Skip to main content
Top
Published in: Seminars in Immunopathology 5/2014

01-09-2014 | Review

Immune sensing of nucleic acids in inflammatory skin diseases

Authors: Olivier Demaria, Jeremy Di Domizio, Michel Gilliet

Published in: Seminars in Immunopathology | Issue 5/2014

Login to get access

Abstract

Endosomal and cytosolic nucleic acid receptors are important immune sensors required for the detection of infecting or replicating viruses. The intracellular location of these receptors allows viral recognition and, at the same time, avoids unnecessary immune activation to self-nucleic acids that are continuously released by dying host cells. Recent evidence, however, indicates that endogenous factors such as anti-microbial peptides have the ability to break this protective mechanism. Here, we discuss these factors and illustrate how they drive inflammatory responses by promoting immune recognition of self-nucleic acids in skin wounds and inflammatory skin diseases such as psoriasis and lupus.
Literature
1.
go back to reference Kadowaki N et al (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194(6):863–869PubMedPubMedCentral Kadowaki N et al (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194(6):863–869PubMedPubMedCentral
2.
go back to reference Hemmi H et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745PubMed Hemmi H et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745PubMed
3.
go back to reference Okuya K et al (2010) Spatiotemporal regulation of heat shock protein 90-chaperoned self-DNA and CpG-oligodeoxynucleotide for type I IFN induction via targeting to static early endosome. J Immunol 184(12):7092–7099PubMed Okuya K et al (2010) Spatiotemporal regulation of heat shock protein 90-chaperoned self-DNA and CpG-oligodeoxynucleotide for type I IFN induction via targeting to static early endosome. J Immunol 184(12):7092–7099PubMed
4.
go back to reference Guiducci C et al (2006) Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med 203(8):1999–2008PubMedPubMedCentral Guiducci C et al (2006) Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med 203(8):1999–2008PubMedPubMedCentral
5.
go back to reference Hemmi H et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3(2):196–200PubMed Hemmi H et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3(2):196–200PubMed
6.
go back to reference Heil F et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303(5663):1526–1529PubMed Heil F et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303(5663):1526–1529PubMed
7.
go back to reference Alexopoulou L et al (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857):732–738PubMed Alexopoulou L et al (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857):732–738PubMed
8.
go back to reference Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384PubMed Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384PubMed
9.
go back to reference Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265):788–792PubMed Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265):788–792PubMed
10.
go back to reference Zhong B et al (2008) The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29(4):538–550PubMed Zhong B et al (2008) The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29(4):538–550PubMed
11.
go back to reference Tanaka Y, Chen ZJ, 214 (2012) STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 5:ra20PubMedPubMedCentral Tanaka Y, Chen ZJ, 214 (2012) STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 5:ra20PubMedPubMedCentral
12.
13.
14.
go back to reference Kerur N et al (2011) IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9(5):363–375PubMedPubMedCentral Kerur N et al (2011) IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9(5):363–375PubMedPubMedCentral
15.
go back to reference Takaoka A et al (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448(7152):501–505PubMed Takaoka A et al (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448(7152):501–505PubMed
16.
go back to reference Rebsamen M et al (2009) DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep 10(8):916–922PubMedPubMedCentral Rebsamen M et al (2009) DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep 10(8):916–922PubMedPubMedCentral
17.
go back to reference Zhang X et al (2014) The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 6(3):421–430PubMedPubMedCentral Zhang X et al (2014) The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 6(3):421–430PubMedPubMedCentral
18.
go back to reference Li X et al (2013) Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39(6):1019–1031PubMed Li X et al (2013) Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39(6):1019–1031PubMed
20.
go back to reference Gao P et al (2013) Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153(5):1094–1107PubMed Gao P et al (2013) Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153(5):1094–1107PubMed
21.
go back to reference Ablasser A et al (2013) cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498(7454):380–384PubMedPubMedCentral Ablasser A et al (2013) cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498(7454):380–384PubMedPubMedCentral
22.
go back to reference Zhang X et al (2013) Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 51(2):226–235PubMed Zhang X et al (2013) Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 51(2):226–235PubMed
23.
