Skip to main content
Top
Published in: Seminars in Immunopathology 1/2010

01-03-2010 | Review

Development, regulation and functional capacities of Th17 cells

Authors: Keiji Hirota, Bruno Martin, Marc Veldhoen

Published in: Seminars in Immunopathology | Issue 1/2010

Login to get access

Abstract

T helper (Th) 17 cells have been classified as a new lineage, distinct from Th1, Th2 and Treg. Their development requires a unique combination of cytokines and depends on distinct intracellular events, resulting in the production of the signature cytokines interleukin (IL)-17A, IL-17F and IL-22. The differential cytokine expression patterns in Th cells suggest a division of labour in the response against a variety of pathogens. Th17 have an important function in the host-defense-response against extracellular pathogens, but they also have become notorious for their role in the pathogenesis of many autoimmune and allergic disorders. Animal models of autoimmune disorders have shown that Th17 effector molecules and transcription factors play a crucial role in both development and maintenance of the disease. The discovery of Th17 not only enhanced our insight into these disorders but also placed a Th subset at the interface between the innate and adoptive immune systems with the potential to regulate subsequent immunity against pathogens.
Literature
1.
go back to reference Parish CR (1971) Immune response to chemically modified flagellin. II. Evidence for a fundamental relationship between humoral and cell-mediated immunity. J Exp Med 134:21–47PubMedCrossRef Parish CR (1971) Immune response to chemically modified flagellin. II. Evidence for a fundamental relationship between humoral and cell-mediated immunity. J Exp Med 134:21–47PubMedCrossRef
2.
go back to reference Mosmann TR, Cherwinski H, Bond MW et al (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357PubMed Mosmann TR, Cherwinski H, Bond MW et al (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357PubMed
3.
go back to reference Perrigoue JG, Saenz SA, Siracusa MC et al (2009) MHC class II-dependent basophil-CD4(+) T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol 10:697–705PubMedCrossRef Perrigoue JG, Saenz SA, Siracusa MC et al (2009) MHC class II-dependent basophil-CD4(+) T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol 10:697–705PubMedCrossRef
4.
go back to reference Sokol CL, Chu NQ, Yu S et al (2009) Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol 10:713–720PubMedCrossRef Sokol CL, Chu NQ, Yu S et al (2009) Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol 10:713–720PubMedCrossRef
5.
go back to reference Yoshimoto T, Yasuda K, Tanaka H et al (2009) Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4(+) T cells. Nat Immunol 10:706–712PubMedCrossRef Yoshimoto T, Yasuda K, Tanaka H et al (2009) Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4(+) T cells. Nat Immunol 10:706–712PubMedCrossRef
6.
go back to reference Charles N, Watford WT, Ramos HL et al (2009) Lyn kinase controls basophil GATA-3 transcription factor expression and induction of Th2 cell differentiation. Immunity 30:533–543PubMedCrossRef Charles N, Watford WT, Ramos HL et al (2009) Lyn kinase controls basophil GATA-3 transcription factor expression and induction of Th2 cell differentiation. Immunity 30:533–543PubMedCrossRef
7.
go back to reference Itoh M, Takahashi T, Sakaguchi N et al (1999) Thymus and autoimmunity: production of CD25 + CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162:5317–5326PubMed Itoh M, Takahashi T, Sakaguchi N et al (1999) Thymus and autoimmunity: production of CD25 + CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162:5317–5326PubMed
8.
go back to reference Sakaguchi S, Yamaguchi T, Nomura T et al (2008) Regulatory T cells and immune tolerance. Cell 133:775–787PubMedCrossRef Sakaguchi S, Yamaguchi T, Nomura T et al (2008) Regulatory T cells and immune tolerance. Cell 133:775–787PubMedCrossRef
9.
go back to reference Chen W, Jin W, Hardegen N et al (2003) Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886PubMedCrossRef Chen W, Jin W, Hardegen N et al (2003) Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886PubMedCrossRef
10.
go back to reference Dardalhon V, Awasthi A, Kwon H et al (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol 9:1347–1355PubMedCrossRef Dardalhon V, Awasthi A, Kwon H et al (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol 9:1347–1355PubMedCrossRef
11.
go back to reference Veldhoen M, Uyttenhove C, van Snick J et al (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346PubMedCrossRef Veldhoen M, Uyttenhove C, van Snick J et al (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346PubMedCrossRef
12.
go back to reference Faulkner H, Humphreys N, Renauld JC et al (1997) Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur J Immunol 27:2536–2540PubMedCrossRef Faulkner H, Humphreys N, Renauld JC et al (1997) Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur J Immunol 27:2536–2540PubMedCrossRef
13.
go back to reference Temann UA, Geba GP, Rankin JA et al (1998) Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med 188:1307–1320PubMedCrossRef Temann UA, Geba GP, Rankin JA et al (1998) Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med 188:1307–1320PubMedCrossRef
14.
go back to reference Breitfeld D, Ohl L, Kremmer E et al (2000) Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 192:1545–1552PubMedCrossRef Breitfeld D, Ohl L, Kremmer E et al (2000) Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 192:1545–1552PubMedCrossRef
15.
