Skip to main content
Top
Published in: Seminars in Immunopathology 2/2016

01-03-2016 | Review

Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis

Authors: Anca Dorhoi, Stefan H.E. Kaufmann

Published in: Seminars in Immunopathology | Issue 2/2016

Login to get access

Abstract

Heightened morbidity and mortality in pulmonary tuberculosis (TB) are consequences of complex disease processes triggered by the causative agent, Mycobacterium tuberculosis (Mtb). Mtb modulates inflammation at distinct stages of its intracellular life. Recognition and phagocytosis, replication in phagosomes and cytosol escape induce tightly regulated release of cytokines [including interleukin (IL)-1, tumor necrosis factor (TNF), IL-10], chemokines, lipid mediators, and type I interferons (IFN-I). Mtb occupies various lung lesions at sites of pathology. Bacteria are barely detectable at foci of lipid pneumonia or in perivascular/bronchiolar cuffs. However, abundant organisms are evident in caseating granulomas and at the cavity wall. Such lesions follow polar trajectories towards fibrosis, encapsulation and mineralization or liquefaction, extensive matrix destruction, and tissue injury. The outcome is determined by immune factors acting in concert. Gradients of cytokines and chemokines (CCR2, CXCR2, CXCR3/CXCR5 agonists; TNF/IL-10, IL-1/IFN-I), expression of activation/death markers on immune cells (TNF receptor 1, PD-1, IL-27 receptor) or abundance of enzymes [arginase-1, matrix metalloprotease (MMP)-1, MMP-8, MMP-9] drive genesis and progression of lesions. Distinct lesions coexist such that inflammation in TB encompasses a spectrum of tissue changes. A better understanding of the multidimensionality of immunopathology in TB will inform novel therapies against this pulmonary disease.
Literature
1.
go back to reference WHO (2013) Global tuberculosis report 2013. WHO Press, Geneva WHO (2013) Global tuberculosis report 2013. WHO Press, Geneva
2.
go back to reference Cambier CJ, Falkow S, Ramakrishnan L (2014) Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell 159(7):1497–1509PubMedCrossRef Cambier CJ, Falkow S, Ramakrishnan L (2014) Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell 159(7):1497–1509PubMedCrossRef
3.
go back to reference Dubos RJ, Dubos J (1952) The white plague: tuberculosis, man, and society. Rutgers University Press, New Brunswick, NJ Dubos RJ, Dubos J (1952) The white plague: tuberculosis, man, and society. Rutgers University Press, New Brunswick, NJ
4.
go back to reference Koch R (1882) Die Aetiologie der Tuberculose (Nach einem in der physiologischen Gesellschaft zu Berlin am 24.März gehaltenem Vortrage). Berliner klin Wochenschr 19:221–230 Koch R (1882) Die Aetiologie der Tuberculose (Nach einem in der physiologischen Gesellschaft zu Berlin am 24.März gehaltenem Vortrage). Berliner klin Wochenschr 19:221–230
5.
go back to reference Kaufmann SH (2005) Robert Koch, the Nobel Prize, and the ongoing threat of tuberculosis. N Engl J Med 353(23):2423–2426PubMedCrossRef Kaufmann SH (2005) Robert Koch, the Nobel Prize, and the ongoing threat of tuberculosis. N Engl J Med 353(23):2423–2426PubMedCrossRef
6.
go back to reference Cardona PJ (2015) The key role of exudative lesions and their encapsulation: lessons learned from the pathology of human pulmonary tuberculosis. Front Microbiol 6:612PubMedPubMedCentralCrossRef Cardona PJ (2015) The key role of exudative lesions and their encapsulation: lessons learned from the pathology of human pulmonary tuberculosis. Front Microbiol 6:612PubMedPubMedCentralCrossRef
7.
go back to reference Dheda K, Booth H, Huggett JF, Johnson MA, Zumla A et al (2005) Lung remodeling in pulmonary tuberculosis. J Infect Dis 192(7):1201–1209PubMedCrossRef Dheda K, Booth H, Huggett JF, Johnson MA, Zumla A et al (2005) Lung remodeling in pulmonary tuberculosis. J Infect Dis 192(7):1201–1209PubMedCrossRef
8.
go back to reference Orme IM (2014) A new unifying theory of the pathogenesis of tuberculosis. Tuberculosis (Edinb) 94(1):8–14CrossRef Orme IM (2014) A new unifying theory of the pathogenesis of tuberculosis. Tuberculosis (Edinb) 94(1):8–14CrossRef
9.
go back to reference Hunter RL (2011) Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb) 91(6):497–509CrossRef Hunter RL (2011) Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb) 91(6):497–509CrossRef
10.
go back to reference O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ et al (2013) The immune response in tuberculosis. Annu Rev Immunol 31:475–527PubMedCrossRef O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ et al (2013) The immune response in tuberculosis. Annu Rev Immunol 31:475–527PubMedCrossRef
11.
go back to reference Orme IM, Robinson RT, Cooper AM (2015) The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16(1):57–63PubMedCrossRef Orme IM, Robinson RT, Cooper AM (2015) The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16(1):57–63PubMedCrossRef
12.
go back to reference Dorhoi A, Kaufmann SH (2015) Versatile myeloid cell subsets contribute to tuberculosis-associated inflammation. Eur J Immunol 45(8):2191–2202PubMedCrossRef Dorhoi A, Kaufmann SH (2015) Versatile myeloid cell subsets contribute to tuberculosis-associated inflammation. Eur J Immunol 45(8):2191–2202PubMedCrossRef
13.
go back to reference Randall PJ, Hsu NJ, Quesniaux V, Ryffel B, Jacobs M (2015) Mycobacterium tuberculosis infection of the ‘non-classical immune cell’. Immunol Cell Biol doi: 10.1038/icb.2015.43. Randall PJ, Hsu NJ, Quesniaux V, Ryffel B, Jacobs M (2015) Mycobacterium tuberculosis infection of the ‘non-classical immune cell’. Immunol Cell Biol doi: 10.1038/icb.2015.43.
14.
go back to reference Lenaerts A, Barry CE III, Dartois V (2015) Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev 264(1):288–307PubMedPubMedCentralCrossRef Lenaerts A, Barry CE III, Dartois V (2015) Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev 264(1):288–307PubMedPubMedCentralCrossRef
15.
go back to reference Comas I, Coscolla M, Luo T, Borrell S, Holt KE et al (2013) Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45(10):1176–1182PubMedPubMedCentralCrossRef Comas I, Coscolla M, Luo T, Borrell S, Holt KE et al (2013) Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45(10):1176–1182PubMedPubMedCentralCrossRef
16.
go back to reference Armstrong JA, Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134(3 Pt 1):713–740PubMedPubMedCentralCrossRef Armstrong JA, Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134(3 Pt 1):713–740PubMedPubMedCentralCrossRef
18.
go back to reference van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M et al (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129(7):1287–1298PubMedCrossRef van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M et al (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129(7):1287–1298PubMedCrossRef
19.
go back to reference Houben D, Demangel C, van Ingen J, Perez J, Baldeon L et al (2012) ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 14(8):1287–1298PubMedCrossRef Houben D, Demangel C, van Ingen J, Perez J, Baldeon L et al (2012) ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 14(8):1287–1298PubMedCrossRef
20.
go back to reference Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L et al (2012) Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 8(2):e1002507PubMedPubMedCentralCrossRef Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L et al (2012) Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 8(2):e1002507PubMedPubMedCentralCrossRef
21.
go back to reference Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS (2012) Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11(5):469–480PubMedPubMedCentralCrossRef Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS (2012) Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11(5):469–480PubMedPubMedCentralCrossRef
22.
go back to reference Schlesinger LS (1993) Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150(7):2920–2930PubMed Schlesinger LS (1993) Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150(7):2920–2930PubMed
23.
go back to reference Schlesinger LS, Kaufman TM, Iyer S, Hull SR, Marchiando LK (1996) Differences in mannose receptor-mediated uptake of lipoarabinomannan from virulent and attenuated strains of Mycobacterium tuberculosis by human macrophages. J Immunol 157(10):4568–4575PubMed Schlesinger LS, Kaufman TM, Iyer S, Hull SR, Marchiando LK (1996) Differences in mannose receptor-mediated uptake of lipoarabinomannan from virulent and attenuated strains of Mycobacterium tuberculosis by human macrophages. J Immunol 157(10):4568–4575PubMed
24.
go back to reference Yadav M, Schorey JS (2006) The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108(9):3168–3175PubMedPubMedCentralCrossRef Yadav M, Schorey JS (2006) The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108(9):3168–3175PubMedPubMedCentralCrossRef
25.
go back to reference Bowdish DM, Sakamoto K, Kim MJ, Kroos M, Mukhopadhyay S et al (2009) MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog 5(6):e1000474PubMedPubMedCentralCrossRef Bowdish DM, Sakamoto K, Kim MJ, Kroos M, Mukhopadhyay S et al (2009) MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog 5(6):e1000474PubMedPubMedCentralCrossRef
26.
go back to reference Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM et al (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197(1):7–17PubMedPubMedCentralCrossRef Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM et al (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197(1):7–17PubMedPubMedCentralCrossRef
27.
go back to reference Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M et al (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197(1):121–127PubMedPubMedCentralCrossRef Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M et al (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197(1):121–127PubMedPubMedCentralCrossRef
28.