go back to reference Diner EJ et al (2013) The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 3(5):1355–1361PubMedPubMedCentral Diner EJ et al (2013) The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 3(5):1355–1361PubMedPubMedCentral
24.
go back to reference Sun L et al (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791PubMed Sun L et al (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791PubMed
25.
go back to reference Gao D et al (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341(6148):903–906PubMed Gao D et al (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341(6148):903–906PubMed
26.
go back to reference Li XD et al (2013) Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341(6152):1390–1394PubMed Li XD et al (2013) Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341(6152):1390–1394PubMed
27.
go back to reference Parvatiyar K et al (2012) The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol 13(12):1155–1161PubMedPubMedCentral Parvatiyar K et al (2012) The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol 13(12):1155–1161PubMedPubMedCentral
28.
go back to reference Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412(6847):607–614PubMed Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412(6847):607–614PubMed
29.
go back to reference Zhang X et al (2011) Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J Immunol 186(8):4541–4545PubMedPubMedCentral Zhang X et al (2011) Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J Immunol 186(8):4541–4545PubMedPubMedCentral
30.
go back to reference Kim T et al (2010) Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 107(34):15181–15186PubMedPubMedCentral Kim T et al (2010) Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 107(34):15181–15186PubMedPubMedCentral
31.
go back to reference Zhang Z et al (2011) DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells. J Immunol 187(9):4501–4508PubMedPubMedCentral Zhang Z et al (2011) DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells. J Immunol 187(9):4501–4508PubMedPubMedCentral
32.
go back to reference Albrecht M, Choubey D, Lengauer T (2005) The HIN domain of IFI-200 proteins consists of two OB folds. Biochem Biophys Res Commun 327(3):679–687PubMed Albrecht M, Choubey D, Lengauer T (2005) The HIN domain of IFI-200 proteins consists of two OB folds. Biochem Biophys Res Commun 327(3):679–687PubMed
33.
go back to reference Hornung V et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458(7237):514–518PubMedPubMedCentral Hornung V et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458(7237):514–518PubMedPubMedCentral
34.
go back to reference Burckstummer T et al (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10(3):266–272PubMed Burckstummer T et al (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10(3):266–272PubMed
35.
go back to reference Yoneyama M et al (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5(7):730–737PubMed Yoneyama M et al (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5(7):730–737PubMed
36.
go back to reference Hornung V et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997PubMed Hornung V et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997PubMed
37.
go back to reference Kato H et al (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205(7):1601–1610PubMedPubMedCentral Kato H et al (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205(7):1601–1610PubMedPubMedCentral
38.
go back to reference Gitlin L et al (2006) Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A 103(22):8459–8464PubMedPubMedCentral Gitlin L et al (2006) Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A 103(22):8459–8464PubMedPubMedCentral
39.
go back to reference Malathi K et al (2007) Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448(7155):816–819PubMedPubMedCentral Malathi K et al (2007) Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448(7155):816–819PubMedPubMedCentral
40.
go back to reference Murali A et al (2008) Structure and function of LGP2, a DEX(D/H) helicase that regulates the innate immunity response. J Biol Chem 283(23):15825–15833PubMedPubMedCentral Murali A et al (2008) Structure and function of LGP2, a DEX(D/H) helicase that regulates the innate immunity response. J Biol Chem 283(23):15825–15833PubMedPubMedCentral
41.
go back to reference Pippig DA et al (2009) The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res 37(6):2014–2025PubMedPubMedCentral Pippig DA et al (2009) The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res 37(6):2014–2025PubMedPubMedCentral
42.
go back to reference Takahasi K et al (2009) Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA recognition loop in RIG-I-like receptors. J Biol Chem 284(26):17465–17474PubMedPubMedCentral Takahasi K et al (2009) Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA recognition loop in RIG-I-like receptors. J Biol Chem 284(26):17465–17474PubMedPubMedCentral
43.
go back to reference Ablasser A et al (2009) RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10(10):1065–1072PubMed Ablasser A et al (2009) RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10(10):1065–1072PubMed
44.
go back to reference Chiu YH, Macmillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138(3):576–591PubMedPubMedCentral Chiu YH, Macmillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138(3):576–591PubMedPubMedCentral
45.
go back to reference Yang P et al (2010) The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol 11(6):487–494PubMed Yang P et al (2010) The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol 11(6):487–494PubMed
46.
