Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 4/2019

01-10-2019 | Pharmacokinetics | Original Article

Species-specific optimization of PEG~SN-38 prodrug pharmacokinetics and antitumor effects in a triple-negative BRCA1-deficient xenograft

Authors: Shaun D. Fontaine, Byron Hann, Ralph Reid, Gary W. Ashley, Daniel. V. Santi

Published in: Cancer Chemotherapy and Pharmacology | Issue 4/2019

Login to get access

Abstract

Purpose

Optimal efficacy of a macromolecular prodrug requires balancing the rate of drug release with the rate of prodrug elimination. Since circulating macromolecules have different elimination rates in different species, a prodrug optimal for one species will likely not be for another. The objectives of this work were (a) to develop an approach to optimize pharmacokinetics of a PEG~SN-38 prodrug in a particular species, (b) to use the approach to predict the pharmacokinetics of various prodrugs of SN-38 in the mouse and human, and (c) to develop a PEG~SN-38 conjugate that is optimized for mouse tumor models.

Methods

We developed models that describe the pharmacokinetics of a drug released from a prodrug by the relationship between the rates of drug release and elimination of the prodrug. We tested the model by varying the release rate of SN-38 from PEG~SN-38 conjugates in the setting of a constant prodrug elimination rate in the mouse. Finally, we tested the antitumor efficacy of a PEG~SN-38 optimized for the mouse.

Results

Optimization of a PEG~SN-38 prodrug was achieved by adjusting the rate of SN-38 release such that the ratio of t1/2,β of released SN-38 to the t1/2 of prodrug elimination was 0.2–0.8. Using this approach, we could rationalize the efficacy of previous PEGylated SN-38 prodrugs in the mouse and human. Finally, a mouse-optimized PEG~SN-38 showed remarkable antitumor activity in BRCA1-deficient MX-1 xenografts; a single dose gave tumor regression, suppression, and shrinkage of massive tumors.

Conclusions

The efficacy of a macromolecular prodrug can be optimized for a given species by balancing the rate of drug release from the carrier with the rate of prodrug elimination.
Appendix
Available only for authorised users
Footnotes
1
Doses of PEG~SN-38 refer to the amount of conjugated SN-38 delivered.
 
Literature
1.
go back to reference Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7(8):2182–2194PubMed Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7(8):2182–2194PubMed
2.
go back to reference Slatter JG, Schaaf LJ, Sams JP, Feenstra KL, Johnson MG, Bombardt PA, Cathcart KS, Verburg MT, Pearson LK, Compton LD, Miller LL, Baker DS, Pesheck CV, Lord RS 3rd (2000) Pharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following I.V. infusion of [(14)C]CPT-11 in cancer patients. Drug Metab Dispos 28(4):423–433PubMed Slatter JG, Schaaf LJ, Sams JP, Feenstra KL, Johnson MG, Bombardt PA, Cathcart KS, Verburg MT, Pearson LK, Compton LD, Miller LL, Baker DS, Pesheck CV, Lord RS 3rd (2000) Pharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following I.V. infusion of [(14)C]CPT-11 in cancer patients. Drug Metab Dispos 28(4):423–433PubMed
4.
go back to reference Maeda H, Tsukigawa K, Fang J (2016) A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy-problems, solutions, and prospects. Microcirculation 23(3):173–182. https://doi.org/10.1111/micc.12228 CrossRefPubMed Maeda H, Tsukigawa K, Fang J (2016) A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy-problems, solutions, and prospects. Microcirculation 23(3):173–182. https://​doi.​org/​10.​1111/​micc.​12228 CrossRefPubMed
7.
go back to reference Garrett CR, Bekaii-Saab TS, Ryan T, Fisher GA, Clive S, Kavan P, Shacham-Shmueli E, Buchbinder A, Goldberg RM (2013) Randomized phase 2 study of pegylated SN-38 (EZN-2208) or irinotecan plus cetuximab in patients with advanced colorectal cancer. Cancer 119(24):4223–4230. https://doi.org/10.1002/cncr.28358 CrossRefPubMed Garrett CR, Bekaii-Saab TS, Ryan T, Fisher GA, Clive S, Kavan P, Shacham-Shmueli E, Buchbinder A, Goldberg RM (2013) Randomized phase 2 study of pegylated SN-38 (EZN-2208) or irinotecan plus cetuximab in patients with advanced colorectal cancer. Cancer 119(24):4223–4230. https://​doi.​org/​10.​1002/​cncr.​28358 CrossRefPubMed
11.
go back to reference Jameson GS, Hamm JT, Weiss GJ, Alemany C, Anthony S, Basche M, Ramanathan RK, Borad MJ, Tibes R, Cohn A, Hinshaw I, Jotte R, Rosen LS, Hoch U, Eldon MA, Medve R, Schroeder K, White E, Von Hoff DD (2013) A multicenter, phase I, dose-escalation study to assess the safety, tolerability, and pharmacokinetics of etirinotecan pegol in patients with refractory solid tumors. Clin Cancer Res 19(1):268–278. https://doi.org/10.1158/1078-0432.CCR-12-1201 CrossRefPubMed Jameson GS, Hamm JT, Weiss GJ, Alemany C, Anthony S, Basche M, Ramanathan RK, Borad MJ, Tibes R, Cohn A, Hinshaw I, Jotte R, Rosen LS, Hoch U, Eldon MA, Medve R, Schroeder K, White E, Von Hoff DD (2013) A multicenter, phase I, dose-escalation study to assess the safety, tolerability, and pharmacokinetics of etirinotecan pegol in patients with refractory solid tumors. Clin Cancer Res 19(1):268–278. https://​doi.​org/​10.​1158/​1078-0432.​CCR-12-1201 CrossRefPubMed
15.
go back to reference Houghton PJ, Morton CL, Tucker C, Payne D, Favours E, Cole C, Gorlick R, Kolb EA, Zhang W, Lock R, Carol H, Tajbakhsh M, Reynolds CP, Maris JM, Courtright J, Keir ST, Friedman HS, Stopford C, Zeidner J, Wu J, Liu T, Billups CA, Khan J, Ansher S, Zhang J, Smith MA (2007) The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 49(7):928–940. https://doi.org/10.1002/pbc.21078 CrossRefPubMed Houghton PJ, Morton CL, Tucker C, Payne D, Favours E, Cole C, Gorlick R, Kolb EA, Zhang W, Lock R, Carol H, Tajbakhsh M, Reynolds CP, Maris JM, Courtright J, Keir ST, Friedman HS, Stopford C, Zeidner J, Wu J, Liu T, Billups CA, Khan J, Ansher S, Zhang J, Smith MA (2007) The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 49(7):928–940. https://​doi.​org/​10.​1002/​pbc.​21078 CrossRefPubMed
17.
go back to reference Kurzrock R, Goel S, Wheler J, Hong D, Fu S, Rezai K, Morgan-Linnell SK, Urien S, Mani S, Chaudhary I, Ghalib MH, Buchbinder A, Lokiec F, Mulcahy M (2012) Safety, pharmacokinetics, and activity of EZN-2208, a novel conjugate of polyethylene glycol and SN38, in patients with advanced malignancies. Cancer 118(24):6144–6151. https://doi.org/10.1002/cncr.27647 CrossRefPubMed Kurzrock R, Goel S, Wheler J, Hong D, Fu S, Rezai K, Morgan-Linnell SK, Urien S, Mani S, Chaudhary I, Ghalib MH, Buchbinder A, Lokiec F, Mulcahy M (2012) Safety, pharmacokinetics, and activity of EZN-2208, a novel conjugate of polyethylene glycol and SN38, in patients with advanced malignancies. Cancer 118(24):6144–6151. https://​doi.​org/​10.​1002/​cncr.​27647 CrossRefPubMed
19.