go back to reference Reinhardt RL, Liang HE, Locksley RM (2009) Cytokine-secreting follicular T cells shape the antibody repertoire. Nat Immunol 10:385–393PubMedCrossRef Reinhardt RL, Liang HE, Locksley RM (2009) Cytokine-secreting follicular T cells shape the antibody repertoire. Nat Immunol 10:385–393PubMedCrossRef
16.
go back to reference Vogelzang A, McGuire HM, Yu D et al (2008) A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29:127–137PubMedCrossRef Vogelzang A, McGuire HM, Yu D et al (2008) A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29:127–137PubMedCrossRef
17.
go back to reference Bauquet AT, Jin H, Paterson AM et al (2009) The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 10:167–175PubMedCrossRef Bauquet AT, Jin H, Paterson AM et al (2009) The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 10:167–175PubMedCrossRef
18.
go back to reference Oppmann B, Lesley R, Blom B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725PubMedCrossRef Oppmann B, Lesley R, Blom B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725PubMedCrossRef
19.
go back to reference Cua DJ, Sherlock J, Chen Y et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748PubMedCrossRef Cua DJ, Sherlock J, Chen Y et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748PubMedCrossRef
20.
go back to reference Langrish CL, Chen Y, Blumenschein WM et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240PubMedCrossRef Langrish CL, Chen Y, Blumenschein WM et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240PubMedCrossRef
21.
go back to reference Harrington LE, Hatton RD, Mangan PR et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132PubMedCrossRef Harrington LE, Hatton RD, Mangan PR et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132PubMedCrossRef
22.
go back to reference Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141PubMedCrossRef Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141PubMedCrossRef
23.
go back to reference Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4 + CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036PubMedCrossRef Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4 + CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036PubMedCrossRef
24.
go back to reference Veldhoen M, Hocking RJ, Atkins CJ et al (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–189PubMedCrossRef Veldhoen M, Hocking RJ, Atkins CJ et al (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–189PubMedCrossRef
25.
go back to reference Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238PubMedCrossRef Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238PubMedCrossRef
26.
go back to reference Mangan PR, Harrington LE, O'Quinn DB et al (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234PubMedCrossRef Mangan PR, Harrington LE, O'Quinn DB et al (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234PubMedCrossRef
27.
go back to reference Asseman C, Mauze S, Leach MW et al (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190:995–1004PubMedCrossRef Asseman C, Mauze S, Leach MW et al (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190:995–1004PubMedCrossRef
28.
go back to reference Powrie F, Carlino J, Leach MW et al (1996) A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 183:2669–2674PubMedCrossRef Powrie F, Carlino J, Leach MW et al (1996) A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 183:2669–2674PubMedCrossRef
29.
go back to reference Chen CH, Seguin-Devaux C, Burke NA et al (2003) Transforming growth factor beta blocks Tec kinase phosphorylation, Ca2+ influx, and NFATc translocation causing inhibition of T cell differentiation. J Exp Med 197:1689–1699PubMedCrossRef Chen CH, Seguin-Devaux C, Burke NA et al (2003) Transforming growth factor beta blocks Tec kinase phosphorylation, Ca2+ influx, and NFATc translocation causing inhibition of T cell differentiation. J Exp Med 197:1689–1699PubMedCrossRef
30.
go back to reference Gorelik L, Constant S, Flavell RA (2002) Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med 195:1499–1505PubMedCrossRef Gorelik L, Constant S, Flavell RA (2002) Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med 195:1499–1505PubMedCrossRef
31.
go back to reference Gorelik L, Flavell RA (2000) Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171–181PubMedCrossRef Gorelik L, Flavell RA (2000) Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171–181PubMedCrossRef
32.
go back to reference Heath VL, Murphy EE, Crain C et al (2000) TGF-beta1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur J Immunol 30:2639–2649PubMedCrossRef Heath VL, Murphy EE, Crain C et al (2000) TGF-beta1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur J Immunol 30:2639–2649PubMedCrossRef
33.
go back to reference Lin JT, Martin SL, Xia L et al (2005) TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. J Immunol 174:5950–5958PubMed Lin JT, Martin SL, Xia L et al (2005) TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. J Immunol 174:5950–5958PubMed
34.
go back to reference Li MO, Wan YY, Flavell RA (2007) T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26:579–591PubMedCrossRef Li MO, Wan YY, Flavell RA (2007) T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26:579–591PubMedCrossRef
35.
go back to reference Kulkarni AB, Huh CG, Becker D et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90:770–774PubMedCrossRef Kulkarni AB, Huh CG, Becker D et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90:770–774PubMedCrossRef
36.
go back to reference Shull MM, Ormsby I, Kier AB et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699PubMedCrossRef Shull MM, Ormsby I, Kier AB et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699PubMedCrossRef
37.
go back to reference Allen JB, Manthey CL, Hand AR et al (1990) Rapid onset synovial inflammation and hyperplasia induced by transforming growth factor beta. J Exp Med 171:231–247PubMedCrossRef Allen JB, Manthey CL, Hand AR et al (1990) Rapid onset synovial inflammation and hyperplasia induced by transforming growth factor beta. J Exp Med 171:231–247PubMedCrossRef
38.
go back to reference Wahl SM, Allen JB, Costa GL et al (1993) Reversal of acute and chronic synovial inflammation by anti-transforming growth factor beta. J Exp Med 177:225–230PubMedCrossRef Wahl SM, Allen JB, Costa GL et al (1993) Reversal of acute and chronic synovial inflammation by anti-transforming growth factor beta. J Exp Med 177:225–230PubMedCrossRef
39.
go back to reference McKarns SC, Kaminski NE (2000) TGF-beta 1 differentially regulates IL-2 expression and [3H]-thymidine incorporation in CD3 epsilon mAb- and CD28 mAb-activated splenocytes and thymocytes. Immunopharmacology 48:101–115PubMedCrossRef McKarns SC, Kaminski NE (2000) TGF-beta 1 differentially regulates IL-2 expression and [3H]-thymidine incorporation in CD3 epsilon mAb- and CD28 mAb-activated splenocytes and thymocytes. Immunopharmacology 48:101–115PubMedCrossRef
40.
go back to reference Veldhoen M, Hocking RJ, Flavell RA et al (2006) Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol 7:1151–1156PubMedCrossRef Veldhoen M, Hocking RJ, Flavell RA et al (2006) Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol 7:1151–1156PubMedCrossRef
41.
go back to reference Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797–819PubMedCrossRef Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797–819PubMedCrossRef
42.
go back to reference Alonzi T, Fattori E, Lazzaro D et al (1998) Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med 187:461–468PubMedCrossRef Alonzi T, Fattori E, Lazzaro D et al (1998) Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med 187:461–468PubMedCrossRef
43.
go back to reference Eugster HP, Frei K, Kopf M et al (1998) IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur J Immunol 28:2178–2187PubMedCrossRef Eugster HP, Frei K, Kopf M et al (1998) IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur J Immunol 28:2178–2187PubMedCrossRef
44.
go back to reference Ohshima S, Saeki Y, Mima T et al (1998) Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc Natl Acad Sci U S A 95:8222–8226PubMedCrossRef Ohshima S, Saeki Y, Mima T et al (1998) Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc Natl Acad Sci U S A 95:8222–8226PubMedCrossRef
45.
go back to reference Okuda Y, Sakoda S, Bernard CC et al (1998) IL-6-deficient mice are resistant to the induction of experimental autoimmune encephalomyelitis provoked by myelin oligodendrocyte glycoprotein. Int Immunol 10:703–708PubMedCrossRef Okuda Y, Sakoda S, Bernard CC et al (1998) IL-6-deficient mice are resistant to the induction of experimental autoimmune encephalomyelitis provoked by myelin oligodendrocyte glycoprotein. Int Immunol 10:703–708PubMedCrossRef
46.
go back to reference Hata H, Sakaguchi N, Yoshitomi H et al (2004) Distinct contribution of IL-6, TNF-alpha, IL-1, and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice. J Clin Invest 114:582–588PubMed Hata H, Sakaguchi N, Yoshitomi H et al (2004) Distinct contribution of IL-6, TNF-alpha, IL-1, and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice. J Clin Invest 114:582–588PubMed
47.
go back to reference Chabaud M, Fossiez F, Taupin JL et al (1998) Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol 161:409–414PubMed Chabaud M, Fossiez F, Taupin JL et al (1998) Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol 161:409–414PubMed
48.
go back to reference Korn T, Bettelli E, Gao W et al (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487PubMedCrossRef Korn T, Bettelli E, Gao W et al (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487PubMedCrossRef
49.
go back to reference Nurieva R, Yang XO, Martinez G et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–483PubMedCrossRef Nurieva R, Yang XO, Martinez G et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–483PubMedCrossRef
50.
go back to reference Zhou L, Ivanov II, Spolski R et al (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974PubMedCrossRef Zhou L, Ivanov II, Spolski R et al (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974PubMedCrossRef
51.
go back to reference Chtanova T, Tangye SG, Newton R et al (2004) T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 173:68–78PubMed Chtanova T, Tangye SG, Newton R et al (2004) T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 173:68–78PubMed
52.
go back to reference Nurieva RI, Chung Y, Hwang D et al (2008) Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29:138–149PubMedCrossRef Nurieva RI, Chung Y, Hwang D et al (2008) Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29:138–149PubMedCrossRef
53.
go back to reference Suto A, Kashiwakuma D, Kagami S et al (2008) Development and characterization of IL-21-producing CD4+ T cells. J Exp Med 205:1369–1379PubMedCrossRef Suto A, Kashiwakuma D, Kagami S et al (2008) Development and characterization of IL-21-producing CD4+ T cells. J Exp Med 205:1369–1379PubMedCrossRef
54.
go back to reference Coquet JM, Chakravarti S, Smyth MJ et al (2008) Cutting edge: IL-21 is not essential for Th17 differentiation or experimental autoimmune encephalomyelitis. J Immunol 180:7097–7101PubMed Coquet JM, Chakravarti S, Smyth MJ et al (2008) Cutting edge: IL-21 is not essential for Th17 differentiation or experimental autoimmune encephalomyelitis. J Immunol 180:7097–7101PubMed
55.
go back to reference Liu R, Bai Y, Vollmer TL et al (2008) IL-21 receptor expression determines the temporal phases of experimental autoimmune encephalomyelitis. Exp Neurol 211:14–24PubMedCrossRef Liu R, Bai Y, Vollmer TL et al (2008) IL-21 receptor expression determines the temporal phases of experimental autoimmune encephalomyelitis. Exp Neurol 211:14–24PubMedCrossRef
56.
go back to reference Piao WH, Jee YH, Liu RL et al (2008) IL-21 modulates CD4+ CD25+ regulatory T-cell homeostasis in experimental autoimmune encephalomyelitis. Scand J Immunol 67:37–46PubMedCrossRef Piao WH, Jee YH, Liu RL et al (2008) IL-21 modulates CD4+ CD25+ regulatory T-cell homeostasis in experimental autoimmune encephalomyelitis. Scand J Immunol 67:37–46PubMedCrossRef
57.
go back to reference Sonderegger I, Kisielow J, Meier R et al (2008) IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo. Eur J Immunol 38:1833–1838PubMedCrossRef Sonderegger I, Kisielow J, Meier R et al (2008) IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo. Eur J Immunol 38:1833–1838PubMedCrossRef
58.
go back to reference Saraiva M, Christensen JR, Veldhoen M et al (2009) Interleukin-10 Production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity 31:209–219PubMedCrossRef Saraiva M, Christensen JR, Veldhoen M et al (2009) Interleukin-10 Production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity 31:209–219PubMedCrossRef
59.
go back to reference Murphy CA, Langrish CL, Chen Y et al (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957PubMedCrossRef Murphy CA, Langrish CL, Chen Y et al (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957PubMedCrossRef
60.
go back to reference Awasthi A, Riol-Blanco L, Jager A et al (2009) Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol 182:5904–5908PubMedCrossRef Awasthi A, Riol-Blanco L, Jager A et al (2009) Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol 182:5904–5908PubMedCrossRef
61.
go back to reference Chen Y, Langrish CL, McKenzie B et al (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116:1317–1326PubMedCrossRef Chen Y, Langrish CL, McKenzie B et al (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116:1317–1326PubMedCrossRef
62.
go back to reference Uhlig HH, McKenzie BS, Hue S et al (2006) Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25:309–318PubMedCrossRef Uhlig HH, McKenzie BS, Hue S et al (2006) Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25:309–318PubMedCrossRef
63.
go back to reference McGeachy MJ, Chen Y, Tato CM et al (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10:314–324PubMedCrossRef McGeachy MJ, Chen Y, Tato CM et al (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10:314–324PubMedCrossRef
65.
go back to reference Tanabe O, Akira S, Kamiya T et al (1988) Genomic structure of the murine IL-6 gene. High degree conservation of potential regulatory sequences between mouse and human. J Immunol 141:3875–3881PubMed Tanabe O, Akira S, Kamiya T et al (1988) Genomic structure of the murine IL-6 gene. High degree conservation of potential regulatory sequences between mouse and human. J Immunol 141:3875–3881PubMed
66.
go back to reference Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A et al (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8:942–949PubMedCrossRef Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A et al (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8:942–949PubMedCrossRef
67.
go back to reference Chen Z, Tato CM, Muul L et al (2007) Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum 56:2936–2946PubMedCrossRef Chen Z, Tato CM, Muul L et al (2007) Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum 56:2936–2946PubMedCrossRef
68.
go back to reference Evans HG, Suddason T, Jackson I et al (2007) Optimal induction of T helper 17 cells in humans requires T cell receptor ligation in the context of Toll-like receptor-activated monocytes. Proc Natl Acad Sci U S A 104:17034–17039PubMedCrossRef Evans HG, Suddason T, Jackson I et al (2007) Optimal induction of T helper 17 cells in humans requires T cell receptor ligation in the context of Toll-like receptor-activated monocytes. Proc Natl Acad Sci U S A 104:17034–17039PubMedCrossRef
69.
go back to reference van Beelen AJ, Zelinkova Z, Taanman-Kueter EW et al (2007) Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27:660–669PubMedCrossRef van Beelen AJ, Zelinkova Z, Taanman-Kueter EW et al (2007) Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27:660–669PubMedCrossRef
70.
go back to reference Wilson NJ, Boniface K, Chan JR et al (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–957PubMedCrossRef Wilson NJ, Boniface K, Chan JR et al (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–957PubMedCrossRef
71.
go back to reference Manel N, Unutmaz D, Littman DR (2008) The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 9:641–649PubMedCrossRef Manel N, Unutmaz D, Littman DR (2008) The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 9:641–649PubMedCrossRef
72.
go back to reference Volpe E, Servant N, Zollinger R et al (2008) A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 9:650–657PubMedCrossRef Volpe E, Servant N, Zollinger R et al (2008) A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 9:650–657PubMedCrossRef
73.
go back to reference Yang L, Anderson DE, Baecher-Allan C et al (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454:350–352PubMedCrossRef Yang L, Anderson DE, Baecher-Allan C et al (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454:350–352PubMedCrossRef
74.
go back to reference Ivanov II, McKenzie BS, Zhou L et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133PubMedCrossRef Ivanov II, McKenzie BS, Zhou L et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133PubMedCrossRef
75.
go back to reference Yang XO, Pappu BP, Nurieva R et al (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28:29–39PubMedCrossRef Yang XO, Pappu BP, Nurieva R et al (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28:29–39PubMedCrossRef
76.
go back to reference Veldhoen M, Hirota K, Westendorf AM et al (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109PubMedCrossRef Veldhoen M, Hirota K, Westendorf AM et al (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109PubMedCrossRef
77.
go back to reference Kimura A, Naka T, Nohara K et al (2008) Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci U S A 105:9721–9726PubMedCrossRef Kimura A, Naka T, Nohara K et al (2008) Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci U S A 105:9721–9726PubMedCrossRef
78.
go back to reference Veldhoen M, Hirota K, Christensen J et al (2009) Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med 206:43–49PubMedCrossRef Veldhoen M, Hirota K, Christensen J et al (2009) Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med 206:43–49PubMedCrossRef
79.
go back to reference Wincent E, Amini N, Luecke S et al (2009) The suggested physiologic aryl hydrocarbon receptor activator and cytochrome P4501 substrate 6-formylindolo[3, 2-b]carbazole is present in humans. J Biol Chem 284:2690–2696PubMedCrossRef Wincent E, Amini N, Luecke S et al (2009) The suggested physiologic aryl hydrocarbon receptor activator and cytochrome P4501 substrate 6-formylindolo[3, 2-b]carbazole is present in humans. J Biol Chem 284:2690–2696PubMedCrossRef
80.
go back to reference Quintana FJ, Basso AS, Iglesias AH et al (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71PubMedCrossRef Quintana FJ, Basso AS, Iglesias AH et al (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71PubMedCrossRef
81.
go back to reference Poland A, Palen D, Glover E (1994) Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol Pharmacol 46:915–921PubMed Poland A, Palen D, Glover E (1994) Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol Pharmacol 46:915–921PubMed
82.
go back to reference Schraml BU, Hildner K, Ise W et al (2009) The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 460:405–409PubMed Schraml BU, Hildner K, Ise W et al (2009) The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 460:405–409PubMed
83.
go back to reference Adamson AS, Collins K, Laurence A et al (2009) The current STATus of lymphocyte signaling: new roles for old players. Curr Opin Immunol 21:161–166PubMedCrossRef Adamson AS, Collins K, Laurence A et al (2009) The current STATus of lymphocyte signaling: new roles for old players. Curr Opin Immunol 21:161–166PubMedCrossRef
84.
go back to reference Yang XO, Panopoulos AD, Nurieva R et al (2007) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282:9358–9363PubMedCrossRef Yang XO, Panopoulos AD, Nurieva R et al (2007) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282:9358–9363PubMedCrossRef
85.
go back to reference Yang XO, Nurieva R, Martinez GJ et al (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44–56PubMedCrossRef Yang XO, Nurieva R, Martinez GJ et al (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44–56PubMedCrossRef
86.
go back to reference Qin H, Wang L, Feng T et al (2009) TGF-{beta} promotes Th17 cell development through inhibition of SOCS3. J Immunol 183:97–105PubMedCrossRef Qin H, Wang L, Feng T et al (2009) TGF-{beta} promotes Th17 cell development through inhibition of SOCS3. J Immunol 183:97–105PubMedCrossRef
87.
go back to reference Brustle A, Heink S, Huber M et al (2007) The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 8:958–966PubMedCrossRef Brustle A, Heink S, Huber M et al (2007) The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 8:958–966PubMedCrossRef
88.
go back to reference Chen Q, Yang W, Gupta S et al (2008) IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity 29:899–911PubMedCrossRef Chen Q, Yang W, Gupta S et al (2008) IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity 29:899–911PubMedCrossRef
89.
go back to reference de Beaucoudrey L, Puel A, Filipe-Santos O et al (2008) Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J Exp Med 205:1543–1550PubMedCrossRef de Beaucoudrey L, Puel A, Filipe-Santos O et al (2008) Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J Exp Med 205:1543–1550PubMedCrossRef
90.
go back to reference Minegishi Y, Saito M, Tsuchiya S et al (2007) Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448:1058–1062PubMedCrossRef Minegishi Y, Saito M, Tsuchiya S et al (2007) Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448:1058–1062PubMedCrossRef
91.
go back to reference Ma CS, Chew GY, Simpson N et al (2008) Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med 205:1551–1557PubMedCrossRef Ma CS, Chew GY, Simpson N et al (2008) Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med 205:1551–1557PubMedCrossRef
92.
go back to reference Milner JD, Brenchley JM, Laurence A et al (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–776PubMedCrossRef Milner JD, Brenchley JM, Laurence A et al (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–776PubMedCrossRef
93.
go back to reference Ichiyama K, Yoshida H, Wakabayashi Y et al (2008) Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J Biol Chem 283:17003–17008PubMedCrossRef Ichiyama K, Yoshida H, Wakabayashi Y et al (2008) Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J Biol Chem 283:17003–17008PubMedCrossRef
94.
go back to reference Zhou L, Lopes JE, Chong MM et al (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453:236–240PubMedCrossRef Zhou L, Lopes JE, Chong MM et al (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453:236–240PubMedCrossRef
95.
go back to reference Lochner M, Peduto L, Cherrier M et al (2008) In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t + T cells. J Exp Med 205:1381–1393PubMedCrossRef Lochner M, Peduto L, Cherrier M et al (2008) In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t + T cells. J Exp Med 205:1381–1393PubMedCrossRef
96.
go back to reference Ono M, Yaguchi H, Ohkura N et al (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446:685–689PubMedCrossRef Ono M, Yaguchi H, Ohkura N et al (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446:685–689PubMedCrossRef
97.
go back to reference Zhang F, Meng G, Strober W (2008) Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol 9:1297–1306PubMedCrossRef Zhang F, Meng G, Strober W (2008) Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol 9:1297–1306PubMedCrossRef
99.
go back to reference Delgoffe GM, Kole TP, Zheng Y et al (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:832–844PubMedCrossRef Delgoffe GM, Kole TP, Zheng Y et al (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:832–844PubMedCrossRef
100.
go back to reference Denning TL, Wang YC, Patel SR et al (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8:1086–1094PubMedCrossRef Denning TL, Wang YC, Patel SR et al (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8:1086–1094PubMedCrossRef
101.
go back to reference Mucida D, Park Y, Kim G et al (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256–260PubMedCrossRef Mucida D, Park Y, Kim G et al (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256–260PubMedCrossRef
102.
go back to reference Torchinsky MB, Garaude J, Martin AP et al (2009) Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature 458:78–82PubMedCrossRef Torchinsky MB, Garaude J, Martin AP et al (2009) Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature 458:78–82PubMedCrossRef
103.
go back to reference Uematsu S, Fujimoto K, Jang MH et al (2008) Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol 9:769–776PubMedCrossRef Uematsu S, Fujimoto K, Jang MH et al (2008) Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol 9:769–776PubMedCrossRef
104.
go back to reference Hall JA, Bouladoux N, Sun CM et al (2008) Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29:637–649PubMedCrossRef Hall JA, Bouladoux N, Sun CM et al (2008) Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29:637–649PubMedCrossRef
105.
go back to reference Atarashi K, Nishimura J, Shima T et al (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455:808–812PubMedCrossRef Atarashi K, Nishimura J, Shima T et al (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455:808–812PubMedCrossRef
106.
go back to reference Voo KS, Wang YH, Santori FR et al (2009) Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A 106:4793–4798PubMedCrossRef Voo KS, Wang YH, Santori FR et al (2009) Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A 106:4793–4798PubMedCrossRef
107.
go back to reference Du J, Huang C, Zhou B et al (2008) Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J Immunol 180:4785–4792PubMed Du J, Huang C, Zhou B et al (2008) Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J Immunol 180:4785–4792PubMed
108.
go back to reference Guo S, Cobb D, Smeltz RB (2009) T-bet inhibits the in vivo differentiation of parasite-specific CD4+ Th17 cells in a T cell-intrinsic manner. J Immunol 182:6179–6186PubMedCrossRef Guo S, Cobb D, Smeltz RB (2009) T-bet inhibits the in vivo differentiation of parasite-specific CD4+ Th17 cells in a T cell-intrinsic manner. J Immunol 182:6179–6186PubMedCrossRef
109.
go back to reference Batten M, Li J, Yi S et al (2006) Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 7:929–936PubMedCrossRef Batten M, Li J, Yi S et al (2006) Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 7:929–936PubMedCrossRef
110.
go back to reference Stumhofer JS, Laurence A, Wilson EH et al (2006) Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 7:937–945PubMedCrossRef Stumhofer JS, Laurence A, Wilson EH et al (2006) Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 7:937–945PubMedCrossRef
111.
go back to reference Shinohara ML, Kim JH, Garcia VA et al (2008) Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity 29:68–78PubMedCrossRef Shinohara ML, Kim JH, Garcia VA et al (2008) Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity 29:68–78PubMedCrossRef
112.
go back to reference Guo B, Chang EY, Cheng G (2008) The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 118:1680–1690PubMedCrossRef Guo B, Chang EY, Cheng G (2008) The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 118:1680–1690PubMedCrossRef
113.
go back to reference Liang SC, Long AJ, Bennett F et al (2007) An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 179:7791–7799PubMed Liang SC, Long AJ, Bennett F et al (2007) An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 179:7791–7799PubMed
114.
go back to reference Claudio E, Sonder SU, Saret S et al (2009) The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation. J Immunol 182:1617–1630PubMedCrossRef Claudio E, Sonder SU, Saret S et al (2009) The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation. J Immunol 182:1617–1630PubMedCrossRef
115.
go back to reference Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9:556–567PubMedCrossRef Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9:556–567PubMedCrossRef
116.
go back to reference Ishigame H, Kakuta S, Nagai T et al (2009) Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30:108–119PubMedCrossRef Ishigame H, Kakuta S, Nagai T et al (2009) Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30:108–119PubMedCrossRef
117.
go back to reference Yao Z, Fanslow WC, Seldin MF et al (1995) Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3:811–821PubMedCrossRef Yao Z, Fanslow WC, Seldin MF et al (1995) Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3:811–821PubMedCrossRef
118.
go back to reference Toy D, Kugler D, Wolfson M et al (2006) Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol 177:36–39PubMed Toy D, Kugler D, Wolfson M et al (2006) Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol 177:36–39PubMed
119.
go back to reference Haudenschild D, Moseley T, Rose L et al (2002) Soluble and transmembrane isoforms of novel interleukin-17 receptor-like protein by RNA splicing and expression in prostate cancer. J Biol Chem 277:4309–4316PubMedCrossRef Haudenschild D, Moseley T, Rose L et al (2002) Soluble and transmembrane isoforms of novel interleukin-17 receptor-like protein by RNA splicing and expression in prostate cancer. J Biol Chem 277:4309–4316PubMedCrossRef
120.
go back to reference Kuestner RE, Taft DW, Haran A et al (2007) Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol 179:5462–5473PubMed Kuestner RE, Taft DW, Haran A et al (2007) Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol 179:5462–5473PubMed
121.
go back to reference Dumoutier L, Louahed J, Renauld JC (2000) Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 164:1814–1819PubMed Dumoutier L, Louahed J, Renauld JC (2000) Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 164:1814–1819PubMed
122.
go back to reference Dumoutier L, Van Roost E, Colau D et al (2000) Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc Natl Acad Sci U S A 97:10144–10149PubMedCrossRef Dumoutier L, Van Roost E, Colau D et al (2000) Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc Natl Acad Sci U S A 97:10144–10149PubMedCrossRef
123.
go back to reference Kotenko SV, Izotova LS, Mirochnitchenko OV et al (2001) Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol 166:7096–7103PubMed Kotenko SV, Izotova LS, Mirochnitchenko OV et al (2001) Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol 166:7096–7103PubMed
124.
go back to reference Kotenko SV, Izotova LS, Mirochnitchenko OV et al (2001) Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J Biol Chem 276:2725–2732PubMedCrossRef Kotenko SV, Izotova LS, Mirochnitchenko OV et al (2001) Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J Biol Chem 276:2725–2732PubMedCrossRef
125.
go back to reference Liang SC, Tan XY, Luxenberg DP et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279PubMedCrossRef Liang SC, Tan XY, Luxenberg DP et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279PubMedCrossRef
126.
go back to reference Aujla SJ, Chan YR, Zheng M et al (2008) IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 14:275–281PubMedCrossRef Aujla SJ, Chan YR, Zheng M et al (2008) IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 14:275–281PubMedCrossRef
127.
go back to reference Zheng Y, Valdez PA, Danilenko DM et al (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14:282–289PubMedCrossRef Zheng Y, Valdez PA, Danilenko DM et al (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14:282–289PubMedCrossRef
128.
go back to reference Pan H, Hong F, Radaeva S et al (2004) Hydrodynamic gene delivery of interleukin-22 protects the mouse liver from concanavalin A-, carbon tetrachloride-, and Fas ligand-induced injury via activation of STAT3. Cell Mol Immunol 1:43–49PubMed Pan H, Hong F, Radaeva S et al (2004) Hydrodynamic gene delivery of interleukin-22 protects the mouse liver from concanavalin A-, carbon tetrachloride-, and Fas ligand-induced injury via activation of STAT3. Cell Mol Immunol 1:43–49PubMed
129.
go back to reference Radaeva S, Sun R, Pan HN et al (2004) Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 39:1332–1342PubMedCrossRef Radaeva S, Sun R, Pan HN et al (2004) Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 39:1332–1342PubMedCrossRef
130.
go back to reference Zenewicz LA, Yancopoulos GD, Valenzuela DM et al (2007) Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27:647–659PubMedCrossRef Zenewicz LA, Yancopoulos GD, Valenzuela DM et al (2007) Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27:647–659PubMedCrossRef
131.
go back to reference Pickert G, Neufert C, Leppkes M et al (2009) STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206:1465–1472PubMedCrossRef Pickert G, Neufert C, Leppkes M et al (2009) STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206:1465–1472PubMedCrossRef
132.
go back to reference Zheng Y, Danilenko DM, Valdez P et al (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–651PubMedCrossRef Zheng Y, Danilenko DM, Valdez P et al (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–651PubMedCrossRef
133.
go back to reference Kleinewietfeld M, Puentes F, Borsellino G et al (2005) CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset. Blood 105:2877–2886PubMedCrossRef Kleinewietfeld M, Puentes F, Borsellino G et al (2005) CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset. Blood 105:2877–2886PubMedCrossRef
134.
go back to reference Charbonnier AS, Kohrgruber N, Kriehuber E et al (1999) Macrophage inflammatory protein 3alpha is involved in the constitutive trafficking of epidermal langerhans cells. J Exp Med 190:1755–1768PubMedCrossRef Charbonnier AS, Kohrgruber N, Kriehuber E et al (1999) Macrophage inflammatory protein 3alpha is involved in the constitutive trafficking of epidermal langerhans cells. J Exp Med 190:1755–1768PubMedCrossRef
135.
go back to reference Dieu-Nosjean MC, Massacrier C, Homey B et al (2000) Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J Exp Med 192:705–718PubMedCrossRef Dieu-Nosjean MC, Massacrier C, Homey B et al (2000) Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J Exp Med 192:705–718PubMedCrossRef
136.
go back to reference Iwasaki A, Kelsall BL (2000) Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine. J Exp Med 191:1381–1394PubMedCrossRef Iwasaki A, Kelsall BL (2000) Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine. J Exp Med 191:1381–1394PubMedCrossRef
137.
go back to reference Le Borgne M, Etchart N, Goubier A et al (2006) Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24:191–201PubMedCrossRef Le Borgne M, Etchart N, Goubier A et al (2006) Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24:191–201PubMedCrossRef
138.
go back to reference Liao F, Rabin RL, Smith CS et al (1999) CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J Immunol 162:186–194PubMed Liao F, Rabin RL, Smith CS et al (1999) CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J Immunol 162:186–194PubMed
139.
go back to reference Varona R, Villares R, Carramolino L et al (2001) CCR6-deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed-type hypersensitivity responses. J Clin Invest 107:R37–R45PubMedCrossRef Varona R, Villares R, Carramolino L et al (2001) CCR6-deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed-type hypersensitivity responses. J Clin Invest 107:R37–R45PubMedCrossRef
140.
go back to reference Hirota K, Yoshitomi H, Hashimoto M et al (2007) Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med 204:2803–2812PubMedCrossRef Hirota K, Yoshitomi H, Hashimoto M et al (2007) Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med 204:2803–2812PubMedCrossRef
141.
go back to reference Yamazaki T, Yang XO, Chung Y et al (2008) CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol 181:8391–8401PubMed Yamazaki T, Yang XO, Chung Y et al (2008) CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol 181:8391–8401PubMed
142.
go back to reference Reboldi A, Coisne C, Baumjohann D et al (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10:514–523PubMedCrossRef Reboldi A, Coisne C, Baumjohann D et al (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10:514–523PubMedCrossRef
143.
go back to reference Annunziato F, Cosmi L, Santarlasci V et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204:1849–1861PubMedCrossRef Annunziato F, Cosmi L, Santarlasci V et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204:1849–1861PubMedCrossRef
144.
go back to reference Kleinschek MA, Boniface K, Sadekova S et al (2009) Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J Exp Med 206:525–534PubMedCrossRef Kleinschek MA, Boniface K, Sadekova S et al (2009) Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J Exp Med 206:525–534PubMedCrossRef
145.
go back to reference Fisher SA, Tremelling M, Anderson CA et al (2008) Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease. Nat Genet 40:710–712PubMedCrossRef Fisher SA, Tremelling M, Anderson CA et al (2008) Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease. Nat Genet 40:710–712PubMedCrossRef
146.
go back to reference Nair RP, Duffin KC, Helms C et al (2009) Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 41:199–204PubMedCrossRef Nair RP, Duffin KC, Helms C et al (2009) Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 41:199–204PubMedCrossRef
147.
go back to reference Cosmi L, De Palma R, Santarlasci V et al (2008) Human interleukin 17-producing cells originate from a CD161 + CD4+ T cell precursor. J Exp Med 205:1903–1916PubMedCrossRef Cosmi L, De Palma R, Santarlasci V et al (2008) Human interleukin 17-producing cells originate from a CD161 + CD4+ T cell precursor. J Exp Med 205:1903–1916PubMedCrossRef
148.
go back to reference Zhu J, Davidson TS, Wei G et al (2009) Down-regulation of Gfi-1 expression by TGF-beta is important for differentiation of Th17 and CD103+ inducible regulatory T cells. J Exp Med 206:329–341PubMedCrossRef Zhu J, Davidson TS, Wei G et al (2009) Down-regulation of Gfi-1 expression by TGF-beta is important for differentiation of Th17 and CD103+ inducible regulatory T cells. J Exp Med 206:329–341PubMedCrossRef
149.
go back to reference Bending D, De La Pena H, Veldhoen M et al (2009) Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Invest 119:565–572CrossRef Bending D, De La Pena H, Veldhoen M et al (2009) Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Invest 119:565–572CrossRef
150.
go back to reference Lee YK, Turner H, Maynard CL et al (2009) Late developmental plasticity in the T helper 17 lineage. Immunity 30:92–107PubMedCrossRef Lee YK, Turner H, Maynard CL et al (2009) Late developmental plasticity in the T helper 17 lineage. Immunity 30:92–107PubMedCrossRef
151.
go back to reference Lexberg MH, Taubner A, Forster A et al (2008) Th memory for interleukin-17 expression is stable in vivo. Eur J Immunol 38:2654–2664PubMedCrossRef Lexberg MH, Taubner A, Forster A et al (2008) Th memory for interleukin-17 expression is stable in vivo. Eur J Immunol 38:2654–2664PubMedCrossRef
152.
go back to reference Nurieva R, Yang XO, Chung Y et al (2009) Cutting edge: in vitro generated Th17 cells maintain their cytokine expression program in normal but not lymphopenic hosts. J Immunol 182:2565–2568PubMedCrossRef Nurieva R, Yang XO, Chung Y et al (2009) Cutting edge: in vitro generated Th17 cells maintain their cytokine expression program in normal but not lymphopenic hosts. J Immunol 182:2565–2568PubMedCrossRef
153.
go back to reference Wei G, Wei L, Zhu J et al (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30:155–167PubMedCrossRef Wei G, Wei L, Zhu J et al (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30:155–167PubMedCrossRef
Metadata
Title
Development, regulation and functional capacities of Th17 cells
Authors
Keiji Hirota
Bruno Martin
Marc Veldhoen
Publication date
01-03-2010
Publisher
Springer-Verlag
Published in
Seminars in Immunopathology / Issue 1/2010
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-009-0187-y

Other articles of this Issue 1/2010

Seminars in Immunopathology 1/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.