go back to reference Haas T et al (2008) The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 activation. Immunity 28(3):315–323PubMed Haas T et al (2008) The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 activation. Immunity 28(3):315–323PubMed
48.
go back to reference Yan N et al (2010) The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 11(11):1005–1013PubMedPubMedCentral Yan N et al (2010) The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 11(11):1005–1013PubMedPubMedCentral
49.
go back to reference Morita M et al (2004) Gene-targeted mice lacking the Trex1 (DNase III) 3′–5′ DNA exonuclease develop inflammatory myocarditis. Mol Cell Biol 24(15):6719–6727PubMedPubMedCentral Morita M et al (2004) Gene-targeted mice lacking the Trex1 (DNase III) 3′–5′ DNA exonuclease develop inflammatory myocarditis. Mol Cell Biol 24(15):6719–6727PubMedPubMedCentral
50.
go back to reference Kawane K et al (2001) Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292(5521):1546–1549PubMed Kawane K et al (2001) Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292(5521):1546–1549PubMed
51.
go back to reference Ahn J et al (2012) STING manifests self DNA-dependent inflammatory disease. Proc Natl Acad Sci U S A 109(47):19386–19391PubMedPubMedCentral Ahn J et al (2012) STING manifests self DNA-dependent inflammatory disease. Proc Natl Acad Sci U S A 109(47):19386–19391PubMedPubMedCentral
52.
go back to reference Barton GM, Kagan JC, Medzhitov R (2006) Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7(1):49–56PubMed Barton GM, Kagan JC, Medzhitov R (2006) Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7(1):49–56PubMed
53.
go back to reference Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395PubMed Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395PubMed
54.
go back to reference Ganguly D et al (2009) Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 206(9):1983–1994PubMedPubMedCentral Ganguly D et al (2009) Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 206(9):1983–1994PubMedPubMedCentral
55.
go back to reference Lande R et al (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569PubMed Lande R et al (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569PubMed
56.
go back to reference Chamilos G et al (2012) Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. Blood 120(18):3699–3707PubMedPubMedCentral Chamilos G et al (2012) Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. Blood 120(18):3699–3707PubMedPubMedCentral
57.
go back to reference Stott K et al (2006) Structure of a complex of tandem HMG boxes and DNA. J Mol Biol 360(1):90–104PubMed Stott K et al (2006) Structure of a complex of tandem HMG boxes and DNA. J Mol Biol 360(1):90–104PubMed
58.
go back to reference Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894):191–195PubMed Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894):191–195PubMed
59.
go back to reference Tian J et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8(5):487–496PubMed Tian J et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8(5):487–496PubMed
60.
go back to reference Sirois CM et al (2013) RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. J Exp Med 210(11):2447–2463PubMedPubMedCentral Sirois CM et al (2013) RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. J Exp Med 210(11):2447–2463PubMedPubMedCentral
61.
go back to reference Sims GP et al (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388PubMed Sims GP et al (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388PubMed
62.
63.
go back to reference Di Domizio J et al (2012) Binding with nucleic acids or glycosaminoglycans converts soluble protein oligomers to amyloid. J Biol Chem 287(1):736–747PubMedPubMedCentral Di Domizio J et al (2012) Binding with nucleic acids or glycosaminoglycans converts soluble protein oligomers to amyloid. J Biol Chem 287(1):736–747PubMedPubMedCentral
64.
go back to reference Di Domizio J et al (2012) Nucleic acid-containing amyloid fibrils potently induce type I interferon and stimulate systemic autoimmunity. Proc Natl Acad Sci U S A 109(36):14550–14555PubMedPubMedCentral Di Domizio J et al (2012) Nucleic acid-containing amyloid fibrils potently induce type I interferon and stimulate systemic autoimmunity. Proc Natl Acad Sci U S A 109(36):14550–14555PubMedPubMedCentral
65.
go back to reference Halle A et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–865PubMedPubMedCentral Halle A et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–865PubMedPubMedCentral
66.
go back to reference Leadbetter EA et al (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416(6881):603–607PubMed Leadbetter EA et al (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416(6881):603–607PubMed
67.
go back to reference Lau CM et al (2005) RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 202(9):1171–1177PubMedPubMedCentral Lau CM et al (2005) RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 202(9):1171–1177PubMedPubMedCentral
68.
go back to reference Boule MW et al (2004) Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med 199(12):1631–1640PubMedPubMedCentral Boule MW et al (2004) Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med 199(12):1631–1640PubMedPubMedCentral
69.
go back to reference Means TK et al (2005) Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 115(2):407–417PubMedPubMedCentral Means TK et al (2005) Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 115(2):407–417PubMedPubMedCentral
70.
go back to reference Lovgren T et al (2006) Induction of interferon-alpha by immune complexes or liposomes containing systemic lupus erythematosus autoantigen- and Sjogren’s syndrome autoantigen-associated RNA. Arthritis Rheum 54(6):1917–1927PubMed Lovgren T et al (2006) Induction of interferon-alpha by immune complexes or liposomes containing systemic lupus erythematosus autoantigen- and Sjogren’s syndrome autoantigen-associated RNA. Arthritis Rheum 54(6):1917–1927PubMed
71.
go back to reference Lande R et al (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3(73):73ra19PubMedPubMedCentral Lande R et al (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3(73):73ra19PubMedPubMedCentral
72.
go back to reference Garcia-Romo GS et al (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3(73):73ra20PubMedPubMedCentral Garcia-Romo GS et al (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3(73):73ra20PubMedPubMedCentral
73.
go back to reference Gregorio J et al (2010) Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med 207(13):2921–2930PubMedPubMedCentral Gregorio J et al (2010) Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med 207(13):2921–2930PubMedPubMedCentral
74.
go back to reference Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306PubMed Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306PubMed
75.
go back to reference Jarrossay D et al (2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31(11):3388–3393PubMed Jarrossay D et al (2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31(11):3388–3393PubMed
76.
go back to reference Nestle FO et al (2005) Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med 202(1):135–143PubMedPubMedCentral Nestle FO et al (2005) Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med 202(1):135–143PubMedPubMedCentral
77.
go back to reference Zheng Y et al (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445(7128):648–651PubMed Zheng Y et al (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445(7128):648–651PubMed
78.
go back to reference Liang SC et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203(10):2271–2279PubMedPubMedCentral Liang SC et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203(10):2271–2279PubMedPubMedCentral
79.
go back to reference Capon F et al (2007) Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum Genet 122(2):201–206PubMed Capon F et al (2007) Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum Genet 122(2):201–206PubMed
80.
go back to reference Stuart PE et al (2012) Association of beta-defensin copy number and psoriasis in three cohorts of European origin. J Investig Dermatol 132(10):2407–2413PubMedPubMedCentral Stuart PE et al (2012) Association of beta-defensin copy number and psoriasis in three cohorts of European origin. J Investig Dermatol 132(10):2407–2413PubMedPubMedCentral
81.
go back to reference Gilliet M et al (2004) Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch Dermatol 140(12):1490–1495PubMed Gilliet M et al (2004) Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch Dermatol 140(12):1490–1495PubMed
82.
go back to reference van der Fits L et al (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182(9):5836–5845PubMed van der Fits L et al (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182(9):5836–5845PubMed
83.
go back to reference Tortola L et al (2012) Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J Clin Invest 122(11):3965–3976PubMedPubMedCentral Tortola L et al (2012) Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J Clin Invest 122(11):3965–3976PubMedPubMedCentral
84.
go back to reference Wohn C et al (2013) Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc Natl Acad Sci U S A 110(26):10723–10728PubMedPubMedCentral Wohn C et al (2013) Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc Natl Acad Sci U S A 110(26):10723–10728PubMedPubMedCentral
85.
go back to reference Callahan JA et al (2013) Cutting edge: ABIN-1 protects against psoriasis by restricting MyD88 signals in dendritic cells. J Immunol 191(2):535–539PubMedPubMedCentral Callahan JA et al (2013) Cutting edge: ABIN-1 protects against psoriasis by restricting MyD88 signals in dendritic cells. J Immunol 191(2):535–539PubMedPubMedCentral
86.
go back to reference Cai Y et al (2011) Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 35(4):596–610PubMedPubMedCentral Cai Y et al (2011) Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 35(4):596–610PubMedPubMedCentral
87.