go back to reference Patnaik A, Papadopoulos KP, Tolcher AW, Beeram M, Urien S, Schaaf LJ, Tahiri S, Bekaii-Saab T, Lokiec FM, Rezai K, Buchbinder A (2013) Phase I dose-escalation study of EZN-2208 (PEG-SN38), a novel conjugate of poly(ethylene) glycol and SN38, administered weekly in patients with advanced cancer. Cancer Chemother Pharmacol 71(6):1499–1506. https://doi.org/10.1007/s00280-013-2149-2 CrossRefPubMed Patnaik A, Papadopoulos KP, Tolcher AW, Beeram M, Urien S, Schaaf LJ, Tahiri S, Bekaii-Saab T, Lokiec FM, Rezai K, Buchbinder A (2013) Phase I dose-escalation study of EZN-2208 (PEG-SN38), a novel conjugate of poly(ethylene) glycol and SN38, administered weekly in patients with advanced cancer. Cancer Chemother Pharmacol 71(6):1499–1506. https://​doi.​org/​10.​1007/​s00280-013-2149-2 CrossRefPubMed
20.
go back to reference Masi G, Falcone A, Di Paolo A, Allegrini G, Danesi R, Barbara C, Cupini S, Del Tacca M (2004) A phase I and pharmacokinetic study of irinotecan given as a 7-day continuous infusion in metastatic colorectal cancer patients pretreated with 5-fluorouracil or raltitrexed. Clin Cancer Res 10(5):1657–1663CrossRef Masi G, Falcone A, Di Paolo A, Allegrini G, Danesi R, Barbara C, Cupini S, Del Tacca M (2004) A phase I and pharmacokinetic study of irinotecan given as a 7-day continuous infusion in metastatic colorectal cancer patients pretreated with 5-fluorouracil or raltitrexed. Clin Cancer Res 10(5):1657–1663CrossRef
22.
go back to reference Rothenberg ML, Kuhn JG, Schaaf LJ, Rodriguez GI, Eckhardt SG, Villalona-Calero MA, Rinaldi DA, Hammond LA, Hodges S, Sharma A, Elfring GL, Petit RG, Locker PK, Miller LL, von Hoff DD (2001) Phase I dose-finding and pharmacokinetic trial of irinotecan (CPT-11) administered every two weeks. Ann Oncol 12(11):1631–1641CrossRef Rothenberg ML, Kuhn JG, Schaaf LJ, Rodriguez GI, Eckhardt SG, Villalona-Calero MA, Rinaldi DA, Hammond LA, Hodges S, Sharma A, Elfring GL, Petit RG, Locker PK, Miller LL, von Hoff DD (2001) Phase I dose-finding and pharmacokinetic trial of irinotecan (CPT-11) administered every two weeks. Ann Oncol 12(11):1631–1641CrossRef
23.
go back to reference Rouits E, Guichard S, Canal P, Chatelut E (2002) Non-linear pharmacokinetics of irinotecan in mice. Anticancer Drugs 13(6):631–635CrossRef Rouits E, Guichard S, Canal P, Chatelut E (2002) Non-linear pharmacokinetics of irinotecan in mice. Anticancer Drugs 13(6):631–635CrossRef
27.
go back to reference Houghton PJ, Cheshire PJ, Hallman JD 2nd, Lutz L, Friedman HS, Danks MK, Houghton JA (1995) Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother Pharmacol 36(5):393–403. https://doi.org/10.1007/BF00686188 CrossRefPubMed Houghton PJ, Cheshire PJ, Hallman JD 2nd, Lutz L, Friedman HS, Danks MK, Houghton JA (1995) Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother Pharmacol 36(5):393–403. https://​doi.​org/​10.​1007/​BF00686188 CrossRefPubMed
28.
go back to reference Guichard S, Montazeri A, Chatelut E, Hennebelle I, Bugat R, Canal P (2001) Schedule-dependent activity of topotecan in OVCAR-3 ovarian carcinoma xenograft: pharmacokinetic and pharmacodynamic evaluation. Clin Cancer Res 7(10):3222–3228PubMed Guichard S, Montazeri A, Chatelut E, Hennebelle I, Bugat R, Canal P (2001) Schedule-dependent activity of topotecan in OVCAR-3 ovarian carcinoma xenograft: pharmacokinetic and pharmacodynamic evaluation. Clin Cancer Res 7(10):3222–3228PubMed
29.
go back to reference Morton CL, Wierdl M, Oliver L, Ma MK, Danks MK, Stewart CF, Eiseman JL, Potter PM (2000) Activation of CPT-11 in mice: identification and analysis of a highly effective plasma esterase. Cancer Res 60(15):4206–4210PubMed Morton CL, Wierdl M, Oliver L, Ma MK, Danks MK, Stewart CF, Eiseman JL, Potter PM (2000) Activation of CPT-11 in mice: identification and analysis of a highly effective plasma esterase. Cancer Res 60(15):4206–4210PubMed
32.
go back to reference Ocean AJ, Starodub AN, Bardia A, Vahdat LT, Isakoff SJ, Guarino M, Messersmith WA, Picozzi VJ, Mayer IA, Wegener WA, Maliakal P, Govindan SV, Sharkey RM, Goldenberg DM (2017) Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: safety and pharmacokinetics. Cancer 123(19):3843–3854. https://doi.org/10.1002/cncr.30789 CrossRefPubMed Ocean AJ, Starodub AN, Bardia A, Vahdat LT, Isakoff SJ, Guarino M, Messersmith WA, Picozzi VJ, Mayer IA, Wegener WA, Maliakal P, Govindan SV, Sharkey RM, Goldenberg DM (2017) Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: safety and pharmacokinetics. Cancer 123(19):3843–3854. https://​doi.​org/​10.​1002/​cncr.​30789 CrossRefPubMed
Metadata
Title
Species-specific optimization of PEG~SN-38 prodrug pharmacokinetics and antitumor effects in a triple-negative BRCA1-deficient xenograft
Authors
Shaun D. Fontaine
Byron Hann
Ralph Reid
Gary W. Ashley
Daniel. V. Santi
Publication date
01-10-2019
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 4/2019
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-019-03903-5

Other articles of this Issue 4/2019

Cancer Chemotherapy and Pharmacology 4/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine