Skip to main content
Top
Published in: Seminars in Immunopathology 2/2016

Open Access 01-03-2016 | Review

Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review

Authors: Dilara Kiran, Brendan K. Podell, Mark Chambers, Randall J. Basaraba

Published in: Seminars in Immunopathology | Issue 2/2016

Login to get access

Abstract

Infection by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb) is a major cause of morbidity and mortality worldwide. Slow progress has been made in lessening the impact of tuberculosis (TB) on human health, especially in parts of the world where Mtb is endemic. Due to the complexity of TB disease, there is still an urgent need to improve diagnosis, prevention, and treatment strategies to control global spread of disease. Active research targeting avenues to prevent infection or transmission through vaccination, to diagnose asymptomatic carriers of Mtb, and to improve antimicrobial drug treatment responses is ongoing. However, this research is hampered by a relatively poor understanding of the pathogenesis of early infection and the factors that contribute to host susceptibility, protection, and the development of active disease. There is increasing interest in the development of adjunctive therapy that will aid the host in responding to Mtb infection appropriately thereby improving the effectiveness of current and future drug treatments. In this review, we summarize what is known about the host response to Mtb infection in humans and animal models and highlight potential therapeutic targets involved in TB granuloma formation and resolution. Strategies designed to shift the balance of TB granuloma formation toward protective rather than destructive processes are discussed based on our current knowledge. These therapeutic strategies are based on the assumption that granuloma formation, although thought to prevent the spread of the tubercle bacillus within and between individuals contributes to manifestations of active TB disease in human patients when left unchecked. This effect of granuloma formation favors the spread of infection and impairs antimicrobial drug treatment. By gaining a better understanding of the mechanisms by which Mtb infection contributes to irreversible tissue damage, down regulates protective immune responses, and delays tissue healing, new treatment strategies can be rationally designed. Granuloma-targeted therapy is advantageous because it allows for the repurpose of existing drugs used to treat other communicable and non-communicable diseases as adjunctive therapies combined with existing and future anti-TB drugs. Thus, the development of adjunctive, granuloma-targeted therapy, like other host-directed therapies, may benefit from the availability of approved drugs to aid in treatment and prevention of TB. In this review, we have attempted to summarize the results of published studies in the context of new innovative approaches to host-directed therapy that need to be more thoroughly explored in pre-clinical animal studies and in human clinical trials.
Literature
1.
go back to reference Zumla A et al (2015) The WHO 2014 global tuberculosis report—further to go. Lancet Glob Heal 3(1):e10–e12CrossRef Zumla A et al (2015) The WHO 2014 global tuberculosis report—further to go. Lancet Glob Heal 3(1):e10–e12CrossRef
2.
go back to reference Canetti G (1968) Biology of the mycobacterioses. Pathogenesis of tuberculosis in man. Ann N Y Acad Sci 154(1):13–18PubMedCrossRef Canetti G (1968) Biology of the mycobacterioses. Pathogenesis of tuberculosis in man. Ann N Y Acad Sci 154(1):13–18PubMedCrossRef
3.
go back to reference Canetti G (1956) Dynamic aspects of the pathology and bacteriology of tuberculous lesions. Am Rev Tuberc 74(2 Part 2):13–21, discussion, 22–7PubMed Canetti G (1956) Dynamic aspects of the pathology and bacteriology of tuberculous lesions. Am Rev Tuberc 74(2 Part 2):13–21, discussion, 22–7PubMed
4.
go back to reference Elkington PT, D’Armiento JM, Friedland JS (2011) Tuberculosis immunopathology: the neglected role of extracellular matrix destruction. Sci Transl Med 3(71):71ps6PubMedPubMedCentralCrossRef Elkington PT, D’Armiento JM, Friedland JS (2011) Tuberculosis immunopathology: the neglected role of extracellular matrix destruction. Sci Transl Med 3(71):71ps6PubMedPubMedCentralCrossRef
5.
go back to reference Armstrong JA, Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134(3 Pt 1):713–740PubMedPubMedCentralCrossRef Armstrong JA, Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134(3 Pt 1):713–740PubMedPubMedCentralCrossRef
6.
go back to reference Orme IM, Basaraba RJ (2014) The formation of the granuloma in tuberculosis infection. Semin Immunol 26(6):601–609PubMedCrossRef Orme IM, Basaraba RJ (2014) The formation of the granuloma in tuberculosis infection. Semin Immunol 26(6):601–609PubMedCrossRef
7.
go back to reference Orme IM (2014) A new unifying theory of the pathogenesis of tuberculosis. Tuberculosis (Edinb) 94(1):8–14CrossRef Orme IM (2014) A new unifying theory of the pathogenesis of tuberculosis. Tuberculosis (Edinb) 94(1):8–14CrossRef
8.
go back to reference Sohaskey CD, Voskuil MI (2015) In vitro models that utilize hypoxia to induce non-replicating persistence in Mycobacteria. Methods Mol Biol 1285:201–213PubMedCrossRef Sohaskey CD, Voskuil MI (2015) In vitro models that utilize hypoxia to induce non-replicating persistence in Mycobacteria. Methods Mol Biol 1285:201–213PubMedCrossRef
9.
go back to reference Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64(6):2062–2069PubMedPubMedCentral Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64(6):2062–2069PubMedPubMedCentral
10.
go back to reference Ehlers S (2009) Lazy, dynamic or minimally recrudescent? On the elusive nature and location of the mycobacterium responsible for latent tuberculosis. Infection 37(2):87–95PubMedCrossRef Ehlers S (2009) Lazy, dynamic or minimally recrudescent? On the elusive nature and location of the mycobacterium responsible for latent tuberculosis. Infection 37(2):87–95PubMedCrossRef
11.
go back to reference Lee W et al (2013) Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem 288(10):6788–6800PubMedPubMedCentralCrossRef Lee W et al (2013) Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem 288(10):6788–6800PubMedPubMedCentralCrossRef
12.
go back to reference Irwin SM et al (2015) Presence of multiple lesion types with vastly different microenvironments in C3HeB/FeJ mice following aerosol infection with Mycobacterium tuberculosis. Dis Model Mech 8(6):591–602PubMedPubMedCentralCrossRef Irwin SM et al (2015) Presence of multiple lesion types with vastly different microenvironments in C3HeB/FeJ mice following aerosol infection with Mycobacterium tuberculosis. Dis Model Mech 8(6):591–602PubMedPubMedCentralCrossRef
13.
go back to reference Lanoix JP, Lenaerts AJ, Nuermberger EL (2015) Heterogeneous disease progression and treatment response in a C3HeB/FeJ mouse model of tuberculosis. Dis Model Mech 8(6):603–610PubMedPubMedCentralCrossRef Lanoix JP, Lenaerts AJ, Nuermberger EL (2015) Heterogeneous disease progression and treatment response in a C3HeB/FeJ mouse model of tuberculosis. Dis Model Mech 8(6):603–610PubMedPubMedCentralCrossRef
14.
go back to reference Lenaerts A, Barry CE 3rd, Dartois V (2015) Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev 264(1):288–307PubMedPubMedCentralCrossRef Lenaerts A, Barry CE 3rd, Dartois V (2015) Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev 264(1):288–307PubMedPubMedCentralCrossRef
15.
go back to reference Matty MA et al (2015) Adventures within the speckled band: heterogeneity, angiogenesis, and balanced inflammation in the tuberculous granuloma. Immunol Rev 264(1):276–287PubMedPubMedCentralCrossRef Matty MA et al (2015) Adventures within the speckled band: heterogeneity, angiogenesis, and balanced inflammation in the tuberculous granuloma. Immunol Rev 264(1):276–287PubMedPubMedCentralCrossRef
16.
