Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 5/2021

01-05-2021 | Metformin | Review Article

Anticancer potential of metformin: focusing on gastrointestinal cancers

Authors: Mohammad rafi Khezri, Hassan Malekinejad, Naime Majidi-Zolbanin, Morteza Ghasemnejad-Berenji

Published in: Cancer Chemotherapy and Pharmacology | Issue 5/2021

Login to get access

Abstract

Gastrointestinal cancers are one of the most common types of cancer that have high annual mortality; therefore, identification and introduction of safe drugs in the control and prevention of these cancers are of particular importance. Metformin, a lipophilic biguanide, is the most commonly prescribed agent for type 2 diabetes management. In addition to its great effects on lowering the blood glucose concentrations, the anti-cancer properties of this drug have been reported in many types of cancers such as gastrointestinal cancers. Hence the effects of this agent as a safe drug on the reduction of gastrointestinal cancer risk and suppression of these types of cancers have been studied in different clinical trials. Furthermore, the proposed mechanisms of metformin in preventing the growth of these cancers have been investigated in several studies. In this review, we discuss recent advances in elucidating the molecular mechanisms that are relevant for metformin use in gastrointestinal cancer treatment.
Literature
1.
go back to reference Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S (2012) Cancer treatment and survivorship statistics 2012. CA Cancer J Clin 62(4):220–241PubMedCrossRef Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S (2012) Cancer treatment and survivorship statistics 2012. CA Cancer J Clin 62(4):220–241PubMedCrossRef
2.
go back to reference Society AC (2014) Cancer facts and figures 204. Am Cancer Soc 4:10–40 Society AC (2014) Cancer facts and figures 204. Am Cancer Soc 4:10–40
3.
go back to reference Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2018) Global cancer observatory: cancer today. Lyon France Internat Agency Res Cancer 33:190–230 Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2018) Global cancer observatory: cancer today. Lyon France Internat Agency Res Cancer 33:190–230
4.
go back to reference Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330(7503):1304–1305PubMedPubMedCentralCrossRef Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330(7503):1304–1305PubMedPubMedCentralCrossRef
5.
go back to reference Shaw RJ, Lamia KA, Vasquez D, Koo S-H, Bardeesy N, DePinho RA, Montminy M, Cantley LC (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310(5754):1642–1646PubMedPubMedCentralCrossRef Shaw RJ, Lamia KA, Vasquez D, Koo S-H, Bardeesy N, DePinho RA, Montminy M, Cantley LC (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310(5754):1642–1646PubMedPubMedCentralCrossRef
6.
go back to reference Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606–619PubMedCrossRef Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606–619PubMedCrossRef
7.
go back to reference Martelli AM, Tabellini G, Bressanin D, Ognibene A, Goto K, Cocco L, Evangelisti C (2012) The emerging multiple roles of nuclear. Akt Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 183(12):2168–2178 Martelli AM, Tabellini G, Bressanin D, Ognibene A, Goto K, Cocco L, Evangelisti C (2012) The emerging multiple roles of nuclear. Akt Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 183(12):2168–2178
9.
go back to reference Tang C, Lu Y-H, Xie J-H, Wang F, Zou J-N, Yang J-S, Xing Y-Y, Xi T (2009) Downregulation of survivin and activation of caspase-3 through the PI3K/Akt pathway in ursolic acid-induced HepG2 cell apoptosis. Anticancer Drugs 20(4):249–258PubMedCrossRef Tang C, Lu Y-H, Xie J-H, Wang F, Zou J-N, Yang J-S, Xing Y-Y, Xi T (2009) Downregulation of survivin and activation of caspase-3 through the PI3K/Akt pathway in ursolic acid-induced HepG2 cell apoptosis. Anticancer Drugs 20(4):249–258PubMedCrossRef
10.
go back to reference Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282(5392):1318–1321PubMedCrossRef Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282(5392):1318–1321PubMedCrossRef
11.
go back to reference Masuyama N, Oishi K, Mori Y, Ueno T, Takahama Y, Gotoh Y (2001) Akt inhibits the orphan nuclear receptor Nur77 and T-cell apoptosis. J Biol Chem 276(35):32799–32805PubMedCrossRef Masuyama N, Oishi K, Mori Y, Ueno T, Takahama Y, Gotoh Y (2001) Akt inhibits the orphan nuclear receptor Nur77 and T-cell apoptosis. J Biol Chem 276(35):32799–32805PubMedCrossRef
12.
go back to reference Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868PubMedCrossRef Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868PubMedCrossRef
13.
go back to reference Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241PubMedCrossRef Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241PubMedCrossRef
14.
go back to reference Wilson BE, Mochon E, Boxer LM (1996) Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 16(10):5546–5556PubMedPubMedCentralCrossRef Wilson BE, Mochon E, Boxer LM (1996) Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 16(10):5546–5556PubMedPubMedCentralCrossRef
15.
go back to reference Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE, Reusch JE-B (2000) Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 275(15):10761–10766PubMedCrossRef Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE, Reusch JE-B (2000) Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 275(15):10761–10766PubMedCrossRef
16.
go back to reference Du K, Montminy M (1998) CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273(49):32377–32379PubMedCrossRef Du K, Montminy M (1998) CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273(49):32377–32379PubMedCrossRef
17.
go back to reference Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Ki M, Takeda K, Minowa O, Miyazono K, Noda T, Ichijo H (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2(3):222–228PubMedPubMedCentralCrossRef Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Ki M, Takeda K, Minowa O, Miyazono K, Noda T, Ichijo H (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2(3):222–228PubMedPubMedCentralCrossRef
18.
go back to reference Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Mol Cell Biol 19(12):8469–8478PubMedPubMedCentralCrossRef Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Mol Cell Biol 19(12):8469–8478PubMedPubMedCentralCrossRef
19.
go back to reference Maundrell K, Antonsson B, Magnenat E, Camps M, Muda M, Chabert C, Gillieron C, Boschert U, Vial-Knecht E, Martinou J-C (1997) Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J Biol Chem 272(40):25238–25242PubMedCrossRef Maundrell K, Antonsson B, Magnenat E, Camps M, Muda M, Chabert C, Gillieron C, Boschert U, Vial-Knecht E, Martinou J-C (1997) Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J Biol Chem 272(40):25238–25242PubMedCrossRef
20.
go back to reference Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, Xiang J, Lin A (2004) JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell 13(3):329–340PubMedCrossRef Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, Xiang J, Lin A (2004) JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell 13(3):329–340PubMedCrossRef
21.
go back to reference An D, Kewalramani G, Chan J, Qi D, Ghosh S, Pulinilkunnil T, Abrahani A, Innis S, Rodrigues B (2006) Metformin influences cardiomyocyte cell death by pathways that are dependent and independent of caspase-3. Diabetologia 49(9):2174–2184PubMedCrossRef An D, Kewalramani G, Chan J, Qi D, Ghosh S, Pulinilkunnil T, Abrahani A, Innis S, Rodrigues B (2006) Metformin influences cardiomyocyte cell death by pathways that are dependent and independent of caspase-3. Diabetologia 49(9):2174–2184PubMedCrossRef
22.
go back to reference Jang JH, Song IH, Sung EG, Lee TJ, Kim JY (2018) Metformin-induced apoptosis facilitates degradation of the cellular caspase 8 (FLICE)-like inhibitory protein through a caspase-dependent pathway in human renal cell carcinoma A498 cells. Oncol Lett 16(2):2030–2038PubMedPubMedCentral Jang JH, Song IH, Sung EG, Lee TJ, Kim JY (2018) Metformin-induced apoptosis facilitates degradation of the cellular caspase 8 (FLICE)-like inhibitory protein through a caspase-dependent pathway in human renal cell carcinoma A498 cells. Oncol Lett 16(2):2030–2038PubMedPubMedCentral
23.
go back to reference Queiroz EA, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, Barbosa AM, Dekker RF, Fortes ZB, Khaper N (2014) Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS ONE 9:5CrossRef Queiroz EA, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, Barbosa AM, Dekker RF, Fortes ZB, Khaper N (2014) Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS ONE 9:5CrossRef
24.
go back to reference Wu N, Gu C, Gu H, Hu H, Han Y, Li Q (2011) Metformin induces apoptosis of lung cancer cells through activating JNK/p38 MAPK pathway and GADD153. Neoplasma 58(6):482PubMedCrossRef Wu N, Gu C, Gu H, Hu H, Han Y, Li Q (2011) Metformin induces apoptosis of lung cancer cells through activating JNK/p38 MAPK pathway and GADD153. Neoplasma 58(6):482PubMedCrossRef
25.
go back to reference Dawson D, Volpert O, Gillis P, Crawford S, Xu H-J, Benedict W, Bouck N (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285(5425):245–248PubMedCrossRef Dawson D, Volpert O, Gillis P, Crawford S, Xu H-J, Benedict W, Bouck N (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285(5425):245–248PubMedCrossRef
26.
go back to reference Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A (2011) SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31(6):1121–1133PubMedPubMedCentralCrossRef Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A (2011) SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31(6):1121–1133PubMedPubMedCentralCrossRef
27.
go back to reference Hayes JD, Chowdhry S, Dinkova-Kostova AT, Sutherland C (2015) Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3. Biochem Soc Trans 43(4):611–620PubMedCrossRef Hayes JD, Chowdhry S, Dinkova-Kostova AT, Sutherland C (2015) Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3. Biochem Soc Trans 43(4):611–620PubMedCrossRef
28.
go back to reference Inoki K, Corradetti MN, Guan K-L (2005) Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 37(1):19–24PubMedCrossRef Inoki K, Corradetti MN, Guan K-L (2005) Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 37(1):19–24PubMedCrossRef
29.
go back to reference El-Hashemite N, Walker V, Zhang H, Kwiatkowski DJ (2003) Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin. Can Res 63(17):5173–5177 El-Hashemite N, Walker V, Zhang H, Kwiatkowski DJ (2003) Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin. Can Res 63(17):5173–5177
30.
go back to reference Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS, Hoxhaj G, Saghatelian A, Shaw RJ, Manning BD (2017) Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab 25(2):463–471PubMedPubMedCentralCrossRef Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS, Hoxhaj G, Saghatelian A, Shaw RJ, Manning BD (2017) Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab 25(2):463–471PubMedPubMedCentralCrossRef
31.
go back to reference Wang J, Li G, Wang Y, Tang S, Sun X, Feng X, Li Y, Bao G, Li P, Mao X (2015) Suppression of tumor angiogenesis by metformin treatment via a mechanism linked to targeting of HER2/HIF-1α/VEGF secretion axis. Oncotarget 6(42):44579PubMedPubMedCentralCrossRef Wang J, Li G, Wang Y, Tang S, Sun X, Feng X, Li Y, Bao G, Li P, Mao X (2015) Suppression of tumor angiogenesis by metformin treatment via a mechanism linked to targeting of HER2/HIF-1α/VEGF secretion axis. Oncotarget 6(42):44579PubMedPubMedCentralCrossRef
32.
go back to reference Zhou X, Chen J, Yi G, Deng M, Liu H, Liang M, Shi B, Fu X, Chen Y, Chen L (2016) Metformin suppresses hypoxia-induced stabilization of HIF-1α through reprogramming of oxygen metabolism in hepatocellular carcinoma. Oncotarget 7(1):873PubMedCrossRef Zhou X, Chen J, Yi G, Deng M, Liu H, Liang M, Shi B, Fu X, Chen Y, Chen L (2016) Metformin suppresses hypoxia-induced stabilization of HIF-1α through reprogramming of oxygen metabolism in hepatocellular carcinoma. Oncotarget 7(1):873PubMedCrossRef
33.
go back to reference Yu C, Jiao Y, Xue J, Zhang Q, Yang H, Xing L, Chen G, Wu J, Zhang S, Zhu W (2017) Metformin sensitizes non-small cell lung cancer cells to an epigallocatechin-3-gallate (EGCG) treatment by suppressing the Nrf2/HO-1 signaling pathway. Int J Biol Sci 13(12):1560PubMedPubMedCentralCrossRef Yu C, Jiao Y, Xue J, Zhang Q, Yang H, Xing L, Chen G, Wu J, Zhang S, Zhu W (2017) Metformin sensitizes non-small cell lung cancer cells to an epigallocatechin-3-gallate (EGCG) treatment by suppressing the Nrf2/HO-1 signaling pathway. Int J Biol Sci 13(12):1560PubMedPubMedCentralCrossRef
34.
go back to reference Urpilainen E, Kangaskokko J, Puistola U, Karihtala P (2019) Metformin diminishes the unfavourable impact of Nrf2 in breast cancer patients with type 2 diabetes. Tumor Biol 41(1):1010428318815413CrossRef Urpilainen E, Kangaskokko J, Puistola U, Karihtala P (2019) Metformin diminishes the unfavourable impact of Nrf2 in breast cancer patients with type 2 diabetes. Tumor Biol 41(1):1010428318815413CrossRef
35.
go back to reference Vlotides G, Tanyeri A, Spampatti M, Zitzmann K, Chourdakis M, Spöttl G, Maurer J, Nölting S, Göke B, Auernhammer CJ (2014) Anticancer effects of metformin on neuroendocrine tumor cells in vitro. Hormones 13(4):498–508PubMed Vlotides G, Tanyeri A, Spampatti M, Zitzmann K, Chourdakis M, Spöttl G, Maurer J, Nölting S, Göke B, Auernhammer CJ (2014) Anticancer effects of metformin on neuroendocrine tumor cells in vitro. Hormones 13(4):498–508PubMed
36.
go back to reference Li H, Zuo S, He Z, Yang Y, Pasha Z, Wang Y, Xu M (2010) Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival. Am J Physiol-Heart Circulatory Physiol 299(6):H1772–H1781CrossRef Li H, Zuo S, He Z, Yang Y, Pasha Z, Wang Y, Xu M (2010) Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival. Am J Physiol-Heart Circulatory Physiol 299(6):H1772–H1781CrossRef
37.
go back to reference Boidot R, Vegran F, Jacob D, Chevrier S, Cadouot M, Feron O, Solary E, Lizard-Nacol S (2010) The transcription factor GATA-1 is overexpressed in breast carcinomas and contributes to survivin upregulation via a promoter polymorphism. Oncogene 29(17):2577–2584PubMedCrossRef Boidot R, Vegran F, Jacob D, Chevrier S, Cadouot M, Feron O, Solary E, Lizard-Nacol S (2010) The transcription factor GATA-1 is overexpressed in breast carcinomas and contributes to survivin upregulation via a promoter polymorphism. Oncogene 29(17):2577–2584PubMedCrossRef
38.
go back to reference Zhao W, Kitidis C, Fleming MD, Lodish HF, Ghaffari S (2006) Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 107(3):907–915PubMedPubMedCentralCrossRef Zhao W, Kitidis C, Fleming MD, Lodish HF, Ghaffari S (2006) Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 107(3):907–915PubMedPubMedCentralCrossRef
39.
go back to reference Wang J-C, Li G-Y, Li P-P, Sun X, Li W-M, Li Y, Lu S-Y, Liu P-J (2017) Suppression of hypoxia-induced excessive angiogenesis by metformin via elevating tumor blood perfusion. Oncotarget 8(43):73892PubMedPubMedCentralCrossRef Wang J-C, Li G-Y, Li P-P, Sun X, Li W-M, Li Y, Lu S-Y, Liu P-J (2017) Suppression of hypoxia-induced excessive angiogenesis by metformin via elevating tumor blood perfusion. Oncotarget 8(43):73892PubMedPubMedCentralCrossRef
40.
go back to reference Dayanir V, Meyer RD, Lashkari K, Rahimi N (2001) Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. J Biol Chem 276(21):17686–17692PubMedCrossRef Dayanir V, Meyer RD, Lashkari K, Rahimi N (2001) Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. J Biol Chem 276(21):17686–17692PubMedCrossRef
41.
go back to reference Li X, Yang Z, Song W, Zhou L, Li Q, Tao K, Zhou J, Wang X, Zheng Z, You N (2013) Overexpression of Bmi-1 contributes to the invasion and metastasis of hepatocellular carcinoma by increasing the expression of matrix metalloproteinase (MMP)-2, MMP-9 and vascular endothelial growth factor via the PTEN/PI3K/Akt pathway. Int J Oncol 43(3):793–802PubMedCrossRef Li X, Yang Z, Song W, Zhou L, Li Q, Tao K, Zhou J, Wang X, Zheng Z, You N (2013) Overexpression of Bmi-1 contributes to the invasion and metastasis of hepatocellular carcinoma by increasing the expression of matrix metalloproteinase (MMP)-2, MMP-9 and vascular endothelial growth factor via the PTEN/PI3K/Akt pathway. Int J Oncol 43(3):793–802PubMedCrossRef
42.
go back to reference Esfahanian N, Shakiba Y, Nikbin B, Soraya H, Maleki-Dizaji N, Ghazi-Khansari M, Garjani A (2012) Effect of metformin on the proliferation, migration, and MMP-2 and-9 expression of human umbilical vein endothelial cells. Mole Med Rep 5(4):1068–1074CrossRef Esfahanian N, Shakiba Y, Nikbin B, Soraya H, Maleki-Dizaji N, Ghazi-Khansari M, Garjani A (2012) Effect of metformin on the proliferation, migration, and MMP-2 and-9 expression of human umbilical vein endothelial cells. Mole Med Rep 5(4):1068–1074CrossRef
43.
go back to reference Jeddi F, Soozangar N, Sadeghi MR, Somi MH, Shirmohamadi M, Eftekhar-Sadat A-T, Samadi N (2018) Nrf2 overexpression is associated with P-glycoprotein upregulation in gastric cancer. Biomed Pharmacother 97:286–292PubMedCrossRef Jeddi F, Soozangar N, Sadeghi MR, Somi MH, Shirmohamadi M, Eftekhar-Sadat A-T, Samadi N (2018) Nrf2 overexpression is associated with P-glycoprotein upregulation in gastric cancer. Biomed Pharmacother 97:286–292PubMedCrossRef
44.
go back to reference Kim HG, Hien TT, Han EH, Hwang YP, Choi JH, Kang KW, Ki K, Kim BH, Kim SK, Song GY (2011) Metformin inhibits P-glycoprotein expression via the NF-κB pathway and CRE transcriptional activity through AMPK activation. Br J Pharmacol 162(5):1096–1108PubMedPubMedCentralCrossRef Kim HG, Hien TT, Han EH, Hwang YP, Choi JH, Kang KW, Ki K, Kim BH, Kim SK, Song GY (2011) Metformin inhibits P-glycoprotein expression via the NF-κB pathway and CRE transcriptional activity through AMPK activation. Br J Pharmacol 162(5):1096–1108PubMedPubMedCentralCrossRef
45.
go back to reference Hayden A, Douglas J, Sommerlad M, Andrews L, Gould K, Hussain S, Thomas GJ, Packham G, Crabb SJ (2014) The Nrf2 transcription factor contributes to resistance to cisplatin in bladder cancer. In: urologic oncology: seminars and original investigations. Elsevier Hayden A, Douglas J, Sommerlad M, Andrews L, Gould K, Hussain S, Thomas GJ, Packham G, Crabb SJ (2014) The Nrf2 transcription factor contributes to resistance to cisplatin in bladder cancer. In: urologic oncology: seminars and original investigations. Elsevier
46.
go back to reference Selvakumaran M, Lin H-K, Miyashita T, Wang HG, Krajewski S, Reed JC, Hoffman B, Liebermann D (1994) Immediate early up-regulation of bax expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways. Oncogene 9(6):1791–1798PubMed Selvakumaran M, Lin H-K, Miyashita T, Wang HG, Krajewski S, Reed JC, Hoffman B, Liebermann D (1994) Immediate early up-regulation of bax expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways. Oncogene 9(6):1791–1798PubMed
47.
go back to reference Han J, Sabbatini P, Perez D, Rao L, Modha D, White E (1996) The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes Dev 10(4):461–477PubMedCrossRef Han J, Sabbatini P, Perez D, Rao L, Modha D, White E (1996) The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes Dev 10(4):461–477PubMedCrossRef
48.
go back to reference Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630):296–299PubMedCrossRef Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630):296–299PubMedCrossRef
49.
go back to reference Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420(1):25–27PubMedCrossRef Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420(1):25–27PubMedCrossRef
50.
go back to reference Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387(6630):299–303PubMedCrossRef Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387(6630):299–303PubMedCrossRef
51.
go back to reference Rosell R, Taron M, Ariza A, Barnadas A, Mate JL, Reguart N, Margeli M, Felip E, Méndez P (2004) Molecular predictors of response to chemotherapy in lung cancer In: Seminars in oncology. ElsevierCrossRef Rosell R, Taron M, Ariza A, Barnadas A, Mate JL, Reguart N, Margeli M, Felip E, Méndez P (2004) Molecular predictors of response to chemotherapy in lung cancer In: Seminars in oncology. ElsevierCrossRef
52.
go back to reference Chu G (1994) Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem 269(2):787–790PubMedCrossRef Chu G (1994) Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem 269(2):787–790PubMedCrossRef
53.
go back to reference Liang Y, Lin S-Y, Brunicardi FC, Goss J, Li K (2009) DNA damage response pathways in tumor suppression and cancer treatment. World J Surg 33(4):661–666PubMedCrossRef Liang Y, Lin S-Y, Brunicardi FC, Goss J, Li K (2009) DNA damage response pathways in tumor suppression and cancer treatment. World J Surg 33(4):661–666PubMedCrossRef
54.
go back to reference Toledo LI, Murga M, Fernandez-Capetillo O (2011) Targeting ATR and Chk1 kinases for cancer treatment: a new model for new (and old) drugs. Mol Oncol 5(4):368–373PubMedPubMedCentralCrossRef Toledo LI, Murga M, Fernandez-Capetillo O (2011) Targeting ATR and Chk1 kinases for cancer treatment: a new model for new (and old) drugs. Mol Oncol 5(4):368–373PubMedPubMedCentralCrossRef
55.
go back to reference Marinello PC, Panis C, Silva TNX, Binato R, Abdelhay E, Rodrigues JA, Mencalha AL, Lopes NMD, Luiz RC, Cecchini R (2019) Metformin prevention of doxorubicin resistance in MCF-7 and MDA-MB-231 involves oxidative stress generation and modulation of cell adaptation genes. Scientif Rep 9(1):1–11 Marinello PC, Panis C, Silva TNX, Binato R, Abdelhay E, Rodrigues JA, Mencalha AL, Lopes NMD, Luiz RC, Cecchini R (2019) Metformin prevention of doxorubicin resistance in MCF-7 and MDA-MB-231 involves oxidative stress generation and modulation of cell adaptation genes. Scientif Rep 9(1):1–11
56.
go back to reference Qiang P, Shao Y, Sun Y, Zhang J, Chen L (2019) Metformin inhibits proliferation and migration of endometrial cancer cells through regulating PI3K/AKT/MDM2 pathway. Eur Rev Med Pharmacol Sci 23(4):1778–1785PubMed Qiang P, Shao Y, Sun Y, Zhang J, Chen L (2019) Metformin inhibits proliferation and migration of endometrial cancer cells through regulating PI3K/AKT/MDM2 pathway. Eur Rev Med Pharmacol Sci 23(4):1778–1785PubMed
57.
go back to reference Riaz MA, Sak A, Erol YB, Groneberg M, Thomale J, Stuschke M (2019) Metformin enhances the radiosensitizing effect of cisplatin in non-small cell lung cancer cell lines with different cisplatin sensitivities. Scientif Rep 9(1):1–16 Riaz MA, Sak A, Erol YB, Groneberg M, Thomale J, Stuschke M (2019) Metformin enhances the radiosensitizing effect of cisplatin in non-small cell lung cancer cell lines with different cisplatin sensitivities. Scientif Rep 9(1):1–16
58.
go back to reference Kim S-H, Kim S-C, Ku J-L (2017) Metformin increases chemo-sensitivity via gene downregulation encoding DNA replication proteins in 5-Fu resistant colorectal cancer cells. Oncotarget 8(34):56546PubMedPubMedCentralCrossRef Kim S-H, Kim S-C, Ku J-L (2017) Metformin increases chemo-sensitivity via gene downregulation encoding DNA replication proteins in 5-Fu resistant colorectal cancer cells. Oncotarget 8(34):56546PubMedPubMedCentralCrossRef
59.
go back to reference O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402CrossRef O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402CrossRef
60.
go back to reference Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658PubMedCrossRef Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658PubMedCrossRef
61.
go back to reference Deng Y, Ma W (2018) Metformin inhibits HaCaT cell viability via the miR-21/PTEN/Akt signaling pathway. Molecular Med Rep 17(3):4062–4066 Deng Y, Ma W (2018) Metformin inhibits HaCaT cell viability via the miR-21/PTEN/Akt signaling pathway. Molecular Med Rep 17(3):4062–4066
62.
go back to reference Luo M, Tan X, Mu L, Luo Y, Li R, Deng X, Chen N, Ren M, Li Y, Wang L (2017) MiRNA-21 mediates the antiangiogenic activity of metformin through targeting PTEN and SMAD7 expression and PI3K/AKT pathway. Scientif Rep 7:43427CrossRef Luo M, Tan X, Mu L, Luo Y, Li R, Deng X, Chen N, Ren M, Li Y, Wang L (2017) MiRNA-21 mediates the antiangiogenic activity of metformin through targeting PTEN and SMAD7 expression and PI3K/AKT pathway. Scientif Rep 7:43427CrossRef
63.
go back to reference Ye T, Yang M, Huang D, Wang X, Xue B, Tian N, Xu X, Bao L, Hu H, Lv T (2019) MicroRNA-7 as a potential therapeutic target for aberrant NF-κB-driven distant metastasis of gastric cancer. J Exp Clin Cancer Res 38(1):55PubMedPubMedCentralCrossRef Ye T, Yang M, Huang D, Wang X, Xue B, Tian N, Xu X, Bao L, Hu H, Lv T (2019) MicroRNA-7 as a potential therapeutic target for aberrant NF-κB-driven distant metastasis of gastric cancer. J Exp Clin Cancer Res 38(1):55PubMedPubMedCentralCrossRef
64.
go back to reference Xiong S, Zheng Y, Jiang P, Liu R, Liu X, Chu Y (2011) MicroRNA-7 inhibits the growth of human non-small cell lung cancer A549 cells through targeting BCL-2. Int J Biol Sci 7(6):805PubMedPubMedCentralCrossRef Xiong S, Zheng Y, Jiang P, Liu R, Liu X, Chu Y (2011) MicroRNA-7 inhibits the growth of human non-small cell lung cancer A549 cells through targeting BCL-2. Int J Biol Sci 7(6):805PubMedPubMedCentralCrossRef
65.
go back to reference Dong J, Peng H, Yang X, Wu W, Zhao Y, Chen D, Chen L, Liu J (2020) Metformin mediated microRNA-7 upregulation inhibits growth, migration, and invasion of non-small cell lung cancer A549 cells. Anticancer Drugs 31(4):345PubMedPubMedCentralCrossRef Dong J, Peng H, Yang X, Wu W, Zhao Y, Chen D, Chen L, Liu J (2020) Metformin mediated microRNA-7 upregulation inhibits growth, migration, and invasion of non-small cell lung cancer A549 cells. Anticancer Drugs 31(4):345PubMedPubMedCentralCrossRef
66.
go back to reference Welch C, Chen Y, Stallings R (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26(34):5017–5022PubMedCrossRef Welch C, Chen Y, Stallings R (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26(34):5017–5022PubMedCrossRef
67.
go back to reference Kumar B, Yadav A, Lang J, Teknos TN, Kumar P (2012) Dysregulation of microRNA-34a expression in head and neck squamous cell carcinoma promotes tumor growth and tumor angiogenesis. PLoS ONE 7(5):9CrossRef Kumar B, Yadav A, Lang J, Teknos TN, Kumar P (2012) Dysregulation of microRNA-34a expression in head and neck squamous cell carcinoma promotes tumor growth and tumor angiogenesis. PLoS ONE 7(5):9CrossRef
68.
go back to reference Xie W, Wang L, Sheng H, Qiu J, Zhang D, Zhang L, Yang F, Tang D, Zhang K (2017) Metformin induces growth inhibition and cell cycle arrest by upregulating microRNA34a in renal cancer cells. Med Sci Monitor Internat Med J Exp Clin Res 23:29 Xie W, Wang L, Sheng H, Qiu J, Zhang D, Zhang L, Yang F, Tang D, Zhang K (2017) Metformin induces growth inhibition and cell cycle arrest by upregulating microRNA34a in renal cancer cells. Med Sci Monitor Internat Med J Exp Clin Res 23:29
69.
go back to reference Do MT, Kim HG, Choi JH, Jeong HG (2014) Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radical Biol Med 74:21–34CrossRef Do MT, Kim HG, Choi JH, Jeong HG (2014) Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radical Biol Med 74:21–34CrossRef
70.
go back to reference Chai Z-T, Kong J, Zhu X-D, Zhang Y-Y, Lu L, Zhou J-M, Wang L-R, Zhang K-Z, Zhang Q-B, Ao J-Y (2013) MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PIK3C2α/Akt/HIF-1α pathway in hepatocellular carcinoma. PLoS ONE 8(10):8CrossRef Chai Z-T, Kong J, Zhu X-D, Zhang Y-Y, Lu L, Zhou J-M, Wang L-R, Zhang K-Z, Zhang Q-B, Ao J-Y (2013) MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PIK3C2α/Akt/HIF-1α pathway in hepatocellular carcinoma. PLoS ONE 8(10):8CrossRef
71.
go back to reference Gao X-M, Zhu Y, Li J-H, Wang X-Y, Zhang X-F, Yi C-H, Yang X (2018) microRNA-26a induces a mitochondrial apoptosis mediated by p53 through targeting to inhibit Mcl1 in human hepatocellular carcinoma. Oncotargets Therapy 11:2227PubMedPubMedCentralCrossRef Gao X-M, Zhu Y, Li J-H, Wang X-Y, Zhang X-F, Yi C-H, Yang X (2018) microRNA-26a induces a mitochondrial apoptosis mediated by p53 through targeting to inhibit Mcl1 in human hepatocellular carcinoma. Oncotargets Therapy 11:2227PubMedPubMedCentralCrossRef
72.
go back to reference Li W, Yuan Y, Huang L, Qiao M, Zhang Y (2012) Metformin alters the expression profiles of microRNAs in human pancreatic cancer cells. Diabetes Res Clin Pract 96(2):187–195PubMedCrossRef Li W, Yuan Y, Huang L, Qiao M, Zhang Y (2012) Metformin alters the expression profiles of microRNAs in human pancreatic cancer cells. Diabetes Res Clin Pract 96(2):187–195PubMedCrossRef
73.
go back to reference Feng S, Cong S, Zhang X, Bao X, Wang W, Li H, Wang Z, Wang G, Xu J, Du B (2011) MicroRNA-192 targeting retinoblastoma 1 inhibits cell proliferation and induces cell apoptosis in lung cancer cells. Nucleic Acids Res 39(15):6669–6678PubMedPubMedCentralCrossRef Feng S, Cong S, Zhang X, Bao X, Wang W, Li H, Wang Z, Wang G, Xu J, Du B (2011) MicroRNA-192 targeting retinoblastoma 1 inhibits cell proliferation and induces cell apoptosis in lung cancer cells. Nucleic Acids Res 39(15):6669–6678PubMedPubMedCentralCrossRef
74.
go back to reference Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Are C, Brattain M, Wang J (2014) MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene 33(46):5332–5340PubMedCrossRef Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Are C, Brattain M, Wang J (2014) MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene 33(46):5332–5340PubMedCrossRef
75.
go back to reference Wang Y, Dai W, Chu X, Yang B, Zhao M, Ye S (2013) Metformin inhibits lung cancer cells proliferation through repressing microRNA-222. Biotechnol lett 35(12):8CrossRef Wang Y, Dai W, Chu X, Yang B, Zhao M, Ye S (2013) Metformin inhibits lung cancer cells proliferation through repressing microRNA-222. Biotechnol lett 35(12):8CrossRef
76.
go back to reference Cioce M, Valerio M, Casadei L, Pulito C, Sacconi A, Mori F, Biagioni F, Manetti C, Muti P, Strano S (2014) Metformin-induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells. Oncotarget 5(12):4129PubMedPubMedCentralCrossRef Cioce M, Valerio M, Casadei L, Pulito C, Sacconi A, Mori F, Biagioni F, Manetti C, Muti P, Strano S (2014) Metformin-induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells. Oncotarget 5(12):4129PubMedPubMedCentralCrossRef
77.
go back to reference Jiang X, Ma N, Wang D, Li F, He R, Li D, Zhao R, Zhou Q, Wang Y, Zhang F (2015) Metformin inhibits tumor growth by regulating multiple miRNAs in human cholangiocarcinoma. Oncotarget 6(5):3178PubMedCrossRef Jiang X, Ma N, Wang D, Li F, He R, Li D, Zhao R, Zhou Q, Wang Y, Zhang F (2015) Metformin inhibits tumor growth by regulating multiple miRNAs in human cholangiocarcinoma. Oncotarget 6(5):3178PubMedCrossRef
78.
go back to reference Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N (1987) Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α. Nature 329(6140):630–632PubMedCrossRef Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N (1987) Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α. Nature 329(6140):630–632PubMedCrossRef
79.
go back to reference Lai K-C, Liu C-J, Lin T-J, Mar A-C, Wang H-H, Chen C-W, Hong Z-X, Lee T-C (2016) Blocking TNF-α inhibits angiogenesis and growth of IFIT2-depleted metastatic oral squamous cell carcinoma cells. Cancer Lett 370(2):207–215PubMedCrossRef Lai K-C, Liu C-J, Lin T-J, Mar A-C, Wang H-H, Chen C-W, Hong Z-X, Lee T-C (2016) Blocking TNF-α inhibits angiogenesis and growth of IFIT2-depleted metastatic oral squamous cell carcinoma cells. Cancer Lett 370(2):207–215PubMedCrossRef
80.
go back to reference Kusano K, Miyaura C, Inada M, Tamura T, Ito A, Nagase H, Kamoi K, Suda T (1998) Regulation of matrix metalloproteinases (MMP-2,-3,-9, and-13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption. Endocrinology 139(3):1338–1345PubMedCrossRef Kusano K, Miyaura C, Inada M, Tamura T, Ito A, Nagase H, Kamoi K, Suda T (1998) Regulation of matrix metalloproteinases (MMP-2,-3,-9, and-13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption. Endocrinology 139(3):1338–1345PubMedCrossRef
82.
go back to reference Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Trans Target Therapy 2(1):1–9 Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Trans Target Therapy 2(1):1–9
83.
go back to reference Liu Y-L, Yu J-M, Song X-R, Wang X-W, Xing L-G, Gao B-B (2006) Regulation of the chemokine receptor CXCR4 and metastasis by hypoxia-inducible factor in non small cell lung cancer cell lines. Cancer Biol Ther 5(10):1320–1326PubMedCrossRef Liu Y-L, Yu J-M, Song X-R, Wang X-W, Xing L-G, Gao B-B (2006) Regulation of the chemokine receptor CXCR4 and metastasis by hypoxia-inducible factor in non small cell lung cancer cell lines. Cancer Biol Ther 5(10):1320–1326PubMedCrossRef
84.
go back to reference Helbig G, Christopherson KW, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, Broxmeyer HE, Nakshatri H (2003) NF-κ B promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278(24):21631–21638PubMedCrossRef Helbig G, Christopherson KW, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, Broxmeyer HE, Nakshatri H (2003) NF-κ B promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278(24):21631–21638PubMedCrossRef
85.
go back to reference Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature 401(6748):82–85PubMedCrossRef Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature 401(6748):82–85PubMedCrossRef
86.
go back to reference DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388(6642):548–554PubMedCrossRef DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388(6642):548–554PubMedCrossRef
87.
go back to reference Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M (1997) The IkB kinase complex (IKK) contains two kinase subunits, IKKa and IKKb, necessary for IkB phosphorylation and NF-kB activation. Cell 91(2):243–252PubMedCrossRef Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M (1997) The IkB kinase complex (IKK) contains two kinase subunits, IKKa and IKKb, necessary for IkB phosphorylation and NF-kB activation. Cell 91(2):243–252PubMedCrossRef
88.
go back to reference Tsuji G, Hashimoto-Hachiya A, Yen VH, Takemura M, Yumine A, Furue K, Furue M, Nakahara T (2020) Metformin inhibits IL-1β secretion via impairment of NLRP3 inflammasome in keratinocytes: implications for preventing the development of psoriasis. Cell Death Discov 6(1):1–11CrossRef Tsuji G, Hashimoto-Hachiya A, Yen VH, Takemura M, Yumine A, Furue K, Furue M, Nakahara T (2020) Metformin inhibits IL-1β secretion via impairment of NLRP3 inflammasome in keratinocytes: implications for preventing the development of psoriasis. Cell Death Discov 6(1):1–11CrossRef
89.
go back to reference Ye J, Zhu N, Sun R, Liao W, Fan S, Shi F, Lin H, Jiang S, Ying Y (2018) Metformin inhibits chemokine expression through the AMPK/NF-κB signaling pathway. J Interferon Cytokine Res 38(9):363–369PubMedCrossRef Ye J, Zhu N, Sun R, Liao W, Fan S, Shi F, Lin H, Jiang S, Ying Y (2018) Metformin inhibits chemokine expression through the AMPK/NF-κB signaling pathway. J Interferon Cytokine Res 38(9):363–369PubMedCrossRef
91.
go back to reference Turkson J (2004) STAT proteins as novel targets for cancer drug discovery. Expert Opin Ther Targets 8(5):409–422PubMedCrossRef Turkson J (2004) STAT proteins as novel targets for cancer drug discovery. Expert Opin Ther Targets 8(5):409–422PubMedCrossRef
92.
go back to reference Deng X-S, Wang S, Deng A, Liu B, Edgerton SM, Lind SE, Wahdan-Alaswad R, Thor AD (2012) Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. Cell Cycle 11(2):367–376PubMedCrossRef Deng X-S, Wang S, Deng A, Liu B, Edgerton SM, Lind SE, Wahdan-Alaswad R, Thor AD (2012) Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. Cell Cycle 11(2):367–376PubMedCrossRef
93.
go back to reference Yang Y, Jin G, Liu H, Liu K, Zhao J, Chen X, Wang D, Bai R, Li X, Jang Y (2017) Metformin inhibits esophageal squamous cell carcinoma-induced angiogenesis by suppressing JAK/STAT3 signaling pathway. Oncotarget 8(43):74673PubMedPubMedCentralCrossRef Yang Y, Jin G, Liu H, Liu K, Zhao J, Chen X, Wang D, Bai R, Li X, Jang Y (2017) Metformin inhibits esophageal squamous cell carcinoma-induced angiogenesis by suppressing JAK/STAT3 signaling pathway. Oncotarget 8(43):74673PubMedPubMedCentralCrossRef
94.
go back to reference Cheung KS, Chan EW, Wong AY, Chen L, Seto WK, Wong IC, Leung WK (2019) Metformin use and gastric cancer risk in diabetic patients after Helicobacter pylori eradication. JNCI J Nat Cancer Instit 111(5):484–489CrossRef Cheung KS, Chan EW, Wong AY, Chen L, Seto WK, Wong IC, Leung WK (2019) Metformin use and gastric cancer risk in diabetic patients after Helicobacter pylori eradication. JNCI J Nat Cancer Instit 111(5):484–489CrossRef
95.
go back to reference Lee C-k, Jung M, Jung I, Heo SJ, Jeong YH, An JY, Kim H-I, Cheong J-H, Hyung WJ, Noh SH (2016) Cumulative metformin use and its impact on survival in gastric cancer patients after gastrectomy. Ann Surg 263(1):96–102PubMedCrossRef Lee C-k, Jung M, Jung I, Heo SJ, Jeong YH, An JY, Kim H-I, Cheong J-H, Hyung WJ, Noh SH (2016) Cumulative metformin use and its impact on survival in gastric cancer patients after gastrectomy. Ann Surg 263(1):96–102PubMedCrossRef
96.
go back to reference Jun K-H, Lee JE, Kim SH, Jung J-H, Choi HJ, Kim YI, Chin H-M, Yang S-H (2015) Clinicopathological significance of N-cadherin and VEGF in advanced gastric cancer brain metastasis and the effects of metformin in preclinical models. Oncol Rep 34(4):2047–2053PubMedCrossRef Jun K-H, Lee JE, Kim SH, Jung J-H, Choi HJ, Kim YI, Chin H-M, Yang S-H (2015) Clinicopathological significance of N-cadherin and VEGF in advanced gastric cancer brain metastasis and the effects of metformin in preclinical models. Oncol Rep 34(4):2047–2053PubMedCrossRef
97.
go back to reference Smyth E, Verheij M, Allum W, Cunningham D, Cervantes A, Arnold D (2016) Gastric cancer: ESMO clinical practice guidelines for diagnosis treatment and follow-up. Ann oncol 27(5):38–49CrossRef Smyth E, Verheij M, Allum W, Cunningham D, Cervantes A, Arnold D (2016) Gastric cancer: ESMO clinical practice guidelines for diagnosis treatment and follow-up. Ann oncol 27(5):38–49CrossRef
98.
go back to reference Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111PubMedCrossRef Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111PubMedCrossRef
99.
go back to reference Courtois S, Durán RV, Giraud J, Sifré E, Izotte J, Mégraud F, Lehours P, Varon C, Bessède E (2017) Metformin targets gastric cancer stem cells. Eur J Cancer 84:193–201PubMedCrossRef Courtois S, Durán RV, Giraud J, Sifré E, Izotte J, Mégraud F, Lehours P, Varon C, Bessède E (2017) Metformin targets gastric cancer stem cells. Eur J Cancer 84:193–201PubMedCrossRef
100.
go back to reference Andersson G, Wennersten C, Borgquist S, Jirström K (2016) Pancreatic cancer risk in relation to sex, lifestyle factors, and pre-diagnostic anthropometry in the Malmö Diet and Cancer Study. Biol Sex Differences 7(1):66CrossRef Andersson G, Wennersten C, Borgquist S, Jirström K (2016) Pancreatic cancer risk in relation to sex, lifestyle factors, and pre-diagnostic anthropometry in the Malmö Diet and Cancer Study. Biol Sex Differences 7(1):66CrossRef
101.
go back to reference Wang Z, Lai S-t, Xie L, Zhao J-d, Ma N-y, Zhu J, Ren Z-g, Jiang G-l (2014) Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract 106(1):19–26PubMedCrossRef Wang Z, Lai S-t, Xie L, Zhao J-d, Ma N-y, Zhu J, Ren Z-g, Jiang G-l (2014) Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract 106(1):19–26PubMedCrossRef
102.
go back to reference Xin W, Fang L, Fang Q, Zheng X, Huang P (2018) Effects of metformin on survival outcomes of pancreatic cancer patients with diabetes: a meta-analysis. Mole Clin Oncol 8(3):483–488 Xin W, Fang L, Fang Q, Zheng X, Huang P (2018) Effects of metformin on survival outcomes of pancreatic cancer patients with diabetes: a meta-analysis. Mole Clin Oncol 8(3):483–488
103.
go back to reference Li D, Yeung SCJ, Hassan MM, Konopleva M, Abbruzzese JL (2009) Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 137(2):482–488PubMedCrossRef Li D, Yeung SCJ, Hassan MM, Konopleva M, Abbruzzese JL (2009) Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 137(2):482–488PubMedCrossRef
104.
go back to reference Sadeghi N, Abbruzzese JL, Yeung S-CJ, Hassan M, Li D (2012) Metformin use is associated with better survival of diabetic patients with pancreatic cancer. Clin Cancer Res 18(10):2905–2912PubMedPubMedCentralCrossRef Sadeghi N, Abbruzzese JL, Yeung S-CJ, Hassan M, Li D (2012) Metformin use is associated with better survival of diabetic patients with pancreatic cancer. Clin Cancer Res 18(10):2905–2912PubMedPubMedCentralCrossRef
105.
go back to reference Spillane S, Bennett K, Sharp L, Barron TI (2013) A cohort study of metformin exposure and survival in patients with stage I-III colorectal cancer. Cancer Epidemiol Prev Biomark 22(8):1364–1373CrossRef Spillane S, Bennett K, Sharp L, Barron TI (2013) A cohort study of metformin exposure and survival in patients with stage I-III colorectal cancer. Cancer Epidemiol Prev Biomark 22(8):1364–1373CrossRef
106.
go back to reference Lee JH, Jeon SM, Hong SP, Cheon JH, Kim TI, Kim WH (2012) Metformin use is associated with a decreased incidence of colorectal adenomas in diabetic patients with previous colorectal cancer. Dig Liver Dis 44(12):1042–1047PubMedCrossRef Lee JH, Jeon SM, Hong SP, Cheon JH, Kim TI, Kim WH (2012) Metformin use is associated with a decreased incidence of colorectal adenomas in diabetic patients with previous colorectal cancer. Dig Liver Dis 44(12):1042–1047PubMedCrossRef
107.
go back to reference Tseng C-H (2017) Metformin and esophageal cancer risk in Taiwanese patients with type 2 diabetes mellitus. Oncotarget 8(12):18802PubMedCrossRef Tseng C-H (2017) Metformin and esophageal cancer risk in Taiwanese patients with type 2 diabetes mellitus. Oncotarget 8(12):18802PubMedCrossRef
108.
go back to reference Ma S, Zheng Y, Xiao Y, Zhou P, Tan H (2017) Meta-analysis of studies using metformin as a reducer for liver cancer risk in diabetic patients. Medicine 96(19):9CrossRef Ma S, Zheng Y, Xiao Y, Zhou P, Tan H (2017) Meta-analysis of studies using metformin as a reducer for liver cancer risk in diabetic patients. Medicine 96(19):9CrossRef
109.
go back to reference Chen G, Feng W, Zhang S, Bian K, Yang Y, Fang C, Chen M, Yang J, Zou X (2015) Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling. Am J Cancer Res 5(4):1423PubMedPubMedCentral Chen G, Feng W, Zhang S, Bian K, Yang Y, Fang C, Chen M, Yang J, Zou X (2015) Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling. Am J Cancer Res 5(4):1423PubMedPubMedCentral
110.
go back to reference Han G, Gong H, Wang Y, Guo S, Liu K (2015) AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell. Cancer Biol Ther 16(1):77–87PubMedCrossRef Han G, Gong H, Wang Y, Guo S, Liu K (2015) AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell. Cancer Biol Ther 16(1):77–87PubMedCrossRef
111.
go back to reference Sekino N, Kano M, Matsumoto Y, Sakata H, Murakami K, Toyozumi T, Otsuka R, Yokoyama M, Shiraishi T, Okada K (2018) The antitumor effects of metformin on gastric cancer in vitro and on peritoneal metastasis. Anticancer Res 38(11):6263–6269PubMedCrossRef Sekino N, Kano M, Matsumoto Y, Sakata H, Murakami K, Toyozumi T, Otsuka R, Yokoyama M, Shiraishi T, Okada K (2018) The antitumor effects of metformin on gastric cancer in vitro and on peritoneal metastasis. Anticancer Res 38(11):6263–6269PubMedCrossRef
112.
go back to reference Mohammed A, Janakiram NB, Brewer M, Ritchie RL, Marya A, Lightfoot S, Steele VE, Rao CV (2013) Antidiabetic drug metformin prevents progression of pancreatic cancer by targeting in part cancer stem cells and mTOR signaling. Trans Oncol 6(6):649–647CrossRef Mohammed A, Janakiram NB, Brewer M, Ritchie RL, Marya A, Lightfoot S, Steele VE, Rao CV (2013) Antidiabetic drug metformin prevents progression of pancreatic cancer by targeting in part cancer stem cells and mTOR signaling. Trans Oncol 6(6):649–647CrossRef
113.
go back to reference Soares HP, Ni Y, Kisfalvi K, Sinnett-Smith J, Rozengurt E (2013) Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS ONE 8(2):9CrossRef Soares HP, Ni Y, Kisfalvi K, Sinnett-Smith J, Rozengurt E (2013) Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS ONE 8(2):9CrossRef
114.
go back to reference Nair V, Pathi S, Jutooru I, Sreevalsan S, Basha R, Abdelrahim M, Samudio I, Safe S (2013) Metformin inhibits pancreatic cancer cell and tumor growth and downregulates Sp transcription factors. Carcinogenesis 34(12):2870–2879PubMedPubMedCentralCrossRef Nair V, Pathi S, Jutooru I, Sreevalsan S, Basha R, Abdelrahim M, Samudio I, Safe S (2013) Metformin inhibits pancreatic cancer cell and tumor growth and downregulates Sp transcription factors. Carcinogenesis 34(12):2870–2879PubMedPubMedCentralCrossRef
115.
go back to reference Tan X-L, Bhattacharyya KK, Dutta SK, Bamlet WR, Rabe KG, Wang E, Smyrk TC, Oberg AL, Petersen GM, Mukhopadhyay D (2015) Metformin suppresses pancreatic tumor growth with inhibition of NFκB/STAT3 inflammatory signaling. Pancreas 44(4):636PubMedPubMedCentralCrossRef Tan X-L, Bhattacharyya KK, Dutta SK, Bamlet WR, Rabe KG, Wang E, Smyrk TC, Oberg AL, Petersen GM, Mukhopadhyay D (2015) Metformin suppresses pancreatic tumor growth with inhibition of NFκB/STAT3 inflammatory signaling. Pancreas 44(4):636PubMedPubMedCentralCrossRef
116.
go back to reference DePeralta DK, Wei L, Ghoshal S, Schmidt B, Lauwers GY, Lanuti M, Chung RT, Tanabe KK, Fuchs BC (2016) Metformin prevents hepatocellular carcinoma development by suppressing hepatic progenitor cell activation in a rat model of cirrhosis. Cancer 122(8):1216–1227PubMedCrossRef DePeralta DK, Wei L, Ghoshal S, Schmidt B, Lauwers GY, Lanuti M, Chung RT, Tanabe KK, Fuchs BC (2016) Metformin prevents hepatocellular carcinoma development by suppressing hepatic progenitor cell activation in a rat model of cirrhosis. Cancer 122(8):1216–1227PubMedCrossRef
117.
go back to reference Miyoshi H, Kato K, Iwama H, Maeda E, Sakamoto T, Fujita K, Toyota Y, Tani J, Nomura T, Mimura S (2014) Effect of the anti-diabetic drug metformin in hepatocellular carcinoma in vitro and in vivo. Int J Oncol 45(1):322–332PubMedCrossRef Miyoshi H, Kato K, Iwama H, Maeda E, Sakamoto T, Fujita K, Toyota Y, Tani J, Nomura T, Mimura S (2014) Effect of the anti-diabetic drug metformin in hepatocellular carcinoma in vitro and in vivo. Int J Oncol 45(1):322–332PubMedCrossRef
118.
go back to reference Tsai C-C, Chuang T-W, Chen L-J, Niu H-S, Chung K-M, Cheng J-T, Lin K-C (2015) Increase in apoptosis by combination of metformin with silibinin in human colorectal cancer cells. World J Gastroenterol WJG 21(14):4169PubMedCrossRef Tsai C-C, Chuang T-W, Chen L-J, Niu H-S, Chung K-M, Cheng J-T, Lin K-C (2015) Increase in apoptosis by combination of metformin with silibinin in human colorectal cancer cells. World J Gastroenterol WJG 21(14):4169PubMedCrossRef
119.
go back to reference Feng Y-H, Wu C-L, Shiau A-L, Lee J-C, Chang J-G, Lu P-J, Tung C-L, Feng L-Y, Huang W-T, Tsao C-J (2012) MicroRNA-21-mediated regulation of Sprouty2 protein expression enhances the cytotoxic effect of 5-fluorouracil and metformin in colon cancer cells. Int J Mol Med 29(5):920–926PubMed Feng Y-H, Wu C-L, Shiau A-L, Lee J-C, Chang J-G, Lu P-J, Tung C-L, Feng L-Y, Huang W-T, Tsao C-J (2012) MicroRNA-21-mediated regulation of Sprouty2 protein expression enhances the cytotoxic effect of 5-fluorouracil and metformin in colon cancer cells. Int J Mol Med 29(5):920–926PubMed
120.
go back to reference Kobayashi M, Kato K, Iwama H, Fujihara S, Nishiyama N, Mimura S, Toyota Y, Nomura T, Nomura K, Tani J (2013) Antitumor effect of metformin in esophageal cancer: in vitro study. Int J Oncol 42(2):517–524PubMedCrossRef Kobayashi M, Kato K, Iwama H, Fujihara S, Nishiyama N, Mimura S, Toyota Y, Nomura T, Nomura K, Tani J (2013) Antitumor effect of metformin in esophageal cancer: in vitro study. Int J Oncol 42(2):517–524PubMedCrossRef
121.
go back to reference Honjo S, Ajani JA, Scott AW, Chen Q, Skinner HD, Stroehlein J, Johnson RL, Song S (2014) Metformin sensitizes chemotherapy by targeting cancer stem cells and the mTOR pathway in esophageal cancer. Int J Oncol 45(2):567–574PubMedPubMedCentralCrossRef Honjo S, Ajani JA, Scott AW, Chen Q, Skinner HD, Stroehlein J, Johnson RL, Song S (2014) Metformin sensitizes chemotherapy by targeting cancer stem cells and the mTOR pathway in esophageal cancer. Int J Oncol 45(2):567–574PubMedPubMedCentralCrossRef
122.
go back to reference Fujihara S, Kato K, Morishita A, Iwama H, Nishioka T, Chiyo T, Nishiyama N, Miyoshi H, Kobayashi M, Kobara H (2015) Antidiabetic drug metformin inhibits esophageal adenocarcinoma cell proliferation in vitro and in vivo. Int J Oncol 46(5):2172–2180PubMedCrossRef Fujihara S, Kato K, Morishita A, Iwama H, Nishioka T, Chiyo T, Nishiyama N, Miyoshi H, Kobayashi M, Kobara H (2015) Antidiabetic drug metformin inhibits esophageal adenocarcinoma cell proliferation in vitro and in vivo. Int J Oncol 46(5):2172–2180PubMedCrossRef
123.
go back to reference Feng Y, Ke C, Tang Q, Dong H, Zheng X, Lin W, Ke J, Huang J, Yeung S-C, Zhang H (2014) Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis 5(2):e1088–e1088PubMedPubMedCentralCrossRef Feng Y, Ke C, Tang Q, Dong H, Zheng X, Lin W, Ke J, Huang J, Yeung S-C, Zhang H (2014) Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis 5(2):e1088–e1088PubMedPubMedCentralCrossRef
124.
go back to reference Wang F, Ding X, Wang T, Shan Z, Wang J, Wu S, Chi Y, Zhang Y, Lv Z, Wang L (2017) Metformin inhibited esophageal squamous cell carcinoma proliferation in vitro and in vivo and enhanced the anti-cancer effect of cisplatin. PLoS ONE 12(4):12–23 Wang F, Ding X, Wang T, Shan Z, Wang J, Wu S, Chi Y, Zhang Y, Lv Z, Wang L (2017) Metformin inhibited esophageal squamous cell carcinoma proliferation in vitro and in vivo and enhanced the anti-cancer effect of cisplatin. PLoS ONE 12(4):12–23
125.
go back to reference Shafaee A, Islamian JP, Zarei D, Mohammadi M, Nejati-Koshki K, Farajollahi A, Aghamiri SMR, Yamchi MR, Baradaran B, Jafarabadi MA (2019) Induction of apoptosis by a combination of 2-deoxyglucose and metformin in esophageal squamous cell carcinoma by targeting cancer cell metabolism. Iran J Med Sci 44(2):99PubMed Shafaee A, Islamian JP, Zarei D, Mohammadi M, Nejati-Koshki K, Farajollahi A, Aghamiri SMR, Yamchi MR, Baradaran B, Jafarabadi MA (2019) Induction of apoptosis by a combination of 2-deoxyglucose and metformin in esophageal squamous cell carcinoma by targeting cancer cell metabolism. Iran J Med Sci 44(2):99PubMed
126.
go back to reference He Y, Tan X, Hu H, Wang Q, Hu X, Cai X, Guan Y, Chen B, Jing X (2018) Metformin inhibits the migration and invasion of esophageal squamous cell carcinoma cells by downregulating the protein kinase B signaling pathway. Oncol Lett 15(3):2939–2945PubMed He Y, Tan X, Hu H, Wang Q, Hu X, Cai X, Guan Y, Chen B, Jing X (2018) Metformin inhibits the migration and invasion of esophageal squamous cell carcinoma cells by downregulating the protein kinase B signaling pathway. Oncol Lett 15(3):2939–2945PubMed
127.
go back to reference Liang F, Wang Y-G, Wang C (2018) Metformin inhibited growth, invasion and metastasis of esophageal squamous cell carcinoma in vitro and in vivo. Cell Physiol Biochem 51(3):1276–1286PubMedCrossRef Liang F, Wang Y-G, Wang C (2018) Metformin inhibited growth, invasion and metastasis of esophageal squamous cell carcinoma in vitro and in vivo. Cell Physiol Biochem 51(3):1276–1286PubMedCrossRef
128.
go back to reference Ye J, Chen K, Qi L, Li R, Tang H, Zhou C, Zhai W (2018) Metformin suppresses hypoxia-induced migration via the HIF-1α/VEGF pathway in gallbladder cancer in vitro and in vivo. Oncol Rep 40(6):3501–3510PubMed Ye J, Chen K, Qi L, Li R, Tang H, Zhou C, Zhai W (2018) Metformin suppresses hypoxia-induced migration via the HIF-1α/VEGF pathway in gallbladder cancer in vitro and in vivo. Oncol Rep 40(6):3501–3510PubMed
129.
go back to reference Bi T, Zhu A, Yang X, Qiao H, Tang J, Liu Y, Lv R (2018) Metformin synergistically enhances antitumor activity of cisplatin in gallbladder cancer via the PI3K/AKT/ERK pathway. Cytotechnology 70(1):439–448PubMedCrossRef Bi T, Zhu A, Yang X, Qiao H, Tang J, Liu Y, Lv R (2018) Metformin synergistically enhances antitumor activity of cisplatin in gallbladder cancer via the PI3K/AKT/ERK pathway. Cytotechnology 70(1):439–448PubMedCrossRef
130.
go back to reference Yamashita T, Kato K, Fujihara S, Iwama H, Morishita A, Yamana H, Kobayashi K, Kamada H, Chiyo T, Kobara H (2020) Anti-diabetic drug metformin inhibits cell proliferation and tumor growth in gallbladder cancer via G0/G1 cell cycle arrest. Anticancer Drugs 31(3):231–240PubMedCrossRef Yamashita T, Kato K, Fujihara S, Iwama H, Morishita A, Yamana H, Kobayashi K, Kamada H, Chiyo T, Kobara H (2020) Anti-diabetic drug metformin inhibits cell proliferation and tumor growth in gallbladder cancer via G0/G1 cell cycle arrest. Anticancer Drugs 31(3):231–240PubMedCrossRef
131.
go back to reference Lee J, Hong EM, Kim JH, Jung JH, Park SW, Koh DH, Choi MH, Jang HJ, Kae SH (2019) Metformin induces apoptosis and inhibits proliferation through the AMP-activated protein kinase and insulin-like growth factor 1 receptor pathways in the bile duct cancer cells. J Cancer 10(7):1734PubMedPubMedCentralCrossRef Lee J, Hong EM, Kim JH, Jung JH, Park SW, Koh DH, Choi MH, Jang HJ, Kae SH (2019) Metformin induces apoptosis and inhibits proliferation through the AMP-activated protein kinase and insulin-like growth factor 1 receptor pathways in the bile duct cancer cells. J Cancer 10(7):1734PubMedPubMedCentralCrossRef
Metadata
Title
Anticancer potential of metformin: focusing on gastrointestinal cancers
Authors
Mohammad rafi Khezri
Hassan Malekinejad
Naime Majidi-Zolbanin
Morteza Ghasemnejad-Berenji
Publication date
01-05-2021
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 5/2021
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-021-04256-8

Other articles of this Issue 5/2021

Cancer Chemotherapy and Pharmacology 5/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine