and host-cell-mediated epigenetic regulation of virus transcription with a specific focus on differentiation-dependent remodelling of viral chromatin during the HPV life cycle.
Literature
2.
go back to reference IARC WGotEoCRtH (2007) Human papillomaviruses. IARC Monogr Eval Carcinog Risks Hum 90:1–636 IARC WGotEoCRtH (2007) Human papillomaviruses. IARC Monogr Eval Carcinog Risks Hum 90:1–636
3.
go back to reference Favre M, Breitburd F, Croissant O, Orth G (1977) Chromatin-like structures obtained after alkaline disruption of bovine and human papillomaviruses. J Virol 21(3):1205–1209CrossRef Favre M, Breitburd F, Croissant O, Orth G (1977) Chromatin-like structures obtained after alkaline disruption of bovine and human papillomaviruses. J Virol 21(3):1205–1209CrossRef
9.
go back to reference Bernard BA, Bailly C, Lenoir MC, Darmon M, Thierry F, Yaniv M (1989) The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. J Virol 63(10):4317–4324CrossRef Bernard BA, Bailly C, Lenoir MC, Darmon M, Thierry F, Yaniv M (1989) The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. J Virol 63(10):4317–4324CrossRef
10.
go back to reference Dong G, Broker TR, Chow LT (1994) Human papillomavirus type 11 E2 proteins repress the homologous E6 promoter by interfering with the binding of host transcription factors to adjacent elements. J Virol 68(2):1115–1127CrossRef Dong G, Broker TR, Chow LT (1994) Human papillomavirus type 11 E2 proteins repress the homologous E6 promoter by interfering with the binding of host transcription factors to adjacent elements. J Virol 68(2):1115–1127CrossRef
11.
go back to reference Hou SY, Wu SY, Zhou T, Thomas MC, Chiang CM (2000) Alleviation of human papillomavirus E2-mediated transcriptional repression via formation of a TATA binding protein (or TFIID)-TFIIB-RNA polymerase II-TFIIF preinitiation complex. Mol Cell Biol 20(1):113–125CrossRef Hou SY, Wu SY, Zhou T, Thomas MC, Chiang CM (2000) Alleviation of human papillomavirus E2-mediated transcriptional repression via formation of a TATA binding protein (or TFIID)-TFIIB-RNA polymerase II-TFIIF preinitiation complex. Mol Cell Biol 20(1):113–125CrossRef
12.
go back to reference Stubenrauch F, Leigh IM, Pfister H (1996) E2 represses the late gene promoter of human papillomavirus type 8 at high concentrations by interfering with cellular factors. J Virol 70(1):119–126CrossRef Stubenrauch F, Leigh IM, Pfister H (1996) E2 represses the late gene promoter of human papillomavirus type 8 at high concentrations by interfering with cellular factors. J Virol 70(1):119–126CrossRef
13.
go back to reference Tan SH, Leong LE, Walker PA, Bernard HU (1994) The human papillomavirus type 16 E2 transcription factor binds with low cooperativity to two flanking sites and represses the E6 promoter through displacement of Sp1 and TFIID. J Virol 68(10):6411–6420CrossRef Tan SH, Leong LE, Walker PA, Bernard HU (1994) The human papillomavirus type 16 E2 transcription factor binds with low cooperativity to two flanking sites and represses the E6 promoter through displacement of Sp1 and TFIID. J Virol 68(10):6411–6420CrossRef
32.
go back to reference Stunkel W, Bernard HU (1999) The chromatin structure of the long control region of human papillomavirus type 16 represses viral oncoprotein expression. J Virol 73(3):1918–1930CrossRef Stunkel W, Bernard HU (1999) The chromatin structure of the long control region of human papillomavirus type 16 represses viral oncoprotein expression. J Virol 73(3):1918–1930CrossRef
33.
go back to reference Swindle CS, Engler JA (1998) Association of the human papillomavirus type 11 E1 protein with histone H1. J Virol 72(3):1994–2001CrossRef Swindle CS, Engler JA (1998) Association of the human papillomavirus type 11 E1 protein with histone H1. J Virol 72(3):1994–2001CrossRef
38.
go back to reference Lee D, Lee B, Kim J, Kim DW, Choe J (2000) cAMP response element-binding protein-binding protein binds to human papillomavirus E2 protein and activates E2-dependent transcription. J Biol Chem 275(10):7045–7051CrossRef Lee D, Lee B, Kim J, Kim DW, Choe J (2000) cAMP response element-binding protein-binding protein binds to human papillomavirus E2 protein and activates E2-dependent transcription. J Biol Chem 275(10):7045–7051CrossRef
40.
go back to reference Zimmermann H, Degenkolbe R, Bernard HU, O’Connor MJ (1999) The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol 73(8):6209–6219CrossRef Zimmermann H, Degenkolbe R, Bernard HU, O’Connor MJ (1999) The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol 73(8):6209–6219CrossRef
58.
go back to reference Rosl F, Durst M, Zur Hausen H (1988) Selective suppression of human papillomavirus transcription in non-tumorigenic cells by 5-azacytidine. EMBO J 7(5):1321–1328CrossRef Rosl F, Durst M, Zur Hausen H (1988) Selective suppression of human papillomavirus transcription in non-tumorigenic cells by 5-azacytidine. EMBO J 7(5):1321–1328CrossRef
61.
go back to reference Stanley MA, Browne HM, Appleby M, Minson AC (1989) Properties of a non-tumorigenic human cervical keratinocyte cell line. Int J Cancer 43(4):672–676CrossRef Stanley MA, Browne HM, Appleby M, Minson AC (1989) Properties of a non-tumorigenic human cervical keratinocyte cell line. Int J Cancer 43(4):672–676CrossRef
65.
go back to reference Mirabello L, Schiffman M, Ghosh A, Rodriguez AC, Vasiljevic N, Wentzensen N, Herrero R, Hildesheim A, Wacholder S, Scibior-Bentkowska D, Burk RD, Lorincz AT (2013) Elevated methylation of HPV16 DNA is associated with the development of high grade cervical intraepithelial neoplasia. Int J Cancer 132(6):1412–1422. https://doi.org/10.1002/ijc.27750 CrossRefPubMed Mirabello L, Schiffman M, Ghosh A, Rodriguez AC, Vasiljevic N, Wentzensen N, Herrero R, Hildesheim A, Wacholder S, Scibior-Bentkowska D, Burk RD, Lorincz AT (2013) Elevated methylation of HPV16 DNA is associated with the development of high grade cervical intraepithelial neoplasia. Int J Cancer 132(6):1412–1422. https://​doi.​org/​10.​1002/​ijc.​27750 CrossRefPubMed
68.
go back to reference Reuschenbach M, Huebbers CU, Prigge ES, Bermejo JL, Kalteis MS, Preuss SF, Seuthe IM, Kolligs J, Speel EJ, Olthof N, Kremer B, Wagner S, Klussmann JP, Vinokurova S, von Knebel DM (2015) Methylation status of HPV16 E2-binding sites classifies subtypes of HPV-associated oropharyngeal cancers. Cancer 121(12):1966–1976. https://doi.org/10.1002/cncr.29315 CrossRefPubMed Reuschenbach M, Huebbers CU, Prigge ES, Bermejo JL, Kalteis MS, Preuss SF, Seuthe IM, Kolligs J, Speel EJ, Olthof N, Kremer B, Wagner S, Klussmann JP, Vinokurova S, von Knebel DM (2015) Methylation status of HPV16 E2-binding sites classifies subtypes of HPV-associated oropharyngeal cancers. Cancer 121(12):1966–1976. https://​doi.​org/​10.​1002/​cncr.​29315 CrossRefPubMed
70.
go back to reference Ozbun MA, Meyers C (1997) Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. J Virol 71(7):5161–5172CrossRef Ozbun MA, Meyers C (1997) Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. J Virol 71(7):5161–5172CrossRef
71.
go back to reference Ozbun MA, Meyers C (1998) Temporal usage of multiple promoters during the life cycle of human papillomavirus type 31b. J Virol 72(4):2715–2722CrossRef Ozbun MA, Meyers C (1998) Temporal usage of multiple promoters during the life cycle of human papillomavirus type 31b. J Virol 72(4):2715–2722CrossRef
74.
go back to reference O’Connor MJ, Tan SH, Tan CH, Bernard HU (1996) YY1 represses human papillomavirus type 16 transcription by quenching AP-1 activity. J Virol 70(10):6529–6539CrossRef O’Connor MJ, Tan SH, Tan CH, Bernard HU (1996) YY1 represses human papillomavirus type 16 transcription by quenching AP-1 activity. J Virol 70(10):6529–6539CrossRef
75.
go back to reference Bauknecht T, Angel P, Royer HD, zur Hausen H (1992) Identification of a negative regulatory domain in the human papillomavirus type 18 promoter: interaction with the transcriptional repressor YY1. EMBO J 11(12):4607–4617CrossRef Bauknecht T, Angel P, Royer HD, zur Hausen H (1992) Identification of a negative regulatory domain in the human papillomavirus type 18 promoter: interaction with the transcriptional repressor YY1. EMBO J 11(12):4607–4617CrossRef
87.
go back to reference Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters JM (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451(7180):796–801. https://doi.org/10.1038/nature06634 CrossRefPubMed Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters JM (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451(7180):796–801. https://​doi.​org/​10.​1038/​nature06634 CrossRefPubMed
101.
go back to reference Rosenbloom KR, Dreszer TR, Long JC, Malladi VS, Sloan CA, Raney BJ, Cline MS, Karolchik D, Barber GP, Clawson H, Diekhans M, Fujita PA, Goldman M, Gravell RC, Harte RA, Hinrichs AS, Kirkup VM, Kuhn RM, Learned K, Maddren M, Meyer LR, Pohl A, Rhead B, Wong MC, Zweig AS, Haussler D, Kent WJ (2012) ENCODE whole-genome data in the UCSC genome browser: update 2012. Nucleic Acids Res 40(Database issue):D912–D917. https://doi.org/10.1093/nar/gkr1012 CrossRefPubMed Rosenbloom KR, Dreszer TR, Long JC, Malladi VS, Sloan CA, Raney BJ, Cline MS, Karolchik D, Barber GP, Clawson H, Diekhans M, Fujita PA, Goldman M, Gravell RC, Harte RA, Hinrichs AS, Kirkup VM, Kuhn RM, Learned K, Maddren M, Meyer LR, Pohl A, Rhead B, Wong MC, Zweig AS, Haussler D, Kent WJ (2012) ENCODE whole-genome data in the UCSC genome browser: update 2012. Nucleic Acids Res 40(Database issue):D912–D917. https://​doi.​org/​10.​1093/​nar/​gkr1012 CrossRefPubMed
103.
go back to reference Katainen R, Dave K, Pitkanen E, Palin K, Kivioja T, Valimaki N, Gylfe AE, Ristolainen H, Hanninen UA, Cajuso T, Kondelin J, Tanskanen T, Mecklin JP, Jarvinen H, Renkonen-Sinisalo L, Lepisto A, Kaasinen E, Kilpivaara O, Tuupanen S, Enge M, Taipale J, Aaltonen LA (2015) CTCF/cohesin-binding sites are frequently mutated in cancer. Nat Genet 47(7):818–821. https://doi.org/10.1038/ng.3335 CrossRefPubMed Katainen R, Dave K, Pitkanen E, Palin K, Kivioja T, Valimaki N, Gylfe AE, Ristolainen H, Hanninen UA, Cajuso T, Kondelin J, Tanskanen T, Mecklin JP, Jarvinen H, Renkonen-Sinisalo L, Lepisto A, Kaasinen E, Kilpivaara O, Tuupanen S, Enge M, Taipale J, Aaltonen LA (2015) CTCF/cohesin-binding sites are frequently mutated in cancer. Nat Genet 47(7):818–821. https://​doi.​org/​10.​1038/​ng.​3335 CrossRefPubMed
Metadata
Title
Epigenetic regulation of human papillomavirus transcription in the productive virus life cycle
Authors
Megan Burley
Sally Roberts
Joanna L. Parish
Publication date
01-04-2020
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 2/2020
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-019-00773-0

Other articles of this Issue 2/2020

Seminars in Immunopathology 2/2020 Go to the issue