go back to reference Pantelyushin S et al (2012) Rorγt+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J Clin Invest 122(6):2252–2256PubMedPubMedCentral Pantelyushin S et al (2012) Rorγt+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J Clin Invest 122(6):2252–2256PubMedPubMedCentral
88.
go back to reference Van Belle AB et al (2012) IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. J Immunol 188(1):462–469PubMed Van Belle AB et al (2012) IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. J Immunol 188(1):462–469PubMed
89.
go back to reference Croker JA, Kimberly RP (2005) SLE: challenges and candidates in human disease. Trends Immunol 26(11):580–586PubMed Croker JA, Kimberly RP (2005) SLE: challenges and candidates in human disease. Trends Immunol 26(11):580–586PubMed
90.
go back to reference Munoz LE et al (2010) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 6(5):280–289PubMed Munoz LE et al (2010) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 6(5):280–289PubMed
91.
92.
go back to reference Brinkmann V et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535PubMed Brinkmann V et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535PubMed
93.
94.
go back to reference Papayannopoulos V et al (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691PubMedPubMedCentral Papayannopoulos V et al (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691PubMedPubMedCentral
95.
go back to reference Hakkim A et al (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 107(21):9813–9818PubMedPubMedCentral Hakkim A et al (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 107(21):9813–9818PubMedPubMedCentral
96.
go back to reference Baechler EC et al (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100(5):2610–2615PubMedPubMedCentral Baechler EC et al (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100(5):2610–2615PubMedPubMedCentral
97.
go back to reference Guiducci C et al (2010) Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J Exp Med 207(13):2931–2942PubMedPubMedCentral Guiducci C et al (2010) Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J Exp Med 207(13):2931–2942PubMedPubMedCentral
98.
go back to reference Lee YH et al (2012) Associations between TLR polymorphisms and systemic lupus erythematosus: a systematic review and meta-analysis. Clin Exp Rheumatol 30(2):262–265PubMed Lee YH et al (2012) Associations between TLR polymorphisms and systemic lupus erythematosus: a systematic review and meta-analysis. Clin Exp Rheumatol 30(2):262–265PubMed
99.
go back to reference dos Santos BP et al (2012) TLR7/8/9 polymorphisms and their associations in systemic lupus erythematosus patients from southern Brazil. Lupus 21(3):302–309PubMed dos Santos BP et al (2012) TLR7/8/9 polymorphisms and their associations in systemic lupus erythematosus patients from southern Brazil. Lupus 21(3):302–309PubMed
100.
go back to reference Komatsuda A et al (2008) Up-regulated expression of Toll-like receptors mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Exp Immunol 152(3):482–487PubMedPubMedCentral Komatsuda A et al (2008) Up-regulated expression of Toll-like receptors mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Exp Immunol 152(3):482–487PubMedPubMedCentral
101.
go back to reference Fairhurst AM et al (2008) Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur J Immunol 38(7):1971–1978PubMedPubMedCentral Fairhurst AM et al (2008) Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur J Immunol 38(7):1971–1978PubMedPubMedCentral
102.
go back to reference Wu X, Peng SL (2006) Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum 54(1):336–342PubMed Wu X, Peng SL (2006) Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum 54(1):336–342PubMed
104.
go back to reference Desnues B et al (2014) TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc Natl Acad Sci U S A 111(4):1497–1502PubMedPubMedCentral Desnues B et al (2014) TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc Natl Acad Sci U S A 111(4):1497–1502PubMedPubMedCentral
105.
go back to reference Barrat FJ et al (2007) Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur J Immunol 37(12):3582–3586PubMed Barrat FJ et al (2007) Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur J Immunol 37(12):3582–3586PubMed
106.
go back to reference Bave U et al (2003) Fc gamma RIIa is expressed on natural IFN-alpha-producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. J Immunol 171(6):3296–3302PubMed Bave U et al (2003) Fc gamma RIIa is expressed on natural IFN-alpha-producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. J Immunol 171(6):3296–3302PubMed
107.
go back to reference Lovgren T et al (2004) Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum 50(6):1861–1872PubMed Lovgren T et al (2004) Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum 50(6):1861–1872PubMed
108.
go back to reference Viglianti GA et al (2003) Activation of autoreactive B cells by CpG dsDNA. Immunity 19(6):837–847PubMed Viglianti GA et al (2003) Activation of autoreactive B cells by CpG dsDNA. Immunity 19(6):837–847PubMed
109.
go back to reference Kimkong I, Avihingsanon Y, Hirankarn N (2009) Expression profile of HIN200 in leukocytes and renal biopsy of SLE patients by real-time RT-PCR. Lupus 18(12):1066–1072PubMed Kimkong I, Avihingsanon Y, Hirankarn N (2009) Expression profile of HIN200 in leukocytes and renal biopsy of SLE patients by real-time RT-PCR. Lupus 18(12):1066–1072PubMed
110.
go back to reference Choubey D et al (2011) Emerging roles for the interferon-inducible p200-family proteins in sex bias in systemic lupus erythematosus. J Interferon Cytokine Res 31(12):893–906PubMedPubMedCentral Choubey D et al (2011) Emerging roles for the interferon-inducible p200-family proteins in sex bias in systemic lupus erythematosus. J Interferon Cytokine Res 31(12):893–906PubMedPubMedCentral
111.
go back to reference Zhang W et al (2013) DNA-dependent activator of interferon-regulatory factors (DAI) promotes lupus nephritis by activating the calcium pathway. J Biol Chem 288(19):13534–13550PubMedPubMedCentral Zhang W et al (2013) DNA-dependent activator of interferon-regulatory factors (DAI) promotes lupus nephritis by activating the calcium pathway. J Biol Chem 288(19):13534–13550PubMedPubMedCentral
112.
go back to reference Molineros JE et al (2013) Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet 9(2):e1003222PubMedPubMedCentral Molineros JE et al (2013) Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet 9(2):e1003222PubMedPubMedCentral
113.
go back to reference Robinson T et al (2011) Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-alpha and serologic autoimmunity in lupus patients. J Immunol 187(3):1298–1303PubMedPubMedCentral Robinson T et al (2011) Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-alpha and serologic autoimmunity in lupus patients. J Immunol 187(3):1298–1303PubMedPubMedCentral
114.
go back to reference Pothlichet J et al (2011) A loss-of-function variant of the antiviral molecule MAVS is associated with a subset of systemic lupus patients. EMBO Mol Med 3(3):142–152PubMedPubMedCentral Pothlichet J et al (2011) A loss-of-function variant of the antiviral molecule MAVS is associated with a subset of systemic lupus patients. EMBO Mol Med 3(3):142–152PubMedPubMedCentral
115.
go back to reference Funabiki M et al (2014) Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 40(2):199–212PubMed Funabiki M et al (2014) Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 40(2):199–212PubMed
116.
go back to reference Lebon P et al (2002) Interferon and Aicardi-Goutieres syndrome. Eur J Paediatr Neurol 6(Suppl A):A47–A53, discussion A55–8, A77–86PubMed Lebon P et al (2002) Interferon and Aicardi-Goutieres syndrome. Eur J Paediatr Neurol 6(Suppl A):A47–A53, discussion A55–8, A77–86PubMed
117.
go back to reference Rice G et al (2007) Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome. Am J Hum Genet 80(4):811–815PubMedPubMedCentral Rice G et al (2007) Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome. Am J Hum Genet 80(4):811–815PubMedPubMedCentral
118.
go back to reference Rice GI et al (2009) Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41(7):829–832PubMedPubMedCentral Rice GI et al (2009) Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41(7):829–832PubMedPubMedCentral
119.
go back to reference Rice GI et al (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46(5):503–509PubMed Rice GI et al (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46(5):503–509PubMed
120.
go back to reference Liu Y et al (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518 Liu Y et al (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518
121.
go back to reference Dombrowski Y, 82 et al (2011) Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med 3:82ra38PubMedPubMedCentral Dombrowski Y, 82 et al (2011) Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med 3:82ra38PubMedPubMedCentral
Metadata
Title
Immune sensing of nucleic acids in inflammatory skin diseases
Authors
Olivier Demaria
Jeremy Di Domizio
Michel Gilliet
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 5/2014
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-014-0445-5

Other articles of this Issue 5/2014

Seminars in Immunopathology 5/2014 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.