Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 6/2020

01-06-2020 | Original Article

Protein expression profiling identifies differential modulation of homologous recombination by platinum-based antitumor agents

Authors: Guangan He, Xiaolei Xie, Zahid H. Siddik

Published in: Cancer Chemotherapy and Pharmacology | Issue 6/2020

Login to get access

Abstract

Purpose

Oxaliplatin and satraplatin demonstrate activity against cisplatin-resistant tumor cells. Although the two platinum analogs are structurally-related, oxaliplatin is more active. Therefore, studies focusing on protein expression profiling were undertaken to identify the molecular mechanism for the difference in antitumor activity.

Methods

We included cisplatin as reference and DAP as a Pt(IV)-prodrug of oxaliplatin to offset Pt(IV) status of satraplatin, and utilized A2780, cisplatin-resistant 2780CP/Cl-16, U2OS, and HCT-116 tumor cells in the investigation. Protein expressions following drug exposures were examined by reverse-phase protein array and ingenuity pathway analysis. Cell cycle was assessed by flow cytometry, cytotoxicity by growth inhibition assay, and homologous recombination (HR) by a GFP reporter assay.

Results

Clustering analysis paired oxaliplatin with DAP and, surprisingly, satraplatin with cisplatin. This correlated with differential upregulation of p53/p21 pathway, with S and G2/M arrests by cisplatin and satraplatin in contrast to G1 arrest by oxaliplatin and DAP. Moreover, Rad51 and BRCA1 were severely downregulated by oxaliplatin and DAP, but not cisplatin and satraplatin. As a result, HR was inhibited only by oxaliplatin and DAP and this also contributed to their greater drug activity over cisplatin and satraplatin.

Conclusions

Oxaliplatin and DAP robustly activate p53 and p21, which downregulate HR proteins to enhance drug activity. More significantly, since oxaliplatin induces a BRCAness state, it may have potential against BRCA-proficient cancers. Satraplatin, on the other hand, resembled cisplatin in its protein expression profile, which indicates that small changes in chemical structure can substantially alter signal transduction pathways to modulate drug activity.
Literature
2.
go back to reference Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279PubMedCrossRef Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279PubMedCrossRef
3.
go back to reference Choy H, Park C, Yao M (2008) Current status and future prospects for satraplatin, an oral platinum analogue. Clin Cancer Res 14:1633–1638PubMedCrossRef Choy H, Park C, Yao M (2008) Current status and future prospects for satraplatin, an oral platinum analogue. Clin Cancer Res 14:1633–1638PubMedCrossRef
4.
go back to reference Kelland LR, Abel G, McKeage MJ et al (1993) Preclinical antitumor evaluation of bis-acetato-ammine-dichloro-cyclohexylamine platinum(IV): an orally active platinum drug. Cancer Res 53:2581–2586PubMed Kelland LR, Abel G, McKeage MJ et al (1993) Preclinical antitumor evaluation of bis-acetato-ammine-dichloro-cyclohexylamine platinum(IV): an orally active platinum drug. Cancer Res 53:2581–2586PubMed
5.
go back to reference Bruno PM, Liu Y, Park GY et al (2017) A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 23:461–471PubMedPubMedCentralCrossRef Bruno PM, Liu Y, Park GY et al (2017) A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 23:461–471PubMedPubMedCentralCrossRef
6.
go back to reference Hagopian GS, Mills GB, Khokhar AR et al (1999) Expression of p53 in cisplatin-resistant ovarian cancer cell lines: modulation with the novel platinum analogue (1R, 2R-diaminocyclohexane)(trans-diacetato)(dichloro)-platinum(IV). Clin Cancer Res 5:655–663PubMed Hagopian GS, Mills GB, Khokhar AR et al (1999) Expression of p53 in cisplatin-resistant ovarian cancer cell lines: modulation with the novel platinum analogue (1R, 2R-diaminocyclohexane)(trans-diacetato)(dichloro)-platinum(IV). Clin Cancer Res 5:655–663PubMed
7.
go back to reference Goschl S, Schreiber-Brynzak E, Pichler V et al (2017) Comparative studies of oxaliplatin-based platinum(IV) complexes in different in vitro and in vivo tumor models. Metallomics 9:309–322PubMedCrossRef Goschl S, Schreiber-Brynzak E, Pichler V et al (2017) Comparative studies of oxaliplatin-based platinum(IV) complexes in different in vitro and in vivo tumor models. Metallomics 9:309–322PubMedCrossRef
8.
go back to reference Perry J, Powles T, Shamash J et al (2009) The relative activity of cisplatin, oxaliplatin and satraplatin in testicular germ cell tumour sensitive and resistant cell lines. Cancer Chemother Pharmacol 64:925–933PubMedCrossRef Perry J, Powles T, Shamash J et al (2009) The relative activity of cisplatin, oxaliplatin and satraplatin in testicular germ cell tumour sensitive and resistant cell lines. Cancer Chemother Pharmacol 64:925–933PubMedCrossRef
9.
10.
go back to reference Woynarowski JM, Faivre S, Herzig MC et al (2000) Oxaliplatin-induced damage of cellular DNA. Mol Pharmacol 58:920–927PubMedCrossRef Woynarowski JM, Faivre S, Herzig MC et al (2000) Oxaliplatin-induced damage of cellular DNA. Mol Pharmacol 58:920–927PubMedCrossRef
11.
go back to reference Seetharam R, Sood A, Goel S (2009) Oxaliplatin: pre-clinical perspectives on the mechanisms of action, response and resistance. Ecancermedicalscience 3:153PubMedPubMedCentral Seetharam R, Sood A, Goel S (2009) Oxaliplatin: pre-clinical perspectives on the mechanisms of action, response and resistance. Ecancermedicalscience 3:153PubMedPubMedCentral
12.
go back to reference Singer G, Stohr R, Cope L et al (2005) Patterns of p53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation. Am J Surg Pathol 29:218–224PubMedCrossRef Singer G, Stohr R, Cope L et al (2005) Patterns of p53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation. Am J Surg Pathol 29:218–224PubMedCrossRef
13.