17.
go back to reference Ackart DF et al (2014) Reversal of Mycobacterium tuberculosis phenotypic drug resistance by 2-aminoimidazole-based small molecules. Pathog Dis 70(3):370–378PubMedPubMedCentralCrossRef Ackart DF et al (2014) Reversal of Mycobacterium tuberculosis phenotypic drug resistance by 2-aminoimidazole-based small molecules. Pathog Dis 70(3):370–378PubMedPubMedCentralCrossRef
18.
go back to reference Ahmad Z et al (2009) Biphasic kill curve of isoniazid reveals the presence of drug-tolerant, not drug-resistant, Mycobacterium tuberculosis in the guinea pig. J Infect Dis 200(7):1136–1143PubMedCrossRef Ahmad Z et al (2009) Biphasic kill curve of isoniazid reveals the presence of drug-tolerant, not drug-resistant, Mycobacterium tuberculosis in the guinea pig. J Infect Dis 200(7):1136–1143PubMedCrossRef
19.
go back to reference Canetti GJ (1959) Changes in tuberculosis as seen by a pathologist. Am Rev Tuberc 79(5):684–686PubMed Canetti GJ (1959) Changes in tuberculosis as seen by a pathologist. Am Rev Tuberc 79(5):684–686PubMed
21.
go back to reference Russell DG (2013) The evolutionary pressures that have molded Mycobacterium tuberculosis into an infectious adjuvant. Curr Opin Microbiol 16(1):78–84PubMedPubMedCentralCrossRef Russell DG (2013) The evolutionary pressures that have molded Mycobacterium tuberculosis into an infectious adjuvant. Curr Opin Microbiol 16(1):78–84PubMedPubMedCentralCrossRef
22.
go back to reference Aly S et al (2006) Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J Pathol 210(3):298–305PubMedCrossRef Aly S et al (2006) Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J Pathol 210(3):298–305PubMedCrossRef
23.
24.
go back to reference Rosenkrands I et al (2002) Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins. J Bacteriol 184(13):3485–3491PubMedPubMedCentralCrossRef Rosenkrands I et al (2002) Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins. J Bacteriol 184(13):3485–3491PubMedPubMedCentralCrossRef
25.
go back to reference Tsai MC et al (2006) Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol 8(2):218–232PubMedCrossRef Tsai MC et al (2006) Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol 8(2):218–232PubMedCrossRef
27.
go back to reference Aly S et al (2007) Interferon-gamma-dependent mechanisms of mycobacteria-induced pulmonary immunopathology: the role of angiostasis and CXCR3-targeted chemokines for granuloma necrosis. J Pathol 212(3):295–305PubMedCrossRef Aly S et al (2007) Interferon-gamma-dependent mechanisms of mycobacteria-induced pulmonary immunopathology: the role of angiostasis and CXCR3-targeted chemokines for granuloma necrosis. J Pathol 212(3):295–305PubMedCrossRef
28.
go back to reference Bruns H et al (2009) Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J Clin Invest 119(5):1167–1177PubMedPubMedCentralCrossRef Bruns H et al (2009) Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J Clin Invest 119(5):1167–1177PubMedPubMedCentralCrossRef
29.
go back to reference Dorhoi A, Kaufmann SH (2014) Tumor necrosis factor alpha in mycobacterial infection. Semin Immunol 26(3):203–209PubMedCrossRef Dorhoi A, Kaufmann SH (2014) Tumor necrosis factor alpha in mycobacterial infection. Semin Immunol 26(3):203–209PubMedCrossRef
30.
go back to reference Chakravarty SD et al (2008) Tumor necrosis factor blockade in chronic murine tuberculosis enhances granulomatous inflammation and disorganizes granulomas in the lungs. Infect Immun 76(3):916–926PubMedPubMedCentralCrossRef Chakravarty SD et al (2008) Tumor necrosis factor blockade in chronic murine tuberculosis enhances granulomatous inflammation and disorganizes granulomas in the lungs. Infect Immun 76(3):916–926PubMedPubMedCentralCrossRef
31.
go back to reference Algood HM, Lin PL, Flynn JL (2005) Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin Infect Dis 41(Suppl 3):S189–S193PubMedCrossRef Algood HM, Lin PL, Flynn JL (2005) Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin Infect Dis 41(Suppl 3):S189–S193PubMedCrossRef
33.
go back to reference Bekker LG et al (2000) Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun 68(12):6954–6961PubMedPubMedCentralCrossRef Bekker LG et al (2000) Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun 68(12):6954–6961PubMedPubMedCentralCrossRef
34.
go back to reference Nhamoyebonde S, Leslie A (2014) Biological differences between the sexes and susceptibility to tuberculosis. J Infect Dis 209(Suppl 3):S100–S106PubMedCrossRef Nhamoyebonde S, Leslie A (2014) Biological differences between the sexes and susceptibility to tuberculosis. J Infect Dis 209(Suppl 3):S100–S106PubMedCrossRef
35.
go back to reference Robinson RT, Orme IM, Cooper AM (2015) The onset of adaptive immunity in the mouse model of tuberculosis and the factors that compromise its expression. Immunol Rev 264(1):46–59PubMedCrossRef Robinson RT, Orme IM, Cooper AM (2015) The onset of adaptive immunity in the mouse model of tuberculosis and the factors that compromise its expression. Immunol Rev 264(1):46–59PubMedCrossRef
39.
go back to reference Cho H, McMurray DN (2005) Neutralization of tumor necrosis factor alpha suppresses antigen-specific type 1 cytokine responses and reverses the inhibition of mycobacterial survival in cocultures of immune guinea pig T lymphocytes and infected macrophages. Infect Immun 73(12):8437–8441PubMedPubMedCentralCrossRef Cho H, McMurray DN (2005) Neutralization of tumor necrosis factor alpha suppresses antigen-specific type 1 cytokine responses and reverses the inhibition of mycobacterial survival in cocultures of immune guinea pig T lymphocytes and infected macrophages. Infect Immun 73(12):8437–8441PubMedPubMedCentralCrossRef
40.
go back to reference Ly LH, Jeevan A, McMurray DN (2009) Neutralization of TNFalpha alters inflammation in guinea pig tuberculous pleuritis. Microbes Infect 11(6–7):680–688PubMedPubMedCentralCrossRef Ly LH, Jeevan A, McMurray DN (2009) Neutralization of TNFalpha alters inflammation in guinea pig tuberculous pleuritis. Microbes Infect 11(6–7):680–688PubMedPubMedCentralCrossRef
41.
go back to reference Ly LH, McMurray DN (2009) The Yin-Yang of TNFalpha in the guinea pig model of tuberculosis. Indian J Exp Biol 47(6):432–439PubMed Ly LH, McMurray DN (2009) The Yin-Yang of TNFalpha in the guinea pig model of tuberculosis. Indian J Exp Biol 47(6):432–439PubMed
42.
go back to reference Arai M et al (2010) Metformin, an antidiabetic agent, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in human monocytes in vitro. J Pharmacol Exp Ther 334(1):206–213PubMedCrossRef Arai M et al (2010) Metformin, an antidiabetic agent, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in human monocytes in vitro. J Pharmacol Exp Ther 334(1):206–213PubMedCrossRef
43.
go back to reference Singhal A et al (2014) Metformin as adjunct antituberculosis therapy. Sci Transl Med 6(263):263ra159PubMedCrossRef Singhal A et al (2014) Metformin as adjunct antituberculosis therapy. Sci Transl Med 6(263):263ra159PubMedCrossRef
44.
go back to reference Wallis RS, Hafner R (2015) Advancing host-directed therapy for tuberculosis. Nat Rev Immunol 15(4):255–263PubMedCrossRef Wallis RS, Hafner R (2015) Advancing host-directed therapy for tuberculosis. Nat Rev Immunol 15(4):255–263PubMedCrossRef
45.
go back to reference Morgenstern P, Dewing SB (1949) Insulin in the treatment of tuberculous patients with anorexia; a modified technique. Am Rev Tuberc 60(1):25–31PubMed Morgenstern P, Dewing SB (1949) Insulin in the treatment of tuberculous patients with anorexia; a modified technique. Am Rev Tuberc 60(1):25–31PubMed
46.
go back to reference Lewin N, Aronovitch M (1953) Changing indications for collapse therapy in pulmonary tuberculosis. Can Med Assoc J 69(5):481–486PubMedPubMedCentral Lewin N, Aronovitch M (1953) Changing indications for collapse therapy in pulmonary tuberculosis. Can Med Assoc J 69(5):481–486PubMedPubMedCentral
47.
go back to reference Schmid FG, De Haller R (1986) Late exudative complications of collapse therapy for pulmonary tuberculosis. Chest 89(6):822–827PubMedCrossRef Schmid FG, De Haller R (1986) Late exudative complications of collapse therapy for pulmonary tuberculosis. Chest 89(6):822–827PubMedCrossRef
48.
go back to reference Yim AP, Izzat MB, Lee TW (1999) Thoracoscopic surgery for pulmonary tuberculosis. World J Surg 23(11):1114–1117PubMedCrossRef Yim AP, Izzat MB, Lee TW (1999) Thoracoscopic surgery for pulmonary tuberculosis. World J Surg 23(11):1114–1117PubMedCrossRef
49.
go back to reference Madansein R et al (2015) Surgical treatment of complications of pulmonary tuberculosis, including drug-resistant tuberculosis. Int J Infect Dis 32:61–67PubMedCrossRef Madansein R et al (2015) Surgical treatment of complications of pulmonary tuberculosis, including drug-resistant tuberculosis. Int J Infect Dis 32:61–67PubMedCrossRef
50.
go back to reference Seung KJ et al (2014) Salvage therapy for multidrug-resistant tuberculosis. Clin Microbiol Infect 20(5):441–446PubMedCrossRef Seung KJ et al (2014) Salvage therapy for multidrug-resistant tuberculosis. Clin Microbiol Infect 20(5):441–446PubMedCrossRef
51.
go back to reference Critchley JA et al (2013) Corticosteroids for prevention of mortality in people with tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis 13(3):223–237PubMedCrossRef Critchley JA et al (2013) Corticosteroids for prevention of mortality in people with tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis 13(3):223–237PubMedCrossRef
52.
go back to reference Alzeer AH, FitzGerald JM (1993) Corticosteroids and tuberculosis: risks and use as adjunct therapy. Tuber Lung Dis 74(1):6–11PubMedCrossRef Alzeer AH, FitzGerald JM (1993) Corticosteroids and tuberculosis: risks and use as adjunct therapy. Tuber Lung Dis 74(1):6–11PubMedCrossRef
53.
go back to reference Batten JC, Mc CR Jr (1957) The influence of corticotrophin and cortisone with antituberculous drugs on population of Mycobacterium tuberculosis in tissues of mice. Br J Exp Pathol 38(4):424–437PubMedPubMedCentral Batten JC, Mc CR Jr (1957) The influence of corticotrophin and cortisone with antituberculous drugs on population of Mycobacterium tuberculosis in tissues of mice. Br J Exp Pathol 38(4):424–437PubMedPubMedCentral
54.
go back to reference Batten JC, Mc CR Jr (1957) The influence of corticotrophin and certain corticosteroids on populations of Mycobacterium tuberculosis in tissues of mice. Br J Exp Pathol 38(4):413–423PubMedPubMedCentral Batten JC, Mc CR Jr (1957) The influence of corticotrophin and certain corticosteroids on populations of Mycobacterium tuberculosis in tissues of mice. Br J Exp Pathol 38(4):413–423PubMedPubMedCentral
55.
go back to reference Clifford V et al (2015) The impact of anti-tuberculous antibiotics and corticosteroids on cytokine production in QuantiFERON-TB Gold In Tube assays. Tuberculosis (Edinb) 95(3):343–349CrossRef Clifford V et al (2015) The impact of anti-tuberculous antibiotics and corticosteroids on cytokine production in QuantiFERON-TB Gold In Tube assays. Tuberculosis (Edinb) 95(3):343–349CrossRef
56.
go back to reference Brassard P et al (2011) Inhaled corticosteroids and risk of tuberculosis in patients with respiratory diseases. Am J Respir Crit Care Med 183(5):675–678PubMedCrossRef Brassard P et al (2011) Inhaled corticosteroids and risk of tuberculosis in patients with respiratory diseases. Am J Respir Crit Care Med 183(5):675–678PubMedCrossRef
57.
go back to reference Chung WS et al (2014) Inhaled corticosteroids and the increased risk of pulmonary tuberculosis: a population-based case–control study. Int J Clin Pract 68(10):1193–1199PubMedCrossRef Chung WS et al (2014) Inhaled corticosteroids and the increased risk of pulmonary tuberculosis: a population-based case–control study. Int J Clin Pract 68(10):1193–1199PubMedCrossRef
58.
go back to reference Barclay WR et al (1953) Distribution of C14 labeled isoniazid in sensitive and resistant tubercle bacilli and in infected and uninfected tissues in tuberculous patients. Trans Annu Meet Natl Tuberc Assoc 49:192–195PubMed Barclay WR et al (1953) Distribution of C14 labeled isoniazid in sensitive and resistant tubercle bacilli and in infected and uninfected tissues in tuberculous patients. Trans Annu Meet Natl Tuberc Assoc 49:192–195PubMed
59.
go back to reference Barclay WR et al (1953) Distribution and excretion of radioactive isoniazid in tuberculous patients. J Am Med Assoc 151(16):1384–1388PubMed Barclay WR et al (1953) Distribution and excretion of radioactive isoniazid in tuberculous patients. J Am Med Assoc 151(16):1384–1388PubMed
60.
go back to reference Manthei RW et al (1954) The distribution of C14 labeled isoniazid in normal and infected guinea pigs. Arch Int Pharmacodyn Ther 98(2):183–192PubMed Manthei RW et al (1954) The distribution of C14 labeled isoniazid in normal and infected guinea pigs. Arch Int Pharmacodyn Ther 98(2):183–192PubMed
61.
go back to reference Prideaux B et al (2015) Mass spectrometry imaging of levofloxacin distribution in TB-infected pulmonary lesions by MALDI-MSI and continuous liquid microjunction surface sampling. Int J Mass Spectrom 377:699–708PubMedPubMedCentralCrossRef Prideaux B et al (2015) Mass spectrometry imaging of levofloxacin distribution in TB-infected pulmonary lesions by MALDI-MSI and continuous liquid microjunction surface sampling. Int J Mass Spectrom 377:699–708PubMedPubMedCentralCrossRef
62.
go back to reference Via LE et al (2015) A sterilizing tuberculosis treatment regimen is associated with faster clearance of bacteria in cavitary lesions in marmosets. Antimicrob Agents Chemother 59(7):4181–4189PubMedPubMedCentralCrossRef Via LE et al (2015) A sterilizing tuberculosis treatment regimen is associated with faster clearance of bacteria in cavitary lesions in marmosets. Antimicrob Agents Chemother 59(7):4181–4189PubMedPubMedCentralCrossRef
63.
go back to reference Kjellsson MC et al (2012) Pharmacokinetic evaluation of the penetration of antituberculosis agents in rabbit pulmonary lesions. Antimicrob Agents Chemother 56(1):446–457PubMedPubMedCentralCrossRef Kjellsson MC et al (2012) Pharmacokinetic evaluation of the penetration of antituberculosis agents in rabbit pulmonary lesions. Antimicrob Agents Chemother 56(1):446–457PubMedPubMedCentralCrossRef
64.
go back to reference Pienaar E et al (2015) A computational tool integrating host immunity with antibiotic dynamics to study tuberculosis treatment. J Theor Biol 367:166–179PubMedPubMedCentralCrossRef Pienaar E et al (2015) A computational tool integrating host immunity with antibiotic dynamics to study tuberculosis treatment. J Theor Biol 367:166–179PubMedPubMedCentralCrossRef
66.
go back to reference Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16):15–18PubMedCrossRef Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16):15–18PubMedCrossRef
68.
go back to reference Cudkowicz L (1952) Some observations of the bronchial arteries in lobar pneumonia and pulmonary infarction. Br J Tuberc Dis Chest 46(2):99–102PubMedCrossRef Cudkowicz L (1952) Some observations of the bronchial arteries in lobar pneumonia and pulmonary infarction. Br J Tuberc Dis Chest 46(2):99–102PubMedCrossRef
69.
go back to reference Behling CA et al (1993) Induction of pulmonary granulomas, macrophage procoagulant activity, and tumor necrosis factor-alpha by trehalose glycolipids. Ann Clin Lab Sci 23(4):256–266PubMed Behling CA et al (1993) Induction of pulmonary granulomas, macrophage procoagulant activity, and tumor necrosis factor-alpha by trehalose glycolipids. Ann Clin Lab Sci 23(4):256–266PubMed
70.
go back to reference Hunter RL et al (2006) Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci 36(4):371–386PubMed Hunter RL et al (2006) Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci 36(4):371–386PubMed
71.
go back to reference Welsh KJ, Hunter RL, Actor JK (2013) Trehalose 6,6′-dimycolate—a coat to regulate tuberculosis immunopathogenesis. Tuberculosis (Edinb) 93(Suppl):S3–S9CrossRef Welsh KJ, Hunter RL, Actor JK (2013) Trehalose 6,6′-dimycolate—a coat to regulate tuberculosis immunopathogenesis. Tuberculosis (Edinb) 93(Suppl):S3–S9CrossRef
72.
go back to reference Alatas F et al (2004) Vascular endothelial growth factor levels in active pulmonary tuberculosis. Chest 125(6):2156–2159PubMedCrossRef Alatas F et al (2004) Vascular endothelial growth factor levels in active pulmonary tuberculosis. Chest 125(6):2156–2159PubMedCrossRef
73.
go back to reference Matsuyama W et al (2000) Increased serum level of vascular endothelial growth factor in pulmonary tuberculosis. Am J Respir Crit Care Med 162(3 Pt 1):1120–1122PubMedCrossRef Matsuyama W et al (2000) Increased serum level of vascular endothelial growth factor in pulmonary tuberculosis. Am J Respir Crit Care Med 162(3 Pt 1):1120–1122PubMedCrossRef
74.
go back to reference Clark S, Hall Y, Williams A (2015) Animal models of tuberculosis: guinea pigs. Cold Spring Harb Perspect Med 5(5):a018572CrossRef Clark S, Hall Y, Williams A (2015) Animal models of tuberculosis: guinea pigs. Cold Spring Harb Perspect Med 5(5):a018572CrossRef
76.
go back to reference Datta M et al (2015) Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc Natl Acad Sci U S A 112(6):1827–1832PubMedPubMedCentralCrossRef Datta M et al (2015) Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc Natl Acad Sci U S A 112(6):1827–1832PubMedPubMedCentralCrossRef
77.
go back to reference Zielonka TM et al (2011) Angiogenic activity of sera from pulmonary tuberculosis patients in relation to IL-12p40 and TNFalpha serum levels. Lung 189(4):351–357PubMedPubMedCentralCrossRef Zielonka TM et al (2011) Angiogenic activity of sera from pulmonary tuberculosis patients in relation to IL-12p40 and TNFalpha serum levels. Lung 189(4):351–357PubMedPubMedCentralCrossRef
78.
go back to reference Sloan B, Scheinfeld NS (2008) Pazopanib, a VEGF receptor tyrosine kinase inhibitor for cancer therapy. Curr Opin Investig Drugs 9(12):1324–1335PubMed Sloan B, Scheinfeld NS (2008) Pazopanib, a VEGF receptor tyrosine kinase inhibitor for cancer therapy. Curr Opin Investig Drugs 9(12):1324–1335PubMed
79.
go back to reference Hirshberg B et al (1997) Hemoptysis: etiology, evaluation, and outcome in a tertiary referral hospital. Chest 112(2):440–444PubMedCrossRef Hirshberg B et al (1997) Hemoptysis: etiology, evaluation, and outcome in a tertiary referral hospital. Chest 112(2):440–444PubMedCrossRef
80.
go back to reference Drobac PC et al (2012) Risk factors for in-hospital mortality among children with tuberculosis: the 25-year experience in Peru. Pediatrics 130(2):e373–e379PubMedPubMedCentralCrossRef Drobac PC et al (2012) Risk factors for in-hospital mortality among children with tuberculosis: the 25-year experience in Peru. Pediatrics 130(2):e373–e379PubMedPubMedCentralCrossRef
81.
go back to reference Shimazaki T et al (2013) Risk factors for death among hospitalised tuberculosis patients in poor urban areas in Manila, The Philippines. Int J Tuberc Lung Dis 17(11):1420–1426PubMedCrossRef Shimazaki T et al (2013) Risk factors for death among hospitalised tuberculosis patients in poor urban areas in Manila, The Philippines. Int J Tuberc Lung Dis 17(11):1420–1426PubMedCrossRef
82.
go back to reference Abe Y et al (2001) Serum levels of vascular endothelial growth factor and cavity formation in active pulmonary tuberculosis. Respiration 68(5):496–500PubMedCrossRef Abe Y et al (2001) Serum levels of vascular endothelial growth factor and cavity formation in active pulmonary tuberculosis. Respiration 68(5):496–500PubMedCrossRef
83.
go back to reference Cun X et al (2015) Gene profile of soluble growth factors involved in angiogenesis, in an adipose-derived stromal cell/endothelial cell co-culture, 3D gel model. Cell Prolif 48(4):405–412PubMedCrossRef Cun X et al (2015) Gene profile of soluble growth factors involved in angiogenesis, in an adipose-derived stromal cell/endothelial cell co-culture, 3D gel model. Cell Prolif 48(4):405–412PubMedCrossRef
84.
go back to reference Aronis KN, Chamberland JP, Mantzoros CS (2013) GLP-1 promotes angiogenesis in human endothelial cells in a dose-dependent manner, through the Akt, Src and PKC pathways. Metabolism 62(9):1279–1286PubMedPubMedCentralCrossRef Aronis KN, Chamberland JP, Mantzoros CS (2013) GLP-1 promotes angiogenesis in human endothelial cells in a dose-dependent manner, through the Akt, Src and PKC pathways. Metabolism 62(9):1279–1286PubMedPubMedCentralCrossRef
85.
go back to reference Klonoff DC et al (2008) Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin 24(1):275–286PubMedCrossRef Klonoff DC et al (2008) Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin 24(1):275–286PubMedCrossRef
86.
go back to reference Polet F, Feron O (2013) Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J Intern Med 273(2):156–165PubMedCrossRef Polet F, Feron O (2013) Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J Intern Med 273(2):156–165PubMedCrossRef
87.
go back to reference Warner DF (2015) Mycobacterium tuberculosis metabolism. Cold Spring Harb Perspect Med. 5(4) Warner DF (2015) Mycobacterium tuberculosis metabolism. Cold Spring Harb Perspect Med. 5(4)
88.
go back to reference du Preez I, Loots DT (2013) New sputum metabolite markers implicating adaptations of the host to Mycobacterium tuberculosis, and vice versa. Tuberculosis (Edinb) 93(3):330–337CrossRef du Preez I, Loots DT (2013) New sputum metabolite markers implicating adaptations of the host to Mycobacterium tuberculosis, and vice versa. Tuberculosis (Edinb) 93(3):330–337CrossRef
89.
go back to reference Somashekar BS et al (2011) Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies. J Proteome Res 10(9):4186–4195PubMedCrossRef Somashekar BS et al (2011) Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies. J Proteome Res 10(9):4186–4195PubMedCrossRef
90.
go back to reference Somashekar BS et al (2012) Metabolomic signatures in guinea pigs infected with epidemic-associated W-Beijing strains of Mycobacterium tuberculosis. J Proteome Res 11(10):4873–4884PubMedCrossRef Somashekar BS et al (2012) Metabolomic signatures in guinea pigs infected with epidemic-associated W-Beijing strains of Mycobacterium tuberculosis. J Proteome Res 11(10):4873–4884PubMedCrossRef
91.
go back to reference Fox CJ, Hammerman PS, Thompson CB (2005) Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 5(11):844–852PubMedCrossRef Fox CJ, Hammerman PS, Thompson CB (2005) Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 5(11):844–852PubMedCrossRef
92.
93.
94.
go back to reference Ahmed N, Kansara M, Berridge MV (1997) Acute regulation of glucose transport in a monocyte-macrophage cell line: Glut-3 affinity for glucose is enhanced during the respiratory burst. Biochem J 327(Pt 2):369–375PubMedPubMedCentralCrossRef Ahmed N, Kansara M, Berridge MV (1997) Acute regulation of glucose transport in a monocyte-macrophage cell line: Glut-3 affinity for glucose is enhanced during the respiratory burst. Biochem J 327(Pt 2):369–375PubMedPubMedCentralCrossRef
95.
go back to reference Helderman JH, Reynolds TC, Strom TB (1978) The insulin receptor as a universal marker of activated lymphocytes. Eur J Immunol 8(8):589–595PubMedCrossRef Helderman JH, Reynolds TC, Strom TB (1978) The insulin receptor as a universal marker of activated lymphocytes. Eur J Immunol 8(8):589–595PubMedCrossRef
97.
go back to reference Jacobs SR et al (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180(7):4476–4486PubMedPubMedCentralCrossRef Jacobs SR et al (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180(7):4476–4486PubMedPubMedCentralCrossRef
98.
go back to reference Bentley J et al (2003) Interleukin-3-mediated cell survival signals include phosphatidylinositol 3-kinase-dependent translocation of the glucose transporter GLUT1 to the cell surface. J Biol Chem 278(41):39337–39348PubMedCrossRef Bentley J et al (2003) Interleukin-3-mediated cell survival signals include phosphatidylinositol 3-kinase-dependent translocation of the glucose transporter GLUT1 to the cell surface. J Biol Chem 278(41):39337–39348PubMedCrossRef
99.
go back to reference Delmastro-Greenwood MM, Piganelli JD (2013) Changing the energy of an immune response. Am J Clin Exp Immunol 2(1):30–54PubMedPubMedCentral Delmastro-Greenwood MM, Piganelli JD (2013) Changing the energy of an immune response. Am J Clin Exp Immunol 2(1):30–54PubMedPubMedCentral
100.
go back to reference Sitkovsky M, Lukashev D (2005) Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 5(9):712–721PubMedCrossRef Sitkovsky M, Lukashev D (2005) Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 5(9):712–721PubMedCrossRef
101.
go back to reference Maciver NJ et al (2008) Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol 84(4):949–957PubMedPubMedCentralCrossRef Maciver NJ et al (2008) Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol 84(4):949–957PubMedPubMedCentralCrossRef
102.
go back to reference Bruns H et al (2012) Abelson tyrosine kinase controls phagosomal acidification required for killing of Mycobacterium tuberculosis in human macrophages. J Immunol 189(8):4069–4078PubMedPubMedCentralCrossRef Bruns H et al (2012) Abelson tyrosine kinase controls phagosomal acidification required for killing of Mycobacterium tuberculosis in human macrophages. J Immunol 189(8):4069–4078PubMedPubMedCentralCrossRef
103.
go back to reference Napier RJ et al (2011) Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 10(5):475–485PubMedPubMedCentralCrossRef Napier RJ et al (2011) Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 10(5):475–485PubMedPubMedCentralCrossRef
104.
go back to reference Pernicova I, Korbonits M (2014) Metformin—mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10(3):143–156PubMedCrossRef Pernicova I, Korbonits M (2014) Metformin—mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10(3):143–156PubMedCrossRef
105.
go back to reference Vashisht R, Brahmachari SK (2015) Metformin as a potential combination therapy with existing front-line antibiotics for tuberculosis. J Transl Med 13:83PubMedPubMedCentralCrossRef Vashisht R, Brahmachari SK (2015) Metformin as a potential combination therapy with existing front-line antibiotics for tuberculosis. J Transl Med 13:83PubMedPubMedCentralCrossRef
106.
go back to reference Peyron P et al (2008) Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4(11):e1000204PubMedPubMedCentralCrossRef Peyron P et al (2008) Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4(11):e1000204PubMedPubMedCentralCrossRef
107.
go back to reference Singh V et al (2012) Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 12(5):669–681PubMedCrossRef Singh V et al (2012) Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 12(5):669–681PubMedCrossRef
108.
109.
go back to reference Daniel J et al (2011) Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7(6):e1002093PubMedPubMedCentralCrossRef Daniel J et al (2011) Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7(6):e1002093PubMedPubMedCentralCrossRef
110.
112.
113.
114.
115.
go back to reference Boshoff HI, Barry CE 3rd (2005) Tuberculosis—metabolism and respiration in the absence of growth. Nat Rev Microbiol 3(1):70–80PubMedCrossRef Boshoff HI, Barry CE 3rd (2005) Tuberculosis—metabolism and respiration in the absence of growth. Nat Rev Microbiol 3(1):70–80PubMedCrossRef
116.
go back to reference Marrero J et al (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci U S A 107(21):9819–9824PubMedPubMedCentralCrossRef Marrero J et al (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci U S A 107(21):9819–9824PubMedPubMedCentralCrossRef
117.
go back to reference Watanabe S et al (2011) Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog 7(10):e1002287PubMedPubMedCentralCrossRef Watanabe S et al (2011) Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog 7(10):e1002287PubMedPubMedCentralCrossRef
118.
go back to reference Eoh H, Rhee KY (2013) Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 110(16):6554–6559PubMedPubMedCentralCrossRef Eoh H, Rhee KY (2013) Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 110(16):6554–6559PubMedPubMedCentralCrossRef
119.
go back to reference Munoz-Elias EJ, McKinney JD (2005) Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11(6):638–644PubMedPubMedCentralCrossRef Munoz-Elias EJ, McKinney JD (2005) Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11(6):638–644PubMedPubMedCentralCrossRef
120.
go back to reference Michelucci A et al (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A 110(19):7820–7825PubMedPubMedCentralCrossRef Michelucci A et al (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A 110(19):7820–7825PubMedPubMedCentralCrossRef
121.
122.
go back to reference Jakus V, Rietbrock N (2004) Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res 53(2):131–142PubMed Jakus V, Rietbrock N (2004) Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res 53(2):131–142PubMed
123.
124.
go back to reference Zhao J et al (2015) Angiopoietin-1 protects the endothelial cells against advanced glycation end product injury by strengthening cell junctions and inhibiting cell apoptosis. J Cell Physiol 230(8):1895–1905PubMedCrossRef Zhao J et al (2015) Angiopoietin-1 protects the endothelial cells against advanced glycation end product injury by strengthening cell junctions and inhibiting cell apoptosis. J Cell Physiol 230(8):1895–1905PubMedCrossRef
125.
go back to reference Shemirani F, Yazdanparast R (2014) The interplay between hyperglycemia-induced oxidative stress markers and the level of soluble receptor for advanced glycation end products (sRAGE) in K562 cells. Mol Cell Endocrinol 393(1–2):179–186PubMedCrossRef Shemirani F, Yazdanparast R (2014) The interplay between hyperglycemia-induced oxidative stress markers and the level of soluble receptor for advanced glycation end products (sRAGE) in K562 cells. Mol Cell Endocrinol 393(1–2):179–186PubMedCrossRef
126.
go back to reference Liang C et al (2009) Rosiglitazone via upregulation of Akt/eNOS pathways attenuates dysfunction of endothelial progenitor cells, induced by advanced glycation end products. Br J Pharmacol 158(8):1865–1873PubMedPubMedCentralCrossRef Liang C et al (2009) Rosiglitazone via upregulation of Akt/eNOS pathways attenuates dysfunction of endothelial progenitor cells, induced by advanced glycation end products. Br J Pharmacol 158(8):1865–1873PubMedPubMedCentralCrossRef
127.
go back to reference Yi B et al (2014) Exendin-4, a glucagon-like peptide-1 receptor agonist, inhibits hyperglycemia-induced apoptosis in myocytes by suppressing receptor for advanced glycation end products expression. Exp Ther Med 8(4):1185–1190PubMedPubMedCentral Yi B et al (2014) Exendin-4, a glucagon-like peptide-1 receptor agonist, inhibits hyperglycemia-induced apoptosis in myocytes by suppressing receptor for advanced glycation end products expression. Exp Ther Med 8(4):1185–1190PubMedPubMedCentral
128.
go back to reference Lander HM et al (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272(28):17810–17814PubMedCrossRef Lander HM et al (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272(28):17810–17814PubMedCrossRef
129.
go back to reference Arce-Mendoza A et al (2008) Expression of CD64, CD206, and RAGE in adherent cells of diabetic patients infected with Mycobacterium tuberculosis. Arch Med Res 39(3):306–311PubMedCrossRef Arce-Mendoza A et al (2008) Expression of CD64, CD206, and RAGE in adherent cells of diabetic patients infected with Mycobacterium tuberculosis. Arch Med Res 39(3):306–311PubMedCrossRef
130.
go back to reference van Zoelen MA et al (2012) Receptor for advanced glycation end products is protective during murine tuberculosis. Mol Immunol 52(3–4):183–189PubMedCrossRef van Zoelen MA et al (2012) Receptor for advanced glycation end products is protective during murine tuberculosis. Mol Immunol 52(3–4):183–189PubMedCrossRef
131.
go back to reference Podell BK et al (2012) Non-diabetic hyperglycemia exacerbates disease severity in Mycobacterium tuberculosis infected guinea pigs. PLoS ONE 7(10):e46824PubMedPubMedCentralCrossRef Podell BK et al (2012) Non-diabetic hyperglycemia exacerbates disease severity in Mycobacterium tuberculosis infected guinea pigs. PLoS ONE 7(10):e46824PubMedPubMedCentralCrossRef
132.
133.
go back to reference Basta G et al (2002) Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105(7):816–822PubMedCrossRef Basta G et al (2002) Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105(7):816–822PubMedCrossRef
134.
go back to reference Boone BA et al (2015) The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther 22(6):326–334PubMedPubMedCentralCrossRef Boone BA et al (2015) The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther 22(6):326–334PubMedPubMedCentralCrossRef
135.
go back to reference Hahn S et al (2013) Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology. Semin Immunopathol 35(4):439–453PubMedPubMedCentralCrossRef Hahn S et al (2013) Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology. Semin Immunopathol 35(4):439–453PubMedPubMedCentralCrossRef
136.
go back to reference Braian C, Hogea V, Stendahl O (2013) Mycobacterium tuberculosis-induced neutrophil extracellular traps activate human macrophages. J Innate Immunol 5(6):591–602CrossRef Braian C, Hogea V, Stendahl O (2013) Mycobacterium tuberculosis-induced neutrophil extracellular traps activate human macrophages. J Innate Immunol 5(6):591–602CrossRef
137.
go back to reference Ramos-Kichik V et al (2009) Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis (Edinb) 89(1):29–37CrossRef Ramos-Kichik V et al (2009) Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis (Edinb) 89(1):29–37CrossRef
138.
go back to reference Ishibashi Y et al (2013) Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm Metab Res 45(5):387–390PubMed Ishibashi Y et al (2013) Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm Metab Res 45(5):387–390PubMed
139.
go back to reference Ahmed N (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract 67(1):3–21PubMedCrossRef Ahmed N (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract 67(1):3–21PubMedCrossRef
140.
go back to reference Richardson MA et al (2015) Inhibition and breaking of advanced glycation end-products (AGEs) with bis-2-aminoimidazole derivatives. Tetrahedron Lett 56(23):3406–3409PubMedCrossRef Richardson MA et al (2015) Inhibition and breaking of advanced glycation end-products (AGEs) with bis-2-aminoimidazole derivatives. Tetrahedron Lett 56(23):3406–3409PubMedCrossRef
141.
go back to reference Stowe SD et al (2012) Evaluation of the toxicity of 2-aminoimidazole antibiofilm agents using both cellular and model organism systems. Drug Chem Toxicol 35(3):310–315PubMedPubMedCentralCrossRef Stowe SD et al (2012) Evaluation of the toxicity of 2-aminoimidazole antibiofilm agents using both cellular and model organism systems. Drug Chem Toxicol 35(3):310–315PubMedPubMedCentralCrossRef
142.
go back to reference Furlani RE et al. (2015) Second generation 2-aminoimidazole based advanced glycation end product inhibitors and breakers. Bioorg Med Chem Lett Furlani RE et al. (2015) Second generation 2-aminoimidazole based advanced glycation end product inhibitors and breakers. Bioorg Med Chem Lett
143.
go back to reference Kubler A et al (2015) Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation. J Pathol 235(3):431–444PubMedPubMedCentralCrossRef Kubler A et al (2015) Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation. J Pathol 235(3):431–444PubMedPubMedCentralCrossRef
144.
145.
go back to reference Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839PubMedCrossRef Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839PubMedCrossRef
146.
go back to reference Sathyamoorthy T et al (2015) Membrane type 1 matrix metalloproteinase regulates monocyte migration and collagen destruction in tuberculosis. J Immunol 195(3):882–891PubMedPubMedCentralCrossRef Sathyamoorthy T et al (2015) Membrane type 1 matrix metalloproteinase regulates monocyte migration and collagen destruction in tuberculosis. J Immunol 195(3):882–891PubMedPubMedCentralCrossRef
147.
go back to reference Tadokera R et al (2014) Matrix metalloproteinases and tissue damage in HIV-tuberculosis immune reconstitution inflammatory syndrome. Eur J Immunol 44(1):127–136PubMedPubMedCentralCrossRef Tadokera R et al (2014) Matrix metalloproteinases and tissue damage in HIV-tuberculosis immune reconstitution inflammatory syndrome. Eur J Immunol 44(1):127–136PubMedPubMedCentralCrossRef
149.
go back to reference Elkington PT et al (2007) Synergistic up-regulation of epithelial cell matrix metalloproteinase-9 secretion in tuberculosis. Am J Respir Cell Mol Biol 37(4):431–437PubMedCrossRef Elkington PT et al (2007) Synergistic up-regulation of epithelial cell matrix metalloproteinase-9 secretion in tuberculosis. Am J Respir Cell Mol Biol 37(4):431–437PubMedCrossRef
150.
go back to reference Xiong C, Zhan X, Xiao Z (2013) Transcript levels of major MMPs and ADAMTS-4 in relation to the clinicopathological profile of patients with tuberculous intervertebral discs and healthy controls. Clin Biochem 46(7–8):603–611PubMedCrossRef Xiong C, Zhan X, Xiao Z (2013) Transcript levels of major MMPs and ADAMTS-4 in relation to the clinicopathological profile of patients with tuberculous intervertebral discs and healthy controls. Clin Biochem 46(7–8):603–611PubMedCrossRef
151.
go back to reference Sundararajan S, Babu S, Das SD (2012) Comparison of localized versus systemic levels of matrix metalloproteinases (MMPs), its tissue inhibitors (TIMPs) and cytokines in tuberculous and non-tuberculous pleuritis patients. Hum Immunol 73(10):985–991PubMedPubMedCentralCrossRef Sundararajan S, Babu S, Das SD (2012) Comparison of localized versus systemic levels of matrix metalloproteinases (MMPs), its tissue inhibitors (TIMPs) and cytokines in tuberculous and non-tuberculous pleuritis patients. Hum Immunol 73(10):985–991PubMedPubMedCentralCrossRef
153.
go back to reference Lee SH et al (2009) Effect of matrix metalloproteinase-9 -1562C/T gene polymorphism on manifestations of pulmonary tuberculosis. Tuberculosis (Edinb) 89(1):68–70CrossRef Lee SH et al (2009) Effect of matrix metalloproteinase-9 -1562C/T gene polymorphism on manifestations of pulmonary tuberculosis. Tuberculosis (Edinb) 89(1):68–70CrossRef
154.
go back to reference Hrabec E et al (2002) Circulation level of matrix metalloproteinase-9 is correlated with disease severity in tuberculosis patients. Int J Tuberc Lung Dis 6(8):713–719PubMed Hrabec E et al (2002) Circulation level of matrix metalloproteinase-9 is correlated with disease severity in tuberculosis patients. Int J Tuberc Lung Dis 6(8):713–719PubMed
155.
go back to reference Sathyamoorthy T et al (2015) Gender-dependent differences in plasma matrix metalloproteinase-8 elevated in pulmonary tuberculosis. PLoS ONE 10(1):e0117605PubMedPubMedCentralCrossRef Sathyamoorthy T et al (2015) Gender-dependent differences in plasma matrix metalloproteinase-8 elevated in pulmonary tuberculosis. PLoS ONE 10(1):e0117605PubMedPubMedCentralCrossRef
156.
157.
go back to reference Walker NF et al (2012) Doxycycline and HIV infection suppress tuberculosis-induced matrix metalloproteinases. Am J Respir Crit Care Med 185(9):989–997PubMedPubMedCentralCrossRef Walker NF et al (2012) Doxycycline and HIV infection suppress tuberculosis-induced matrix metalloproteinases. Am J Respir Crit Care Med 185(9):989–997PubMedPubMedCentralCrossRef
158.
go back to reference Van Lint P, Libert C (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82(6):1375–1381PubMedCrossRef Van Lint P, Libert C (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82(6):1375–1381PubMedCrossRef
159.
go back to reference Seiscento M et al (2007) Transforming growth factor beta-1 as a predictor of fibrosis in tuberculous pleurisy. Respirology 12(5):660–663PubMedCrossRef Seiscento M et al (2007) Transforming growth factor beta-1 as a predictor of fibrosis in tuberculous pleurisy. Respirology 12(5):660–663PubMedCrossRef
160.
go back to reference Ly LH, Russell MI, McMurray DN (2007) Microdissection of the cytokine milieu of pulmonary granulomas from tuberculous guinea pigs. Cell Microbiol 9(5):1127–1136PubMedCrossRef Ly LH, Russell MI, McMurray DN (2007) Microdissection of the cytokine milieu of pulmonary granulomas from tuberculous guinea pigs. Cell Microbiol 9(5):1127–1136PubMedCrossRef
161.
go back to reference Olobo JO et al (2001) Circulating TNF-alpha, TGF-beta, and IL-10 in tuberculosis patients and healthy contacts. Scand J Immunol 53(1):85–91PubMedCrossRef Olobo JO et al (2001) Circulating TNF-alpha, TGF-beta, and IL-10 in tuberculosis patients and healthy contacts. Scand J Immunol 53(1):85–91PubMedCrossRef
162.
go back to reference Othieno C et al (1999) Interaction of Mycobacterium tuberculosis-induced transforming growth factor beta1 and interleukin-10. Infect Immun 67(11):5730–5735PubMedPubMedCentral Othieno C et al (1999) Interaction of Mycobacterium tuberculosis-induced transforming growth factor beta1 and interleukin-10. Infect Immun 67(11):5730–5735PubMedPubMedCentral
163.
go back to reference Peresi E et al (2008) Cytokines and acute phase serum proteins as markers of inflammatory regression during the treatment of pulmonary tuberculosis. J Bras Pneumol 34(11):942–949PubMedCrossRef Peresi E et al (2008) Cytokines and acute phase serum proteins as markers of inflammatory regression during the treatment of pulmonary tuberculosis. J Bras Pneumol 34(11):942–949PubMedCrossRef
164.
go back to reference Roberts T et al (2007) Immunosuppression during active tuberculosis is characterized by decreased interferon-gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor-beta, and interleukin-4 mRNA levels. J Infect Dis 195(6):870–878PubMedCrossRef Roberts T et al (2007) Immunosuppression during active tuberculosis is characterized by decreased interferon-gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor-beta, and interleukin-4 mRNA levels. J Infect Dis 195(6):870–878PubMedCrossRef
165.
go back to reference Rojas RE et al (1999) Regulation of human CD4(+) alphabeta T-cell-receptor-positive (TCR(+)) and gammadelta TCR(+) T-cell responses to Mycobacterium tuberculosis by interleukin-10 and transforming growth factor beta. Infect Immun 67(12):6461–6472PubMedPubMedCentral Rojas RE et al (1999) Regulation of human CD4(+) alphabeta T-cell-receptor-positive (TCR(+)) and gammadelta TCR(+) T-cell responses to Mycobacterium tuberculosis by interleukin-10 and transforming growth factor beta. Infect Immun 67(12):6461–6472PubMedPubMedCentral
166.
go back to reference Tomioka H (2004) Adjunctive immunotherapy of mycobacterial infections. Curr Pharm Des 10(26):3297–3312PubMedCrossRef Tomioka H (2004) Adjunctive immunotherapy of mycobacterial infections. Curr Pharm Des 10(26):3297–3312PubMedCrossRef
167.
go back to reference Zhang J et al (2009) Inhalation of TGF-beta1 antibody: a new method to inhibit the airway stenosis induced by the endobronchial tuberculosis. Med Hypotheses 73(6):1065–1066PubMedCrossRef Zhang J et al (2009) Inhalation of TGF-beta1 antibody: a new method to inhibit the airway stenosis induced by the endobronchial tuberculosis. Med Hypotheses 73(6):1065–1066PubMedCrossRef
168.
go back to reference Marshall BG et al (1996) Increased inflammatory cytokines and new collagen formation in cutaneous tuberculosis and sarcoidosis. Thorax 51(12):1253–1261PubMedPubMedCentralCrossRef Marshall BG et al (1996) Increased inflammatory cytokines and new collagen formation in cutaneous tuberculosis and sarcoidosis. Thorax 51(12):1253–1261PubMedPubMedCentralCrossRef
169.
go back to reference Sivangala R et al (2014) Association of cytokine gene polymorphisms in patients with tuberculosis and their household contacts. Scand J Immunol 79(3):197–205PubMedCrossRef Sivangala R et al (2014) Association of cytokine gene polymorphisms in patients with tuberculosis and their household contacts. Scand J Immunol 79(3):197–205PubMedCrossRef
170.
go back to reference Niimi T et al (2002) Transforming growth factor-beta gene polymorphism in sarcoidosis and tuberculosis patients. Int J Tuberc Lung Dis 6(6):510–515PubMed Niimi T et al (2002) Transforming growth factor-beta gene polymorphism in sarcoidosis and tuberculosis patients. Int J Tuberc Lung Dis 6(6):510–515PubMed
171.
go back to reference Allen SS et al (2004) Effect of neutralizing transforming growth factor beta1 on the immune response against Mycobacterium tuberculosis in guinea pigs. Infect Immun 72(3):1358–1363PubMedPubMedCentralCrossRef Allen SS et al (2004) Effect of neutralizing transforming growth factor beta1 on the immune response against Mycobacterium tuberculosis in guinea pigs. Infect Immun 72(3):1358–1363PubMedPubMedCentralCrossRef
172.
go back to reference Rosas-Taraco AG et al (2011) Local pulmonary immunotherapy with siRNA targeting TGFbeta1 enhances antimicrobial capacity in Mycobacterium tuberculosis infected mice. Tuberculosis (Edinb) 91(1):98–106CrossRef Rosas-Taraco AG et al (2011) Local pulmonary immunotherapy with siRNA targeting TGFbeta1 enhances antimicrobial capacity in Mycobacterium tuberculosis infected mice. Tuberculosis (Edinb) 91(1):98–106CrossRef
173.
go back to reference Windish HP et al (2009) Aberrant TGF-beta signaling reduces T regulatory cells in ICAM-1-deficient mice, increasing the inflammatory response to Mycobacterium tuberculosis. J Leukoc Biol 86(3):713–725PubMedPubMedCentralCrossRef Windish HP et al (2009) Aberrant TGF-beta signaling reduces T regulatory cells in ICAM-1-deficient mice, increasing the inflammatory response to Mycobacterium tuberculosis. J Leukoc Biol 86(3):713–725PubMedPubMedCentralCrossRef
174.
go back to reference Zheng L et al (2015) Differential microRNA expression in human macrophages with Mycobacterium tuberculosis infection of Beijing/W and non-Beijing/W strain types. PLoS ONE 10(6):e0126018PubMedPubMedCentralCrossRef Zheng L et al (2015) Differential microRNA expression in human macrophages with Mycobacterium tuberculosis infection of Beijing/W and non-Beijing/W strain types. PLoS ONE 10(6):e0126018PubMedPubMedCentralCrossRef
175.
go back to reference Vanham G et al (1997) Examining a paradox in the pathogenesis of human pulmonary tuberculosis: immune activation and suppression/anergy. Tuber Lung Dis 78(3–4):145–158PubMedCrossRef Vanham G et al (1997) Examining a paradox in the pathogenesis of human pulmonary tuberculosis: immune activation and suppression/anergy. Tuber Lung Dis 78(3–4):145–158PubMedCrossRef
Metadata
Title
Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review
Authors
Dilara Kiran
Brendan K. Podell
Mark Chambers
Randall J. Basaraba
Publication date
01-03-2016
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 2/2016
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-015-0537-x

Other articles of this Issue 2/2016

Seminars in Immunopathology 2/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.