go back to reference Wilson GJ, Marakalala MJ, Hoving JC, van Laarhoven A, Drummond RA et al (2015) The C-type lectin receptor CLECSF8/CLEC4D is a key component of anti-mycobacterial immunity. Cell Host Microbe 17(2):252–259PubMedPubMedCentralCrossRef Wilson GJ, Marakalala MJ, Hoving JC, van Laarhoven A, Drummond RA et al (2015) The C-type lectin receptor CLECSF8/CLEC4D is a key component of anti-mycobacterial immunity. Cell Host Microbe 17(2):252–259PubMedPubMedCentralCrossRef
29.
go back to reference Yonekawa A, Saijo S, Hoshino Y, Miyake Y, Ishikawa E et al (2014) Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 41(3):402–413PubMedCrossRef Yonekawa A, Saijo S, Hoshino Y, Miyake Y, Ishikawa E et al (2014) Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 41(3):402–413PubMedCrossRef
30.
go back to reference Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H et al (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206(13):2879–2888PubMedPubMedCentralCrossRef Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H et al (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206(13):2879–2888PubMedPubMedCentralCrossRef
31.
go back to reference Shi S, Blumenthal A, Hickey CM, Gandotra S, Levy D et al (2005) Expression of many immunologically important genes in Mycobacterium tuberculosis-infected macrophages is independent of both TLR2 and TLR4 but dependent on IFN-alphabeta receptor and STAT1. J Immunol 175(5):3318–3328PubMedCrossRef Shi S, Blumenthal A, Hickey CM, Gandotra S, Levy D et al (2005) Expression of many immunologically important genes in Mycobacterium tuberculosis-infected macrophages is independent of both TLR2 and TLR4 but dependent on IFN-alphabeta receptor and STAT1. J Immunol 175(5):3318–3328PubMedCrossRef
32.
go back to reference El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW et al (2008) Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 9(12):1399–1406PubMedPubMedCentralCrossRef El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW et al (2008) Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 9(12):1399–1406PubMedPubMedCentralCrossRef
33.
go back to reference Moura-Alves P, Fae K, Houthuys E, Dorhoi A, Kreuchwig A et al (2014) AhR sensing of bacterial pigments regulates antibacterial defence. Nature 512(7515):387–392PubMedCrossRef Moura-Alves P, Fae K, Houthuys E, Dorhoi A, Kreuchwig A et al (2014) AhR sensing of bacterial pigments regulates antibacterial defence. Nature 512(7515):387–392PubMedCrossRef
34.
go back to reference Ferwerda G, Girardin SE, Kullberg BJ, Le BL, de Jong DJ et al (2005) NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 1(3):279–285PubMed Ferwerda G, Girardin SE, Kullberg BJ, Le BL, de Jong DJ et al (2005) NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 1(3):279–285PubMed
35.
go back to reference Koo IC, Wang C, Raghavan S, Morisaki JH, Cox JS et al (2008) ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell Microbiol 10(9):1866–1878PubMedPubMedCentralCrossRef Koo IC, Wang C, Raghavan S, Morisaki JH, Cox JS et al (2008) ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell Microbiol 10(9):1866–1878PubMedPubMedCentralCrossRef
36.
go back to reference Walter K, Holscher C, Tschopp J, Ehlers S (2010) NALP3 is not necessary for early protection against experimental tuberculosis. Immunobiology 215(9–10):804–811PubMedCrossRef Walter K, Holscher C, Tschopp J, Ehlers S (2010) NALP3 is not necessary for early protection against experimental tuberculosis. Immunobiology 215(9–10):804–811PubMedCrossRef
37.
go back to reference McElvania TE, Allen IC, Hulseberg PD, Sullivan JT, McCann JR et al (2010) Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. PLoS One 5(8):e12320CrossRef McElvania TE, Allen IC, Hulseberg PD, Sullivan JT, McCann JR et al (2010) Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. PLoS One 5(8):e12320CrossRef
38.
go back to reference Dorhoi A, Nouailles G, Jorg S, Hagens K, Heinemann E et al (2012) Activation of the NLRP3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis. Eur J Immunol 42(2):374–384PubMedCrossRef Dorhoi A, Nouailles G, Jorg S, Hagens K, Heinemann E et al (2012) Activation of the NLRP3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis. Eur J Immunol 42(2):374–384PubMedCrossRef
39.
go back to reference Mishra BB, Rathinam VA, Martens GW, Martinot AJ, Kornfeld H et al (2013) Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1beta. Nat Immunol 14(1):52–60PubMedPubMedCentralCrossRef Mishra BB, Rathinam VA, Martens GW, Martinot AJ, Kornfeld H et al (2013) Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1beta. Nat Immunol 14(1):52–60PubMedPubMedCentralCrossRef
40.
go back to reference Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F et al (2009) NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5(7):e1000500PubMedPubMedCentralCrossRef Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F et al (2009) NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5(7):e1000500PubMedPubMedCentralCrossRef
41.
go back to reference Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H et al (2015) A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat Med 21(4):401–406PubMedPubMedCentralCrossRef Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H et al (2015) A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat Med 21(4):401–406PubMedPubMedCentralCrossRef
42.
go back to reference Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ et al (2015) The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17(6):811–819PubMedCrossRef Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ et al (2015) The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17(6):811–819PubMedCrossRef
43.
go back to reference Wassermann R, Gulen MF, Sala C, Perin SG, Lou Y et al (2015) Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe 17(6):799–810PubMedCrossRef Wassermann R, Gulen MF, Sala C, Perin SG, Lou Y et al (2015) Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe 17(6):799–810PubMedCrossRef
44.
go back to reference Collins AC, Cai H, Li T, Franco LH, Li XD et al (2015) Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17(6):820–828PubMedCrossRef Collins AC, Cai H, Li T, Franco LH, Li XD et al (2015) Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17(6):820–828PubMedCrossRef
45.
go back to reference Simeone R, Sayes F, Song O, Groschel MI, Brodin P et al (2015) Cytosolic access of Mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo. PLoS Pathog 11(2):e1004650PubMedPubMedCentralCrossRef Simeone R, Sayes F, Song O, Groschel MI, Brodin P et al (2015) Cytosolic access of Mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo. PLoS Pathog 11(2):e1004650PubMedPubMedCentralCrossRef
46.
go back to reference Orme IM, Basaraba RJ (2014) The formation of the granuloma in tuberculosis infection. Semin Immunol 26(6):601–609PubMedCrossRef Orme IM, Basaraba RJ (2014) The formation of the granuloma in tuberculosis infection. Semin Immunol 26(6):601–609PubMedCrossRef
47.
go back to reference Chen RY, Dodd LE, Lee M, Paripati P, Hammoud DA et al (2014) PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Sci Transl Med 6(265):265ra166PubMedCrossRef Chen RY, Dodd LE, Lee M, Paripati P, Hammoud DA et al (2014) PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Sci Transl Med 6(265):265ra166PubMedCrossRef
48.
go back to reference Coleman MT, Chen RY, Lee M, Lin PL, Dodd LE et al (2014) PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Sci Transl Med 6(265):265ra167PubMedCrossRef Coleman MT, Chen RY, Lee M, Lin PL, Dodd LE et al (2014) PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Sci Transl Med 6(265):265ra167PubMedCrossRef
49.
go back to reference Lin PL, Coleman T, Carney JP, Lopresti BJ, Tomko J et al (2013) Radiologic responses in cynomolgous macaques for assessing tuberculosis chemotherapy regimens. Antimicrob Agents Chemother 57(9):4237–4244PubMedCentralCrossRef Lin PL, Coleman T, Carney JP, Lopresti BJ, Tomko J et al (2013) Radiologic responses in cynomolgous macaques for assessing tuberculosis chemotherapy regimens. Antimicrob Agents Chemother 57(9):4237–4244PubMedCentralCrossRef
50.
go back to reference Davis SL, Nuermberger EL, Um PK, Vidal C, Jedynak B et al (2009) Noninvasive pulmonary [18F]-2-fluoro-deoxy-D-glucose positron emission tomography correlates with bactericidal activity of tuberculosis drug treatment. Antimicrob Agents Chemother 53(11):4879–4884PubMedPubMedCentralCrossRef Davis SL, Nuermberger EL, Um PK, Vidal C, Jedynak B et al (2009) Noninvasive pulmonary [18F]-2-fluoro-deoxy-D-glucose positron emission tomography correlates with bactericidal activity of tuberculosis drug treatment. Antimicrob Agents Chemother 53(11):4879–4884PubMedPubMedCentralCrossRef
51.
go back to reference Kim IJ, Lee JS, Kim SJ, Kim YK, Jeong YJ et al (2008) Double-phase 18F-FDG PET-CT for determination of pulmonary tuberculoma activity. Eur J Nucl Med Mol Imaging 35(4):808–814PubMedCrossRef Kim IJ, Lee JS, Kim SJ, Kim YK, Jeong YJ et al (2008) Double-phase 18F-FDG PET-CT for determination of pulmonary tuberculoma activity. Eur J Nucl Med Mol Imaging 35(4):808–814PubMedCrossRef
52.
go back to reference Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R et al (2014) Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med 20(1):75–79PubMedPubMedCentralCrossRef Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R et al (2014) Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med 20(1):75–79PubMedPubMedCentralCrossRef
53.
go back to reference Irwin SM, Driver E, Lyon E, Schrupp C, Ryan G et al (2015) Presence of multiple lesion types with vastly different microenvironments in C3HeB/FeJ mice following aerosol infection with Mycobacterium tuberculosis. Dis Model Mech 8(6):591–602PubMedPubMedCentralCrossRef Irwin SM, Driver E, Lyon E, Schrupp C, Ryan G et al (2015) Presence of multiple lesion types with vastly different microenvironments in C3HeB/FeJ mice following aerosol infection with Mycobacterium tuberculosis. Dis Model Mech 8(6):591–602PubMedPubMedCentralCrossRef
54.
go back to reference Lenaerts AJ, Hoff D, Aly S, Ehlers S, Andries K et al (2007) Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother 51(9):3338–3345PubMedPubMedCentralCrossRef Lenaerts AJ, Hoff D, Aly S, Ehlers S, Andries K et al (2007) Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother 51(9):3338–3345PubMedPubMedCentralCrossRef
55.
go back to reference Cilfone NA, Ford CB, Marino S, Mattila JT, Gideon HP et al (2015) Computational modeling predicts IL-10 control of lesion sterilization by balancing early host immunity-mediated antimicrobial responses with caseation during Mycobacterium tuberculosis infection. J Immunol 194(2):664–677PubMedPubMedCentralCrossRef Cilfone NA, Ford CB, Marino S, Mattila JT, Gideon HP et al (2015) Computational modeling predicts IL-10 control of lesion sterilization by balancing early host immunity-mediated antimicrobial responses with caseation during Mycobacterium tuberculosis infection. J Immunol 194(2):664–677PubMedPubMedCentralCrossRef
56.
go back to reference Fallahi-Sichani M, El-Kebir M, Marino S, Kirschner DE, Linderman JJ (2011) Multiscale computational modeling reveals a critical role for TNF-alpha receptor 1 dynamics in tuberculosis granuloma formation. J Immunol 186(6):3472–3483PubMedPubMedCentralCrossRef Fallahi-Sichani M, El-Kebir M, Marino S, Kirschner DE, Linderman JJ (2011) Multiscale computational modeling reveals a critical role for TNF-alpha receptor 1 dynamics in tuberculosis granuloma formation. J Immunol 186(6):3472–3483PubMedPubMedCentralCrossRef
57.
go back to reference Zhang G, Zhou B, Li S, Yue J, Yang H et al (2014) Allele-specific induction of IL-1beta expression by C/EBPbeta and PU.1 contributes to increased tuberculosis susceptibility. PLoS Pathog 10(10):e1004426PubMedPubMedCentralCrossRef Zhang G, Zhou B, Li S, Yue J, Yang H et al (2014) Allele-specific induction of IL-1beta expression by C/EBPbeta and PU.1 contributes to increased tuberculosis susceptibility. PLoS Pathog 10(10):e1004426PubMedPubMedCentralCrossRef
58.
go back to reference Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL et al (2014) Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511(7507):99–103PubMedCrossRef Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL et al (2014) Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511(7507):99–103PubMedCrossRef
59.
go back to reference Subbian S, Tsenova L, Yang G, O’Brien P, Parsons S et al (2011) Chronic pulmonary cavitary tuberculosis in rabbits: a failed host immune response. Open Biol 1(4):110016PubMedPubMedCentralCrossRef Subbian S, Tsenova L, Yang G, O’Brien P, Parsons S et al (2011) Chronic pulmonary cavitary tuberculosis in rabbits: a failed host immune response. Open Biol 1(4):110016PubMedPubMedCentralCrossRef
60.
go back to reference Kaplan G, Post FA, Moreira AL, Wainwright H, Kreiswirth BN et al (2003) Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect Immun 71(12):7099–7108PubMedPubMedCentralCrossRef Kaplan G, Post FA, Moreira AL, Wainwright H, Kreiswirth BN et al (2003) Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect Immun 71(12):7099–7108PubMedPubMedCentralCrossRef
61.
go back to reference MEDLAR EM (1955) The behavior of pulmonary tuberculous lesions; a pathological study. Am Rev Tuberc 71(3, Part 2):1–244PubMed MEDLAR EM (1955) The behavior of pulmonary tuberculous lesions; a pathological study. Am Rev Tuberc 71(3, Part 2):1–244PubMed
62.
go back to reference Geng E, Kreiswirth B, Burzynski J, Schluger NW (2005) Clinical and radiographic correlates of primary and reactivation tuberculosis: a molecular epidemiology study. JAMA 293(22):2740–2745PubMedCrossRef Geng E, Kreiswirth B, Burzynski J, Schluger NW (2005) Clinical and radiographic correlates of primary and reactivation tuberculosis: a molecular epidemiology study. JAMA 293(22):2740–2745PubMedCrossRef
63.
go back to reference Plopper CG, Harkema JR (2005) The respiratory system and its use in research. In: Wolfe-Coote S (ed) The laboratory primate. Elsevier Academic Press, London, pp 503–527 Plopper CG, Harkema JR (2005) The respiratory system and its use in research. In: Wolfe-Coote S (ed) The laboratory primate. Elsevier Academic Press, London, pp 503–527
64.
go back to reference Chiang CY, Riley LW (2005) Exogenous reinfection in tuberculosis. Lancet Infect Dis 5(10):629–636PubMedCrossRef Chiang CY, Riley LW (2005) Exogenous reinfection in tuberculosis. Lancet Infect Dis 5(10):629–636PubMedCrossRef
65.
go back to reference Lin PL, Pawar S, Myers A, Pegu A, Fuhrman C et al (2006) Early events in Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun 74(7):3790–3803PubMedPubMedCentralCrossRef Lin PL, Pawar S, Myers A, Pegu A, Fuhrman C et al (2006) Early events in Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun 74(7):3790–3803PubMedPubMedCentralCrossRef
66.
go back to reference Ordway D, Palanisamy G, Henao-Tamayo M, Smith EE, Shanley C et al (2007) The cellular immune response to Mycobacterium tuberculosis infection in the guinea pig. J Immunol 179(4):2532–2541PubMedCrossRef Ordway D, Palanisamy G, Henao-Tamayo M, Smith EE, Shanley C et al (2007) The cellular immune response to Mycobacterium tuberculosis infection in the guinea pig. J Immunol 179(4):2532–2541PubMedCrossRef
68.
go back to reference Bru A, Cardona PJ (2010) Mathematical modeling of tuberculosis bacillary counts and cellular populations in the organs of infected mice. PLoS One 5(9):e12985PubMedPubMedCentralCrossRef Bru A, Cardona PJ (2010) Mathematical modeling of tuberculosis bacillary counts and cellular populations in the organs of infected mice. PLoS One 5(9):e12985PubMedPubMedCentralCrossRef
69.
go back to reference Hernandez-Pando R, Jeyanathan M, Mengistu G, Aguilar D, Orozco H et al (2000) Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356(9248):2133–2138PubMedCrossRef Hernandez-Pando R, Jeyanathan M, Mengistu G, Aguilar D, Orozco H et al (2000) Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356(9248):2133–2138PubMedCrossRef
70.
go back to reference Leemans JC, Juffermans NP, Florquin S, van Rooijen N, Vervoordeldonk MJ et al (2001) Depletion of alveolar macrophages exerts protective effects in pulmonary tuberculosis in mice. J Immunol 166(7):4604–4611PubMedCrossRef Leemans JC, Juffermans NP, Florquin S, van Rooijen N, Vervoordeldonk MJ et al (2001) Depletion of alveolar macrophages exerts protective effects in pulmonary tuberculosis in mice. J Immunol 166(7):4604–4611PubMedCrossRef
71.
go back to reference Leemans JC, Thepen T, Weijer S, Florquin S, van Rooijen N et al (2005) Macrophages play a dual role during pulmonary tuberculosis in mice. J Infect Dis 191(1):65–74PubMedCrossRef Leemans JC, Thepen T, Weijer S, Florquin S, van Rooijen N et al (2005) Macrophages play a dual role during pulmonary tuberculosis in mice. J Infect Dis 191(1):65–74PubMedCrossRef
72.
go back to reference Wolf AJ, Linas B, Trevejo-Nunez GJ, Kincaid E, Tamura T et al (2007) Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol 179(4):2509–2519PubMedCrossRef Wolf AJ, Linas B, Trevejo-Nunez GJ, Kincaid E, Tamura T et al (2007) Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol 179(4):2509–2519PubMedCrossRef
73.
go back to reference Blomgran R, Desvignes L, Briken V, Ernst JD (2012) Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe 11(1):81–90PubMedPubMedCentralCrossRef Blomgran R, Desvignes L, Briken V, Ernst JD (2012) Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe 11(1):81–90PubMedPubMedCentralCrossRef
74.
go back to reference Dorhoi A, Yeremeev V, Nouailles G, Weiner J III, Jorg S et al (2014) Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics. Eur J Immunol 44(8):2380–2393PubMedPubMedCentralCrossRef Dorhoi A, Yeremeev V, Nouailles G, Weiner J III, Jorg S et al (2014) Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics. Eur J Immunol 44(8):2380–2393PubMedPubMedCentralCrossRef
75.
go back to reference Repasy T, Lee J, Marino S, Martinez N, Kirschner DE et al (2013) Intracellular bacillary burden reflects a burst size for Mycobacterium tuberculosis in vivo. PLoS Pathog 9(2):e1003190PubMedPubMedCentralCrossRef Repasy T, Lee J, Marino S, Martinez N, Kirschner DE et al (2013) Intracellular bacillary burden reflects a burst size for Mycobacterium tuberculosis in vivo. PLoS Pathog 9(2):e1003190PubMedPubMedCentralCrossRef
76.
go back to reference Elkington PT, Emerson JE, Lopez-Pascua LD, O’Kane CM, Horncastle DE et al (2005) Mycobacterium tuberculosis up-regulates matrix metalloproteinase-1 secretion from human airway epithelial cells via a p38 MAPK switch. J Immunol 175(8):5333–5340PubMedCrossRef Elkington PT, Emerson JE, Lopez-Pascua LD, O’Kane CM, Horncastle DE et al (2005) Mycobacterium tuberculosis up-regulates matrix metalloproteinase-1 secretion from human airway epithelial cells via a p38 MAPK switch. J Immunol 175(8):5333–5340PubMedCrossRef
77.
go back to reference Pessanha AP, Martins RA, Mattos-Guaraldi AL, Vianna A, Moreira LO (2012) Arginase-1 expression in granulomas of tuberculosis patients. FEMS Immunol Med Microbiol 66(2):265–268PubMedCrossRef Pessanha AP, Martins RA, Mattos-Guaraldi AL, Vianna A, Moreira LO (2012) Arginase-1 expression in granulomas of tuberculosis patients. FEMS Immunol Med Microbiol 66(2):265–268PubMedCrossRef
78.
go back to reference Weiner J III, Parida SK, Maertzdorf J, Black GF, Repsilber D et al (2012) Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients. PLoS One 7(7):e40221PubMedPubMedCentralCrossRef Weiner J III, Parida SK, Maertzdorf J, Black GF, Repsilber D et al (2012) Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients. PLoS One 7(7):e40221PubMedPubMedCentralCrossRef
79.
go back to reference Arcos J, Sasindran SJ, Fujiwara N, Turner J, Schlesinger LS et al (2011) Human lung hydrolases delineate Mycobacterium tuberculosis-macrophage interactions and the capacity to control infection. J Immunol 187(1):372–381PubMedPubMedCentralCrossRef Arcos J, Sasindran SJ, Fujiwara N, Turner J, Schlesinger LS et al (2011) Human lung hydrolases delineate Mycobacterium tuberculosis-macrophage interactions and the capacity to control infection. J Immunol 187(1):372–381PubMedPubMedCentralCrossRef
80.
go back to reference Subbian S, Bandyopadhyay N, Tsenova L, O’Brien P, Khetani V et al (2013) Early innate immunity determines outcome of Mycobacterium tuberculosis pulmonary infection in rabbits. Cell Commun Signal 11:60PubMedPubMedCentralCrossRef Subbian S, Bandyopadhyay N, Tsenova L, O’Brien P, Khetani V et al (2013) Early innate immunity determines outcome of Mycobacterium tuberculosis pulmonary infection in rabbits. Cell Commun Signal 11:60PubMedPubMedCentralCrossRef
81.
go back to reference Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM et al (2007) Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest 117(7):1988–1994PubMedPubMedCentralCrossRef Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM et al (2007) Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest 117(7):1988–1994PubMedPubMedCentralCrossRef
82.
go back to reference Repasy T, Martinez N, Lee J, West K, Li W et al (2015) Bacillary replication and macrophage necrosis are determinants of neutrophil recruitment in tuberculosis. Microbes Infect 17(8):564–574PubMedCrossRef Repasy T, Martinez N, Lee J, West K, Li W et al (2015) Bacillary replication and macrophage necrosis are determinants of neutrophil recruitment in tuberculosis. Microbes Infect 17(8):564–574PubMedCrossRef
83.
go back to reference Keller C, Hoffmann R, Lang R, Brandau S, Hermann C et al (2006) Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes. Infect Immun 74(7):4295–4309PubMedPubMedCentralCrossRef Keller C, Hoffmann R, Lang R, Brandau S, Hermann C et al (2006) Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes. Infect Immun 74(7):4295–4309PubMedPubMedCentralCrossRef
84.
go back to reference Yeremeev V, Linge I, Kondratieva T, Apt A (2015) Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis (Edinb) 95(4):447–451CrossRef Yeremeev V, Linge I, Kondratieva T, Apt A (2015) Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis (Edinb) 95(4):447–451CrossRef
85.
go back to reference Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J III et al (2014) CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest 124(3):1268–1282PubMedPubMedCentralCrossRef Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J III et al (2014) CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest 124(3):1268–1282PubMedPubMedCentralCrossRef
86.
87.
go back to reference Dorhoi A, Iannaccone M, Farinacci M, Fae KC, Schreiber J et al (2013) MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J Clin Invest 123(11):4836–4848PubMedPubMedCentralCrossRef Dorhoi A, Iannaccone M, Farinacci M, Fae KC, Schreiber J et al (2013) MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J Clin Invest 123(11):4836–4848PubMedPubMedCentralCrossRef
88.
go back to reference Gopal R, Monin L, Torres D, Slight S, Mehra S et al (2013) S100A8/A9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis. Am J Respir Crit Care Med 188(9):1137–1146PubMedPubMedCentralCrossRef Gopal R, Monin L, Torres D, Slight S, Mehra S et al (2013) S100A8/A9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis. Am J Respir Crit Care Med 188(9):1137–1146PubMedPubMedCentralCrossRef
89.
go back to reference Antonelli LR, Gigliotti RA, Goncalves R, Roffe E, Cheever AW et al (2010) Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 120(5):1674–1682PubMedPubMedCentralCrossRef Antonelli LR, Gigliotti RA, Goncalves R, Roffe E, Cheever AW et al (2010) Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 120(5):1674–1682PubMedPubMedCentralCrossRef
90.
go back to reference Cambier CJ, Takaki KK, Larson RP, Hernandez RE, Tobin DM et al (2014) Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505(7482):218–222PubMedPubMedCentralCrossRef Cambier CJ, Takaki KK, Larson RP, Hernandez RE, Tobin DM et al (2014) Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505(7482):218–222PubMedPubMedCentralCrossRef
91.
go back to reference Khader SA, Partida-Sanchez S, Bell G, Jelley-Gibbs DM, Swain S et al (2006) Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J Exp Med 203(7):1805–1815PubMedPubMedCentralCrossRef Khader SA, Partida-Sanchez S, Bell G, Jelley-Gibbs DM, Swain S et al (2006) Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J Exp Med 203(7):1805–1815PubMedPubMedCentralCrossRef
92.
go back to reference Robinson RT, Khader SA, Martino CA, Fountain JJ, Teixeira-Coelho M et al (2010) Mycobacterium tuberculosis infection induces il12rb1 splicing to generate a novel IL-12Rbeta1 isoform that enhances DC migration. J Exp Med 207(3):591–605PubMedPubMedCentralCrossRef Robinson RT, Khader SA, Martino CA, Fountain JJ, Teixeira-Coelho M et al (2010) Mycobacterium tuberculosis infection induces il12rb1 splicing to generate a novel IL-12Rbeta1 isoform that enhances DC migration. J Exp Med 207(3):591–605PubMedPubMedCentralCrossRef
93.
go back to reference Keeton R, Allie N, Dambuza I, Abel B, Hsu NJ et al (2014) Soluble TNFRp75 regulates host protective immunity against Mycobacterium tuberculosis. J Clin Invest 124(4):1537–1551PubMedPubMedCentralCrossRef Keeton R, Allie N, Dambuza I, Abel B, Hsu NJ et al (2014) Soluble TNFRp75 regulates host protective immunity against Mycobacterium tuberculosis. J Clin Invest 124(4):1537–1551PubMedPubMedCentralCrossRef
94.
go back to reference Samstein M, Schreiber HA, Leiner IM, Susac B, Glickman MS et al (2013) Essential yet limited role for CCR2(+) inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. Elife 2:e01086PubMedPubMedCentralCrossRef Samstein M, Schreiber HA, Leiner IM, Susac B, Glickman MS et al (2013) Essential yet limited role for CCR2(+) inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. Elife 2:e01086PubMedPubMedCentralCrossRef
95.
96.
go back to reference Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM (2002) Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun 70(8):4501–4509PubMedPubMedCentralCrossRef Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM (2002) Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun 70(8):4501–4509PubMedPubMedCentralCrossRef
97.
go back to reference Myers AJ, Marino S, Kirschner DE, Flynn JL (2013) Inoculation dose of Mycobacterium tuberculosis does not influence priming of T cell responses in lymph nodes. J Immunol 190(9):4707–4716PubMedPubMedCentral Myers AJ, Marino S, Kirschner DE, Flynn JL (2013) Inoculation dose of Mycobacterium tuberculosis does not influence priming of T cell responses in lymph nodes. J Immunol 190(9):4707–4716PubMedPubMedCentral
98.
go back to reference Rothchild AC, Jayaraman P, Nunes-Alves C, Behar SM (2014) iNKT cell production of GM-CSF controls Mycobacterium tuberculosis. PLoS Pathog 10(1):e1003805PubMedPubMedCentralCrossRef Rothchild AC, Jayaraman P, Nunes-Alves C, Behar SM (2014) iNKT cell production of GM-CSF controls Mycobacterium tuberculosis. PLoS Pathog 10(1):e1003805PubMedPubMedCentralCrossRef
99.
go back to reference Meraviglia S, El DS, Dieli F, Martini F, Martino A (2011) gammadelta T cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection. Clin Dev Immunol 2011:587315PubMedPubMedCentralCrossRef Meraviglia S, El DS, Dieli F, Martini F, Martino A (2011) gammadelta T cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection. Clin Dev Immunol 2011:587315PubMedPubMedCentralCrossRef
100.
go back to reference Mayer-Barber KD, Andrade BB, Barber DL, Hieny S, Feng CG et al (2011) Innate and adaptive interferons suppress IL-1alpha and IL-1beta production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35(6):1023–1034PubMedPubMedCentralCrossRef Mayer-Barber KD, Andrade BB, Barber DL, Hieny S, Feng CG et al (2011) Innate and adaptive interferons suppress IL-1alpha and IL-1beta production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35(6):1023–1034PubMedPubMedCentralCrossRef
101.
go back to reference Behr MA, Waters WR (2014) Is tuberculosis a lymphatic disease with a pulmonary portal? Lancet Infect Dis 14(3):250–255PubMedCrossRef Behr MA, Waters WR (2014) Is tuberculosis a lymphatic disease with a pulmonary portal? Lancet Infect Dis 14(3):250–255PubMedCrossRef
102.
go back to reference Clark S, Hall Y, Williams A (2015) Animal models of tuberculosis: guinea pigs. Cold Spring Harb Perspect Med 5(5):a018572CrossRef Clark S, Hall Y, Williams A (2015) Animal models of tuberculosis: guinea pigs. Cold Spring Harb Perspect Med 5(5):a018572CrossRef
104.
go back to reference Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A et al (2008) Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28(2):271–284PubMedPubMedCentralCrossRef Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A et al (2008) Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28(2):271–284PubMedPubMedCentralCrossRef
105.
go back to reference Schreiber HA, Harding JS, Hunt O, Altamirano CJ, Hulseberg PD et al (2011) Inflammatory dendritic cells migrate in and out of transplanted chronic mycobacterial granulomas in mice. J Clin Invest 121(10):3902–3913PubMedPubMedCentralCrossRef Schreiber HA, Harding JS, Hunt O, Altamirano CJ, Hulseberg PD et al (2011) Inflammatory dendritic cells migrate in and out of transplanted chronic mycobacterial granulomas in mice. J Clin Invest 121(10):3902–3913PubMedPubMedCentralCrossRef
106.
go back to reference Egen JG, Rothfuchs AG, Feng CG, Horwitz MA, Sher A et al (2011) Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34(5):807–819PubMedPubMedCentralCrossRef Egen JG, Rothfuchs AG, Feng CG, Horwitz MA, Sher A et al (2011) Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34(5):807–819PubMedPubMedCentralCrossRef
107.
go back to reference Cosma CL, Humbert O, Sherman DR, Ramakrishnan L (2008) Trafficking of superinfecting Mycobacterium organisms into established granulomas occurs in mammals and is independent of the Erp and ESX-1 mycobacterial virulence loci. J Infect Dis 198(12):1851–1855PubMedPubMedCentralCrossRef Cosma CL, Humbert O, Sherman DR, Ramakrishnan L (2008) Trafficking of superinfecting Mycobacterium organisms into established granulomas occurs in mammals and is independent of the Erp and ESX-1 mycobacterial virulence loci. J Infect Dis 198(12):1851–1855PubMedPubMedCentralCrossRef
108.
go back to reference Fox GJ, Barry SE, Britton WJ, Marks GB (2013) Contact investigation for tuberculosis: a systematic review and meta-analysis. Eur Respir J 41(1):140–156PubMedPubMedCentralCrossRef Fox GJ, Barry SE, Britton WJ, Marks GB (2013) Contact investigation for tuberculosis: a systematic review and meta-analysis. Eur Respir J 41(1):140–156PubMedPubMedCentralCrossRef
109.
go back to reference Seiler P, Aichele P, Bandermann S, Hauser AE, Lu B et al (2003) Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. Eur J Immunol 33(10):2676–2686PubMedCrossRef Seiler P, Aichele P, Bandermann S, Hauser AE, Lu B et al (2003) Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. Eur J Immunol 33(10):2676–2686PubMedCrossRef
110.
go back to reference Volkman HE, Pozos TC, Zheng J, Davis JM, Rawls JF et al (2010) Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327(5964):466–469PubMedPubMedCentralCrossRef Volkman HE, Pozos TC, Zheng J, Davis JM, Rawls JF et al (2010) Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327(5964):466–469PubMedPubMedCentralCrossRef
111.
go back to reference Taylor JL, Hattle JM, Dreitz SA, Troudt JM, Izzo LS et al (2006) Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Mycobacterium tuberculosis infection. Infect Immun 74(11):6135–6144PubMedPubMedCentralCrossRef Taylor JL, Hattle JM, Dreitz SA, Troudt JM, Izzo LS et al (2006) Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Mycobacterium tuberculosis infection. Infect Immun 74(11):6135–6144PubMedPubMedCentralCrossRef
112.
go back to reference Izzo AA, Izzo LS, Kasimos J, Majka S (2004) A matrix metalloproteinase inhibitor promotes granuloma formation during the early phase of Mycobacterium tuberculosis pulmonary infection. Tuberculosis (Edinb) 84(6):387–396CrossRef Izzo AA, Izzo LS, Kasimos J, Majka S (2004) A matrix metalloproteinase inhibitor promotes granuloma formation during the early phase of Mycobacterium tuberculosis pulmonary infection. Tuberculosis (Edinb) 84(6):387–396CrossRef
113.
go back to reference Yamagami H, Matsumoto T, Fujiwara N, Arakawa T, Kaneda K et al (2001) Trehalose 6,6′-dimycolate (cord factor) of Mycobacterium tuberculosis induces foreign-body- and hypersensitivity-type granulomas in mice. Infect Immun 69(2):810–815PubMedPubMedCentralCrossRef Yamagami H, Matsumoto T, Fujiwara N, Arakawa T, Kaneda K et al (2001) Trehalose 6,6′-dimycolate (cord factor) of Mycobacterium tuberculosis induces foreign-body- and hypersensitivity-type granulomas in mice. Infect Immun 69(2):810–815PubMedPubMedCentralCrossRef
114.
go back to reference Rao V, Fujiwara N, Porcelli SA, Glickman MS (2005) Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201(4):535–543PubMedPubMedCentralCrossRef Rao V, Fujiwara N, Porcelli SA, Glickman MS (2005) Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201(4):535–543PubMedPubMedCentralCrossRef
115.
go back to reference Rao V, Gao F, Chen B, Jacobs WR Jr, Glickman MS (2006) Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J Clin Invest 116(6):1660–1667PubMedPubMedCentralCrossRef Rao V, Gao F, Chen B, Jacobs WR Jr, Glickman MS (2006) Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J Clin Invest 116(6):1660–1667PubMedPubMedCentralCrossRef
116.
go back to reference Pym AS, Brodin P, Brosch R, Huerre M, Cole ST (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46(3):709–717PubMedCrossRef Pym AS, Brodin P, Brosch R, Huerre M, Cole ST (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46(3):709–717PubMedCrossRef
117.
go back to reference Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K et al (1995) Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2(6):561–572PubMedCrossRef Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K et al (1995) Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2(6):561–572PubMedCrossRef
118.
go back to reference Lin PL, Myers A, Smith L, Bigbee C, Bigbee M et al (2010) Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum 62(2):340–350PubMedPubMedCentral Lin PL, Myers A, Smith L, Bigbee C, Bigbee M et al (2010) Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum 62(2):340–350PubMedPubMedCentral
119.
go back to reference Iliopoulos A, Psathakis K, Aslanidis S, Skagias L, Sfikakis PP (2006) Tuberculosis and granuloma formation in patients receiving anti-TNF therapy. Int J Tuberc Lung Dis 10(5):588–590PubMed Iliopoulos A, Psathakis K, Aslanidis S, Skagias L, Sfikakis PP (2006) Tuberculosis and granuloma formation in patients receiving anti-TNF therapy. Int J Tuberc Lung Dis 10(5):588–590PubMed
120.
121.
go back to reference Aguilo JI, Alonso H, Uranga S, Marinova D, Arbues A et al (2013) ESX-1-induced apoptosis is involved in cell-to-cell spread of Mycobacterium tuberculosis. Cell Microbiol 15(12):1994–2005PubMedCrossRef Aguilo JI, Alonso H, Uranga S, Marinova D, Arbues A et al (2013) ESX-1-induced apoptosis is involved in cell-to-cell spread of Mycobacterium tuberculosis. Cell Microbiol 15(12):1994–2005PubMedCrossRef
122.
123.
go back to reference Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345(15):1098–1104PubMedCrossRef Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345(15):1098–1104PubMedCrossRef
124.
go back to reference Bekker LG, Moreira AL, Bergtold A, Freeman S, Ryffel B et al (2000) Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun 68(12):6954–6961PubMedPubMedCentralCrossRef Bekker LG, Moreira AL, Bergtold A, Freeman S, Ryffel B et al (2000) Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun 68(12):6954–6961PubMedPubMedCentralCrossRef
125.
go back to reference Tobin DM, Roca FJ, Oh SF, McFarland R, Vickery TW et al (2012) Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148(3):434–446PubMedPubMedCentralCrossRef Tobin DM, Roca FJ, Oh SF, McFarland R, Vickery TW et al (2012) Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148(3):434–446PubMedPubMedCentralCrossRef
126.
go back to reference Hunter RL, Jagannath C, Actor JK (2007) Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs. Tuberculosis (Edinb) 87(4):267–278CrossRef Hunter RL, Jagannath C, Actor JK (2007) Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs. Tuberculosis (Edinb) 87(4):267–278CrossRef
127.
go back to reference Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C et al (2008) Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4(11):e1000204PubMedPubMedCentralCrossRef Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C et al (2008) Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4(11):e1000204PubMedPubMedCentralCrossRef
128.
go back to reference Caceres N, Tapia G, Ojanguren I, Altare F, Gil O et al (2009) Evolution of foamy macrophages in the pulmonary granulomas of experimental tuberculosis models. Tuberculosis (Edinb) 89(2):175–182CrossRef Caceres N, Tapia G, Ojanguren I, Altare F, Gil O et al (2009) Evolution of foamy macrophages in the pulmonary granulomas of experimental tuberculosis models. Tuberculosis (Edinb) 89(2):175–182CrossRef
129.
go back to reference Dkhar HK, Nanduri R, Mahajan S, Dave S, Saini A et al (2014) Mycobacterium tuberculosis keto-mycolic acid and macrophage nuclear receptor TR4 modulate foamy biogenesis in granulomas: a case of a heterologous and noncanonical ligand-receptor pair. J Immunol 193(1):295–305PubMedCrossRef Dkhar HK, Nanduri R, Mahajan S, Dave S, Saini A et al (2014) Mycobacterium tuberculosis keto-mycolic acid and macrophage nuclear receptor TR4 modulate foamy biogenesis in granulomas: a case of a heterologous and noncanonical ligand-receptor pair. J Immunol 193(1):295–305PubMedCrossRef
130.
go back to reference Puissegur MP, Lay G, Gilleron M, Botella L, Nigou J et al (2007) Mycobacterial lipomannan induces granuloma macrophage fusion via a TLR2-dependent, A. J Immunol 178(5):3161–3169PubMedCrossRef Puissegur MP, Lay G, Gilleron M, Botella L, Nigou J et al (2007) Mycobacterial lipomannan induces granuloma macrophage fusion via a TLR2-dependent, A. J Immunol 178(5):3161–3169PubMedCrossRef
131.
go back to reference Feng Y, Dorhoi A, Mollenkopf HJ, Yin H, Dong Z et al (2014) Platelets direct monocyte differentiation into epithelioid-like multinucleated giant foam cells with suppressive capacity upon mycobacterial stimulation. J Infect Dis 210(11):1700–1710PubMedPubMedCentralCrossRef Feng Y, Dorhoi A, Mollenkopf HJ, Yin H, Dong Z et al (2014) Platelets direct monocyte differentiation into epithelioid-like multinucleated giant foam cells with suppressive capacity upon mycobacterial stimulation. J Infect Dis 210(11):1700–1710PubMedPubMedCentralCrossRef
132.
go back to reference Lay G, Poquet Y, Salek-Peyron P, Puissegur MP, Botanch C et al (2007) Langhans giant cells from M. tuberculosis-induced human granulomas cannot mediate mycobacterial uptake. J Pathol 211(1):76–85PubMedCrossRef Lay G, Poquet Y, Salek-Peyron P, Puissegur MP, Botanch C et al (2007) Langhans giant cells from M. tuberculosis-induced human granulomas cannot mediate mycobacterial uptake. J Pathol 211(1):76–85PubMedCrossRef
133.
go back to reference Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH et al (2013) Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol 191(2):773–784PubMedPubMedCentralCrossRef Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH et al (2013) Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol 191(2):773–784PubMedPubMedCentralCrossRef
134.
135.
go back to reference Buddle BM, Skinner MA, Wedlock DN, de Lisle GW, Vordermeier HM et al (2005) Cattle as a model for development of vaccines against human tuberculosis. Tuberculosis (Edinb) 85(1–2):19–24CrossRef Buddle BM, Skinner MA, Wedlock DN, de Lisle GW, Vordermeier HM et al (2005) Cattle as a model for development of vaccines against human tuberculosis. Tuberculosis (Edinb) 85(1–2):19–24CrossRef
136.
go back to reference Mattila JT, Maiello P, Sun T, Via LE, Flynn JL (2015) Granzyme B-expressing neutrophils correlate with bacterial load in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Cell Microbiol 17(8):1085–1097PubMedPubMedCentralCrossRef Mattila JT, Maiello P, Sun T, Via LE, Flynn JL (2015) Granzyme B-expressing neutrophils correlate with bacterial load in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Cell Microbiol 17(8):1085–1097PubMedPubMedCentralCrossRef
137.
go back to reference Knaul JK, Jorg S, Oberbeck-Mueller D, Heinemann E, Scheuermann L et al (2014) Lung-residing myeloid-derived suppressors display dual functionality in murine pulmonary tuberculosis. Am J Respir Crit Care Med 190(9):1053–1066PubMedCrossRef Knaul JK, Jorg S, Oberbeck-Mueller D, Heinemann E, Scheuermann L et al (2014) Lung-residing myeloid-derived suppressors display dual functionality in murine pulmonary tuberculosis. Am J Respir Crit Care Med 190(9):1053–1066PubMedCrossRef
138.
go back to reference du Plessis N, Loebenberg L, Kriel M, von Groote-Bidlingmaier F, Ribechini E et al (2013) Increased frequency of myeloid-derived suppressor cells during active tuberculosis and after recent Mycobacterium tuberculosis infection suppresses T-cell function. Am J Respir Crit Care Med 188(6):724–732PubMedCrossRef du Plessis N, Loebenberg L, Kriel M, von Groote-Bidlingmaier F, Ribechini E et al (2013) Increased frequency of myeloid-derived suppressor cells during active tuberculosis and after recent Mycobacterium tuberculosis infection suppresses T-cell function. Am J Respir Crit Care Med 188(6):724–732PubMedCrossRef
139.
go back to reference Duque-Correa MA, Kuhl AA, Rodriguez PC, Zedler U, Schommer-Leitner S et al (2014) Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proc Natl Acad Sci U S A 111(38):E4024–E4032PubMedPubMedCentralCrossRef Duque-Correa MA, Kuhl AA, Rodriguez PC, Zedler U, Schommer-Leitner S et al (2014) Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proc Natl Acad Sci U S A 111(38):E4024–E4032PubMedPubMedCentralCrossRef
140.
go back to reference Slight SR, Rangel-Moreno J, Gopal R, Lin Y, Fallert Junecko BA et al (2013) CXCR5(+) T helper cells mediate protective immunity against tuberculosis. J Clin Invest 123(2):712–726PubMedPubMedCentral Slight SR, Rangel-Moreno J, Gopal R, Lin Y, Fallert Junecko BA et al (2013) CXCR5(+) T helper cells mediate protective immunity against tuberculosis. J Clin Invest 123(2):712–726PubMedPubMedCentral
141.
go back to reference Torrado E, Fountain JJ, Liao M, Tighe M, Reiley WW et al (2015) Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection. J Exp Med 212(9):1449–1463PubMedPubMedCentralCrossRef Torrado E, Fountain JJ, Liao M, Tighe M, Reiley WW et al (2015) Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection. J Exp Med 212(9):1449–1463PubMedPubMedCentralCrossRef
142.
go back to reference Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD et al (2014) Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J Immunol 192(7):2965–2969PubMedPubMedCentralCrossRef Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD et al (2014) Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J Immunol 192(7):2965–2969PubMedPubMedCentralCrossRef
143.
go back to reference Moguche AO, Shafiani S, Clemons C, Larson RP, Dinh C et al (2015) ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med 212(5):715–728PubMedPubMedCentralCrossRef Moguche AO, Shafiani S, Clemons C, Larson RP, Dinh C et al (2015) ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med 212(5):715–728PubMedPubMedCentralCrossRef
144.
go back to reference Ulrichs T, Kosmiadi GA, Trusov V, Jorg S, Pradl L et al (2004) Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J Pathol 204(2):217–228PubMedCrossRef Ulrichs T, Kosmiadi GA, Trusov V, Jorg S, Pradl L et al (2004) Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J Pathol 204(2):217–228PubMedCrossRef
145.
go back to reference Brighenti S, Andersson J (2012) Local immune responses in human tuberculosis: learning from the site of infection. J Infect Dis 205(Suppl 2):S316–S324PubMedCrossRef Brighenti S, Andersson J (2012) Local immune responses in human tuberculosis: learning from the site of infection. J Infect Dis 205(Suppl 2):S316–S324PubMedCrossRef
146.
go back to reference Tsai MC, Chakravarty S, Zhu G, Xu J, Tanaka K et al (2006) Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol 8(2):218–232PubMedCrossRef Tsai MC, Chakravarty S, Zhu G, Xu J, Tanaka K et al (2006) Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol 8(2):218–232PubMedCrossRef
147.
go back to reference Shen P, Fillatreau S (2015) Suppressive functions of B cells in infectious diseases. Int Immunol . doi: 10.1093/intimm/dxv037. Shen P, Fillatreau S (2015) Suppressive functions of B cells in infectious diseases. Int Immunol . doi: 10.1093/intimm/dxv037.
148.
go back to reference Shen P, Fillatreau S (2015) Antibody-independent functions of B cells: a focus on cytokines. Nat Rev Immunol 15(7):441–451PubMedCrossRef Shen P, Fillatreau S (2015) Antibody-independent functions of B cells: a focus on cytokines. Nat Rev Immunol 15(7):441–451PubMedCrossRef
149.
go back to reference Maglione PJ, Xu J, Chan J (2007) B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J Immunol 178(11):7222–7234PubMedCrossRef Maglione PJ, Xu J, Chan J (2007) B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J Immunol 178(11):7222–7234PubMedCrossRef
150.
go back to reference Bosio CM, Gardner D, Elkins KL (2000) Infection of B cell-deficient mice with CDC 1551, a clinical isolate of Mycobacterium tuberculosis: delay in dissemination and development of lung pathology. J Immunol 164(12):6417–6425PubMedCrossRef Bosio CM, Gardner D, Elkins KL (2000) Infection of B cell-deficient mice with CDC 1551, a clinical isolate of Mycobacterium tuberculosis: delay in dissemination and development of lung pathology. J Immunol 164(12):6417–6425PubMedCrossRef
151.
go back to reference Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS et al (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453(7196):807–811PubMedPubMedCentralCrossRef Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS et al (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453(7196):807–811PubMedPubMedCentralCrossRef
152.
go back to reference Oehlers SH, Cronan MR, Scott NR, Thomas MI, Okuda KS et al (2015) Interception of host angiogenic signalling limits mycobacterial growth. Nature 517(7536):612–615PubMedPubMedCentralCrossRef Oehlers SH, Cronan MR, Scott NR, Thomas MI, Okuda KS et al (2015) Interception of host angiogenic signalling limits mycobacterial growth. Nature 517(7536):612–615PubMedPubMedCentralCrossRef
154.
go back to reference Matsuyama W, Hashiguchi T, Matsumuro K, Iwami F, Hirotsu Y et al (2000) Increased serum level of vascular endothelial growth factor in pulmonary tuberculosis. Am J Respir Crit Care Med 162(3 Pt 1):1120–1122PubMedCrossRef Matsuyama W, Hashiguchi T, Matsumuro K, Iwami F, Hirotsu Y et al (2000) Increased serum level of vascular endothelial growth factor in pulmonary tuberculosis. Am J Respir Crit Care Med 162(3 Pt 1):1120–1122PubMedCrossRef
155.
go back to reference Ulrichs T, Kosmiadi GA, Jorg S, Pradl L, Titukhina M et al (2005) Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma. J Infect Dis 192(1):89–97PubMedCrossRef Ulrichs T, Kosmiadi GA, Jorg S, Pradl L, Titukhina M et al (2005) Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma. J Infect Dis 192(1):89–97PubMedCrossRef
156.
go back to reference Matty MA, Roca FJ, Cronan MR, Tobin DM (2015) Adventures within the speckled band: heterogeneity, angiogenesis, and balanced inflammation in the tuberculous granuloma. Immunol Rev 264(1):276–287PubMedPubMedCentralCrossRef Matty MA, Roca FJ, Cronan MR, Tobin DM (2015) Adventures within the speckled band: heterogeneity, angiogenesis, and balanced inflammation in the tuberculous granuloma. Immunol Rev 264(1):276–287PubMedPubMedCentralCrossRef
157.
go back to reference Kang YJ, Jo JO, Ock MS, Yoo YB, Chun BK et al (2014) Over-expression of thymosin beta4 in granulomatous lung tissue with active pulmonary tuberculosis. Tuberculosis (Edinb) 94(3):323–331CrossRef Kang YJ, Jo JO, Ock MS, Yoo YB, Chun BK et al (2014) Over-expression of thymosin beta4 in granulomatous lung tissue with active pulmonary tuberculosis. Tuberculosis (Edinb) 94(3):323–331CrossRef
158.
go back to reference Datta M, Via LE, Kamoun WS, Liu C, Chen W et al (2015) Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc Natl Acad Sci U S A 112(6):1827–1832PubMedPubMedCentralCrossRef Datta M, Via LE, Kamoun WS, Liu C, Chen W et al (2015) Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc Natl Acad Sci U S A 112(6):1827–1832PubMedPubMedCentralCrossRef
159.
go back to reference Barry S, Breen R, Lipman M, Johnson M, Janossy G (2009) Impaired antigen-specific CD4(+) T lymphocyte responses in cavitary tuberculosis. Tuberculosis (Edinb) 89(1):48–53CrossRef Barry S, Breen R, Lipman M, Johnson M, Janossy G (2009) Impaired antigen-specific CD4(+) T lymphocyte responses in cavitary tuberculosis. Tuberculosis (Edinb) 89(1):48–53CrossRef
160.
go back to reference Welsh KJ, Risin SA, Actor JK, Hunter RL (2011) Immunopathology of postprimary tuberculosis: increased T-regulatory cells and DEC-205-positive foamy macrophages in cavitary lesions. Clin Dev Immunol 2011:307631PubMedPubMedCentralCrossRef Welsh KJ, Risin SA, Actor JK, Hunter RL (2011) Immunopathology of postprimary tuberculosis: increased T-regulatory cells and DEC-205-positive foamy macrophages in cavitary lesions. Clin Dev Immunol 2011:307631PubMedPubMedCentralCrossRef
161.
go back to reference Perrin FM, Woodward N, Phillips PP, McHugh TD, Nunn AJ et al (2010) Radiological cavitation, sputum mycobacterial load and treatment response in pulmonary tuberculosis. Int J Tuberc Lung Dis 14(12):1596–1602PubMed Perrin FM, Woodward N, Phillips PP, McHugh TD, Nunn AJ et al (2010) Radiological cavitation, sputum mycobacterial load and treatment response in pulmonary tuberculosis. Int J Tuberc Lung Dis 14(12):1596–1602PubMed
162.
go back to reference Ko JM, Park HJ, Kim CH, Song SW (2015) The relation between CT findings and sputum microbiology studies in active pulmonary tuberculosis. Eur J Radiol doi: 10.1016/j.ejrad.2015.07.032 Ko JM, Park HJ, Kim CH, Song SW (2015) The relation between CT findings and sputum microbiology studies in active pulmonary tuberculosis. Eur J Radiol doi: 10.1016/j.ejrad.2015.07.032
163.
go back to reference Benator D, Bhattacharya M, Bozeman L, Burman W, Cantazaro A et al (2002) Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIV-negative patients: a randomised clinical trial. Lancet 360(9332):528–534PubMedCrossRef Benator D, Bhattacharya M, Bozeman L, Burman W, Cantazaro A et al (2002) Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIV-negative patients: a randomised clinical trial. Lancet 360(9332):528–534PubMedCrossRef
164.
go back to reference Kempker RR, Rabin AS, Nikolaishvili K, Kalandadze I, Gogishvili S et al (2012) Additional drug resistance in Mycobacterium tuberculosis isolates from resected cavities among patients with multidrug-resistant or extensively drug-resistant pulmonary tuberculosis. Clin Infect Dis 54(6):e51–e54PubMedPubMedCentralCrossRef Kempker RR, Rabin AS, Nikolaishvili K, Kalandadze I, Gogishvili S et al (2012) Additional drug resistance in Mycobacterium tuberculosis isolates from resected cavities among patients with multidrug-resistant or extensively drug-resistant pulmonary tuberculosis. Clin Infect Dis 54(6):e51–e54PubMedPubMedCentralCrossRef
165.
go back to reference Chatterjee A, D’Souza D, Vira T, Bamne A, Ambe GT et al (2010) Strains of Mycobacterium tuberculosis from western Maharashtra, India, exhibit a high degree of diversity and strain-specific associations with drug resistance, cavitary disease, and treatment failure. J Clin Microbiol 48(10):3593–3599PubMedPubMedCentralCrossRef Chatterjee A, D’Souza D, Vira T, Bamne A, Ambe GT et al (2010) Strains of Mycobacterium tuberculosis from western Maharashtra, India, exhibit a high degree of diversity and strain-specific associations with drug resistance, cavitary disease, and treatment failure. J Clin Microbiol 48(10):3593–3599PubMedPubMedCentralCrossRef
166.
go back to reference Visser ME, Stead MC, Walzl G, Warren R, Schomaker M et al (2012) Baseline predictors of sputum culture conversion in pulmonary tuberculosis: importance of cavities, smoking, time to detection and W-Beijing genotype. PLoS One 7(1):e29588PubMedPubMedCentralCrossRef Visser ME, Stead MC, Walzl G, Warren R, Schomaker M et al (2012) Baseline predictors of sputum culture conversion in pulmonary tuberculosis: importance of cavities, smoking, time to detection and W-Beijing genotype. PLoS One 7(1):e29588PubMedPubMedCentralCrossRef
167.
go back to reference Dannenberg AM Jr (1994) Roles of cytotoxic delayed-type hypersensitivity and macrophage-activating cell-mediated immunity in the pathogenesis of tuberculosis. Immunobiology 191(4–5):461–473PubMedCrossRef Dannenberg AM Jr (1994) Roles of cytotoxic delayed-type hypersensitivity and macrophage-activating cell-mediated immunity in the pathogenesis of tuberculosis. Immunobiology 191(4–5):461–473PubMedCrossRef
168.
go back to reference Lurie MB (1964) Resistance to tuberculosis: experimental studies in native and acquired defensive mechanisms. Harvard University Press, Cambridge, MassCrossRef Lurie MB (1964) Resistance to tuberculosis: experimental studies in native and acquired defensive mechanisms. Harvard University Press, Cambridge, MassCrossRef
169.
go back to reference Dannenberg AM Jr (2009) Liquefaction and cavity formation in pulmonary TB: a simple method in rabbit skin to test inhibitors. Tuberculosis (Edinb) 89(4):243–247CrossRef Dannenberg AM Jr (2009) Liquefaction and cavity formation in pulmonary TB: a simple method in rabbit skin to test inhibitors. Tuberculosis (Edinb) 89(4):243–247CrossRef
170.
go back to reference Elkington P, Shiomi T, Breen R, Nuttall RK, Ugarte-Gil CA et al (2011) MMP-1 drives immunopathology in human tuberculosis and transgenic mice. J Clin Invest 121(5):1827–1833PubMedPubMedCentralCrossRef Elkington P, Shiomi T, Breen R, Nuttall RK, Ugarte-Gil CA et al (2011) MMP-1 drives immunopathology in human tuberculosis and transgenic mice. J Clin Invest 121(5):1827–1833PubMedPubMedCentralCrossRef
171.
go back to reference Mehra S, Pahar B, Dutta NK, Conerly CN, Philippi-Falkenstein K et al (2010) Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. PLoS One 5(8):e12266PubMedPubMedCentralCrossRef Mehra S, Pahar B, Dutta NK, Conerly CN, Philippi-Falkenstein K et al (2010) Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. PLoS One 5(8):e12266PubMedPubMedCentralCrossRef
172.
go back to reference Walker NF, Clark SO, Oni T, Andreu N, Tezera L et al (2012) Doxycycline and HIV infection suppress tuberculosis-induced matrix metalloproteinases. Am J Respir Crit Care Med 185(9):989–997PubMedPubMedCentralCrossRef Walker NF, Clark SO, Oni T, Andreu N, Tezera L et al (2012) Doxycycline and HIV infection suppress tuberculosis-induced matrix metalloproteinases. Am J Respir Crit Care Med 185(9):989–997PubMedPubMedCentralCrossRef
173.
go back to reference Canetti G (1950) Exogenous reinfection and pulmonary tuberculosis a study of the pathology. Tubercle 31(10):224–233PubMedCrossRef Canetti G (1950) Exogenous reinfection and pulmonary tuberculosis a study of the pathology. Tubercle 31(10):224–233PubMedCrossRef
174.
go back to reference Rich AR (1951) The pathogenesis of tuberculosis. Thomas Publisher, Springfield, IL, Charles C Rich AR (1951) The pathogenesis of tuberculosis. Thomas Publisher, Springfield, IL, Charles C
175.
go back to reference Hunter RL, Olsen M, Jagannath C, Actor JK (2006) Trehalose 6,6′-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. Am J Pathol 168(4):1249–1261PubMedPubMedCentralCrossRef Hunter RL, Olsen M, Jagannath C, Actor JK (2006) Trehalose 6,6′-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. Am J Pathol 168(4):1249–1261PubMedPubMedCentralCrossRef
176.
go back to reference Rhoades ER, Geisel RE, Butcher BA, McDonough S, Russell DG (2005) Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis (Edinb) 85(3):159–176CrossRef Rhoades ER, Geisel RE, Butcher BA, McDonough S, Russell DG (2005) Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis (Edinb) 85(3):159–176CrossRef
177.
go back to reference Kubler A, Luna B, Larsson C, Ammerman NC, Andrade BB et al (2015) Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation. J Pathol 235(3):431–444PubMedPubMedCentralCrossRef Kubler A, Luna B, Larsson C, Ammerman NC, Andrade BB et al (2015) Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation. J Pathol 235(3):431–444PubMedPubMedCentralCrossRef
178.
go back to reference Horwitz MA, Harth G (2003) A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infect Immun 71(4):1672–1679PubMedPubMedCentralCrossRef Horwitz MA, Harth G (2003) A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infect Immun 71(4):1672–1679PubMedPubMedCentralCrossRef
179.
go back to reference Lanoix JP, Betoudji F, Nuermberger E (2014) Novel regimens identified in mice for treatment of latent tuberculosis infection in contacts of patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother 58(4):2316–2321PubMedPubMedCentralCrossRef Lanoix JP, Betoudji F, Nuermberger E (2014) Novel regimens identified in mice for treatment of latent tuberculosis infection in contacts of patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother 58(4):2316–2321PubMedPubMedCentralCrossRef
181.
go back to reference Al SB, Shiomi T, Tezera L, Bielecka MK, Workman V et al (2015) The extracellular matrix regulates granuloma necrosis in tuberculosis. J Infect Dis 212(3):463–473CrossRef Al SB, Shiomi T, Tezera L, Bielecka MK, Workman V et al (2015) The extracellular matrix regulates granuloma necrosis in tuberculosis. J Infect Dis 212(3):463–473CrossRef
182.
go back to reference Seddon J, Kasprowicz V, Walker NF, Yuen HM, Sunpath H et al (2013) Procollagen III N-terminal propeptide and desmosine are released by matrix destruction in pulmonary tuberculosis. J Infect Dis 208(10):1571–1579PubMedPubMedCentralCrossRef Seddon J, Kasprowicz V, Walker NF, Yuen HM, Sunpath H et al (2013) Procollagen III N-terminal propeptide and desmosine are released by matrix destruction in pulmonary tuberculosis. J Infect Dis 208(10):1571–1579PubMedPubMedCentralCrossRef
183.
go back to reference Ugarte-Gil CA, Elkington P, Gilman RH, Coronel J, Tezera LB et al (2013) Induced sputum MMP-1, −3 & -8 concentrations during treatment of tuberculosis. PLoS One 8(4):e61333PubMedPubMedCentralCrossRef Ugarte-Gil CA, Elkington P, Gilman RH, Coronel J, Tezera LB et al (2013) Induced sputum MMP-1, −3 & -8 concentrations during treatment of tuberculosis. PLoS One 8(4):e61333PubMedPubMedCentralCrossRef
184.
go back to reference Hager M, Cowland JB, Borregaard N (2010) Neutrophil granules in health and disease. J Intern Med 268(1):25–34PubMed Hager M, Cowland JB, Borregaard N (2010) Neutrophil granules in health and disease. J Intern Med 268(1):25–34PubMed
185.
go back to reference Eum SY, Kong JH, Hong MS, Lee YJ, Kim JH et al (2010) Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 137(1):122–128PubMedPubMedCentralCrossRef Eum SY, Kong JH, Hong MS, Lee YJ, Kim JH et al (2010) Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 137(1):122–128PubMedPubMedCentralCrossRef
186.
go back to reference Condos R, Rom WN, Liu YM, Schluger NW (1998) Local immune responses correlate with presentation and outcome in tuberculosis. Am J Respir Crit Care Med 157(3 Pt 1):729–735PubMedCrossRef Condos R, Rom WN, Liu YM, Schluger NW (1998) Local immune responses correlate with presentation and outcome in tuberculosis. Am J Respir Crit Care Med 157(3 Pt 1):729–735PubMedCrossRef
187.
go back to reference Ong CW, Elkington PT, Brilha S, Ugarte-Gil C, Tome-Esteban MT et al (2015) Neutrophil-derived MMP-8 drives AMPK-dependent matrix destruction in human pulmonary tuberculosis. PLoS Pathog 11(5):e1004917PubMedPubMedCentralCrossRef Ong CW, Elkington PT, Brilha S, Ugarte-Gil C, Tome-Esteban MT et al (2015) Neutrophil-derived MMP-8 drives AMPK-dependent matrix destruction in human pulmonary tuberculosis. PLoS Pathog 11(5):e1004917PubMedPubMedCentralCrossRef
188.
go back to reference Dorhoi A, Reece ST, Kaufmann SHE (2012) Immunity to intracellular bacteria. In: Paul WE (ed) Fundamental Immunology, 7th edn. Wolters Kluwer Health, Lippincott Williams & Wilkins, Philadelphia, pp 973–1000 Dorhoi A, Reece ST, Kaufmann SHE (2012) Immunity to intracellular bacteria. In: Paul WE (ed) Fundamental Immunology, 7th edn. Wolters Kluwer Health, Lippincott Williams & Wilkins, Philadelphia, pp 973–1000
189.
go back to reference Nedeltchev GG, Raghunand TR, Jassal MS, Lun S, Cheng QJ et al (2009) Extrapulmonary dissemination of Mycobacterium bovis but not Mycobacterium tuberculosis in a bronchoscopic rabbit model of cavitary tuberculosis. Infect Immun 77(2):598–603PubMedPubMedCentralCrossRef Nedeltchev GG, Raghunand TR, Jassal MS, Lun S, Cheng QJ et al (2009) Extrapulmonary dissemination of Mycobacterium bovis but not Mycobacterium tuberculosis in a bronchoscopic rabbit model of cavitary tuberculosis. Infect Immun 77(2):598–603PubMedPubMedCentralCrossRef
190.
go back to reference Guidry TV, Hunter RL Jr, Actor JK (2007) Mycobacterial glycolipid trehalose 6,6′-dimycolate-induced hypersensitive granulomas: contribution of CD4+ lymphocytes. Microbiology 153(Pt 10):3360–3369PubMedPubMedCentralCrossRef Guidry TV, Hunter RL Jr, Actor JK (2007) Mycobacterial glycolipid trehalose 6,6′-dimycolate-induced hypersensitive granulomas: contribution of CD4+ lymphocytes. Microbiology 153(Pt 10):3360–3369PubMedPubMedCentralCrossRef
191.
go back to reference Gideon HP, Phuah J, Myers AJ, Bryson BD, Rodgers MA et al (2015) Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog 11(1):e1004603PubMedPubMedCentralCrossRef Gideon HP, Phuah J, Myers AJ, Bryson BD, Rodgers MA et al (2015) Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog 11(1):e1004603PubMedPubMedCentralCrossRef
Metadata
Title
Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis
Authors
Anca Dorhoi
Stefan H.E. Kaufmann
Publication date
01-03-2016
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 2/2016
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-015-0531-3

Other articles of this Issue 2/2016

Seminars in Immunopathology 2/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.