go back to reference Khokhar AR, Al Baker S, Shamsuddin S, Siddik ZH (1997) Chemical and biological studies on a series of novel (trans-(1R,2R)-, trans-(1S,2S)-, and cis-1,2-diaminocyclohexane)platinum(IV) carboxylate complexes. J Med Chem 40:112–116PubMedCrossRef Khokhar AR, Al Baker S, Shamsuddin S, Siddik ZH (1997) Chemical and biological studies on a series of novel (trans-(1R,2R)-, trans-(1S,2S)-, and cis-1,2-diaminocyclohexane)platinum(IV) carboxylate complexes. J Med Chem 40:112–116PubMedCrossRef
14.
go back to reference Xie X, He G, Siddik ZH (2017) Functional activation of mutant p53 by platinum analogues in cisplatin-resistant cells is dependent on phosphorylation. Mol Cancer Res 15:328–339PubMedCrossRef Xie X, He G, Siddik ZH (2017) Functional activation of mutant p53 by platinum analogues in cisplatin-resistant cells is dependent on phosphorylation. Mol Cancer Res 15:328–339PubMedCrossRef
15.
go back to reference Bhatt M, Ivan C, Xie X, Siddik ZH (2017) Drug-dependent functionalization of wild-type and mutant p53 in cisplatin-resistant human ovarian tumor cells. Oncotarget 8:10905–10918PubMedCrossRef Bhatt M, Ivan C, Xie X, Siddik ZH (2017) Drug-dependent functionalization of wild-type and mutant p53 in cisplatin-resistant human ovarian tumor cells. Oncotarget 8:10905–10918PubMedCrossRef
16.
go back to reference Rockfield S, Guergues J, Rehman N et al (2018) Proteomic profiling of iron-treated ovarian cells identifies AKT activation that modulates the CLEAR Network. Proteomics 18:e1800244PubMedCrossRefPubMedCentral Rockfield S, Guergues J, Rehman N et al (2018) Proteomic profiling of iron-treated ovarian cells identifies AKT activation that modulates the CLEAR Network. Proteomics 18:e1800244PubMedCrossRefPubMedCentral
17.
go back to reference Masuda H, Qi Y, Liu S et al (2017) Reverse phase protein array identification of triple-negative breast cancer subtypes and comparison with mRNA molecular subtypes. Oncotarget 8:70481–70495PubMedPubMedCentralCrossRef Masuda H, Qi Y, Liu S et al (2017) Reverse phase protein array identification of triple-negative breast cancer subtypes and comparison with mRNA molecular subtypes. Oncotarget 8:70481–70495PubMedPubMedCentralCrossRef
18.
go back to reference He G, Kuang J, Khokhar AR, Siddik ZH (2011) The impact of S- and G2-checkpoint response on the fidelity of G1-arrest by cisplatin and its comparison to a non-cross-resistant platinum(IV) analog. Gynecol Oncol 122:402–409PubMedPubMedCentralCrossRef He G, Kuang J, Khokhar AR, Siddik ZH (2011) The impact of S- and G2-checkpoint response on the fidelity of G1-arrest by cisplatin and its comparison to a non-cross-resistant platinum(IV) analog. Gynecol Oncol 122:402–409PubMedPubMedCentralCrossRef
19.
go back to reference Hu Y, Scully R, Sobhian B et al (2011) RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev 25:685–700PubMedPubMedCentralCrossRef Hu Y, Scully R, Sobhian B et al (2011) RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev 25:685–700PubMedPubMedCentralCrossRef
20.
go back to reference Manning AL, Benes C, Dyson NJ (2014) Whole chromosome instability resulting from the synergistic effects of pRB and p53 inactivation. Oncogene 33:2487–2494PubMedCrossRef Manning AL, Benes C, Dyson NJ (2014) Whole chromosome instability resulting from the synergistic effects of pRB and p53 inactivation. Oncogene 33:2487–2494PubMedCrossRef
21.
go back to reference Xie X, Lozano G, Siddik ZH (2016) Heterozygous p53(V172F) mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53. Oncogene 35:4798–4806PubMedPubMedCentralCrossRef Xie X, Lozano G, Siddik ZH (2016) Heterozygous p53(V172F) mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53. Oncogene 35:4798–4806PubMedPubMedCentralCrossRef
22.
go back to reference Budke B, Logan HL, Kalin JH et al (2012) RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucleic Acids Res 40:7347–7357PubMedPubMedCentralCrossRef Budke B, Logan HL, Kalin JH et al (2012) RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucleic Acids Res 40:7347–7357PubMedPubMedCentralCrossRef
23.
go back to reference Peng G, Chun-Jen LC, Mo W et al (2014) Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat Commun 5:3361PubMedCrossRef Peng G, Chun-Jen LC, Mo W et al (2014) Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat Commun 5:3361PubMedCrossRef
24.
go back to reference Kim D, Liu Y, Oberly S et al (2018) ATR-mediated proteome remodeling is a major determinant of homologous recombination capacity in cancer cells. Nucleic Acids Res 46:8311–8325PubMedPubMedCentralCrossRef Kim D, Liu Y, Oberly S et al (2018) ATR-mediated proteome remodeling is a major determinant of homologous recombination capacity in cancer cells. Nucleic Acids Res 46:8311–8325PubMedPubMedCentralCrossRef
25.
go back to reference Xie X, He G, Siddik ZH (2020) Cisplatin in combination with MDM2 inhibition downregulates Rad51 recombinase in a bimodal manner to inhibit homologous recombination and augment tumor cell kill. Mol Pharmacol 97:237–249PubMedCrossRefPubMedCentral Xie X, He G, Siddik ZH (2020) Cisplatin in combination with MDM2 inhibition downregulates Rad51 recombinase in a bimodal manner to inhibit homologous recombination and augment tumor cell kill. Mol Pharmacol 97:237–249PubMedCrossRefPubMedCentral
26.
go back to reference Chou TC (2010) Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res 70:440–446PubMedCrossRef Chou TC (2010) Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res 70:440–446PubMedCrossRef
27.
go back to reference Mujoo K, Watanabe M, Nakamura J et al (2003) Status of p53 phosphorylation and function in sensitive and resistant human cancer models exposed to platinum-based DNA damaging agents. J Cancer Res Clin Oncol 129:709–718PubMedCrossRef Mujoo K, Watanabe M, Nakamura J et al (2003) Status of p53 phosphorylation and function in sensitive and resistant human cancer models exposed to platinum-based DNA damaging agents. J Cancer Res Clin Oncol 129:709–718PubMedCrossRef
28.
go back to reference Siddik ZH, Hagopian GS, Thai G et al (1999) Role of p53 in the ability of 1,2-diaminocyclohexane-diacetato-dichloro-Pt(IV) to circumvent cisplatin resistance. J Inorg Biochem 77:65–70PubMedCrossRef Siddik ZH, Hagopian GS, Thai G et al (1999) Role of p53 in the ability of 1,2-diaminocyclohexane-diacetato-dichloro-Pt(IV) to circumvent cisplatin resistance. J Inorg Biochem 77:65–70PubMedCrossRef
29.
go back to reference Schroyens W, Dodion P, Rozencweig M (1990) Comparative effect of cisplatin, spiroplatin, carboplatin and iproplatin in a human tumor clonogenic assay. J Cancer Res Clin Oncol 116:392–396PubMedCrossRef Schroyens W, Dodion P, Rozencweig M (1990) Comparative effect of cisplatin, spiroplatin, carboplatin and iproplatin in a human tumor clonogenic assay. J Cancer Res Clin Oncol 116:392–396PubMedCrossRef
30.
go back to reference Kraker AJ, Moore CW, Roberts BJ et al (1991) Preclinical antitumor activity of CI-973,[SP-4-3-(R)]-[1,1-cyclobutanedicarboxylato(2-)](2-methyl-1,4-butane-diamine-N,N′)platinum. Investig New Drugs 9:1–7CrossRef Kraker AJ, Moore CW, Roberts BJ et al (1991) Preclinical antitumor activity of CI-973,[SP-4-3-(R)]-[1,1-cyclobutanedicarboxylato(2-)](2-methyl-1,4-butane-diamine-N,N′)platinum. Investig New Drugs 9:1–7CrossRef
31.
go back to reference Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497–510PubMedCrossRef Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497–510PubMedCrossRef
32.
go back to reference Velez-Cruz R, Manickavinayaham S, Biswas AK et al (2016) RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1. Genes Dev 30:2500–2512PubMedPubMedCentralCrossRef Velez-Cruz R, Manickavinayaham S, Biswas AK et al (2016) RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1. Genes Dev 30:2500–2512PubMedPubMedCentralCrossRef
33.
go back to reference Alsop K, Fereday S, Meldrum C et al (2012) BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol 30:2654–2663PubMedPubMedCentralCrossRef Alsop K, Fereday S, Meldrum C et al (2012) BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol 30:2654–2663PubMedPubMedCentralCrossRef
34.
go back to reference Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D'Andrea AD (2015) Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov 5:1137–1154PubMedPubMedCentralCrossRef Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D'Andrea AD (2015) Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov 5:1137–1154PubMedPubMedCentralCrossRef
37.
go back to reference Lohr K, Moritz C, Contente A, Dobbelstein M (2003) p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem 278:32507–32516PubMedCrossRef Lohr K, Moritz C, Contente A, Dobbelstein M (2003) p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem 278:32507–32516PubMedCrossRef
38.
go back to reference Husain A, He G, Venkatraman ES, Spriggs DR (1998) BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res 58:1120–1123PubMed Husain A, He G, Venkatraman ES, Spriggs DR (1998) BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res 58:1120–1123PubMed
39.
go back to reference Takahashi M, Koi M, Balaguer F et al (2011) MSH3 mediates sensitization of colorectal cancer cells to cisplatin, oxaliplatin, and a poly(ADP-ribose) polymerase inhibitor. J Biol Chem 286:12157–12165PubMedPubMedCentralCrossRef Takahashi M, Koi M, Balaguer F et al (2011) MSH3 mediates sensitization of colorectal cancer cells to cisplatin, oxaliplatin, and a poly(ADP-ribose) polymerase inhibitor. J Biol Chem 286:12157–12165PubMedPubMedCentralCrossRef
40.
go back to reference Xu K, Chen Z, Cui Y et al (2015) Combined olaparib and oxaliplatin inhibits tumor proliferation and induces G2/M arrest and gamma-H2AX foci formation in colorectal cancer. Onco Targets Ther 8:3047–3054PubMedPubMedCentralCrossRef Xu K, Chen Z, Cui Y et al (2015) Combined olaparib and oxaliplatin inhibits tumor proliferation and induces G2/M arrest and gamma-H2AX foci formation in colorectal cancer. Onco Targets Ther 8:3047–3054PubMedPubMedCentralCrossRef
41.
go back to reference Xiao Z, Chen Z, Gunasekera AH et al (2003) Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 278:21767–21773PubMedCrossRef Xiao Z, Chen Z, Gunasekera AH et al (2003) Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 278:21767–21773PubMedCrossRef
42.
go back to reference Kuang J, He G, Huang Z et al (2001) Bimodal effects of 1R,2R-diaminocyclohexane(trans-diacetato)(dichloro)platinum(IV) on cell cycle checkpoints. Clin Cancer Res 7:3629–3639PubMed Kuang J, He G, Huang Z et al (2001) Bimodal effects of 1R,2R-diaminocyclohexane(trans-diacetato)(dichloro)platinum(IV) on cell cycle checkpoints. Clin Cancer Res 7:3629–3639PubMed
43.
go back to reference el Deiry WS (2003) The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22:7486–7495PubMedCrossRef el Deiry WS (2003) The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22:7486–7495PubMedCrossRef
44.
go back to reference MacLachlan TK, Takimoto R, el Deiry WS (2002) BRCA1 directs a selective p53-dependent transcriptional response towards growth arrest and DNA repair targets. Mol Cell Biol 22:4280–4292PubMedPubMedCentralCrossRef MacLachlan TK, Takimoto R, el Deiry WS (2002) BRCA1 directs a selective p53-dependent transcriptional response towards growth arrest and DNA repair targets. Mol Cell Biol 22:4280–4292PubMedPubMedCentralCrossRef
45.
go back to reference Ongusaha PP, Ouchi T, Kim KT et al (2003) BRCA1 shifts p53-mediated cellular outcomes towards irreversible growth arrest. Oncogene 22:3749–3758PubMedCrossRef Ongusaha PP, Ouchi T, Kim KT et al (2003) BRCA1 shifts p53-mediated cellular outcomes towards irreversible growth arrest. Oncogene 22:3749–3758PubMedCrossRef
46.
go back to reference Friedler A, Veprintsev DB, Rutherford T et al (2005) Binding of Rad51 and other peptide sequences to a promiscuous, highly electrostatic binding site in p53. J Biol Chem 280:8051–8059PubMedCrossRef Friedler A, Veprintsev DB, Rutherford T et al (2005) Binding of Rad51 and other peptide sequences to a promiscuous, highly electrostatic binding site in p53. J Biol Chem 280:8051–8059PubMedCrossRef
47.
go back to reference Siddik ZH (2002) Mechanisms of action of cancer chemotherapeutic agents: DNA-interactive alkylating agents and antitumour platinum-based drugs. In: Alison MR (ed) The cancer handbook. Nature Publishing Group, London, pp 1295–1312 Siddik ZH (2002) Mechanisms of action of cancer chemotherapeutic agents: DNA-interactive alkylating agents and antitumour platinum-based drugs. In: Alison MR (ed) The cancer handbook. Nature Publishing Group, London, pp 1295–1312
Metadata
Title
Protein expression profiling identifies differential modulation of homologous recombination by platinum-based antitumor agents
Authors
Guangan He
Xiaolei Xie
Zahid H. Siddik
Publication date
01-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 6/2020
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-020-04085-1

Other articles of this Issue 6/2020

Cancer Chemotherapy and Pharmacology 6/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine