Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 2/2017

01-02-2017 | Review Article

Trends on polymer- and lipid-based nanostructures for parenteral drug delivery to tumors

Authors: Elham Ajorlou, Ahmad Yari Khosroushahi

Published in: Cancer Chemotherapy and Pharmacology | Issue 2/2017

Login to get access

Abstract

Purpose

The dawn of the state-of-the-art methods of cancer treatments, nano-based delivery systems, has dispensed with the mainstream chemotherapy for being inadequate in yielding productive results and the numerous reported side effects. The popularity of this complementary approach in the course of the last two decades has been primarily attributed to its capacity to elevate the therapeutic index of anticancer drugs as well as removing the impassable delivery barriers in solid tumors with the minimal damage to the normal tissues.

Methods

The PubMed database was consulted to compile this review.

Results

A wide range of minuscule organic and inorganic nanomaterials, with dimensions not exceeding hundred nanometers, has led to hope for cancer therapy to flare-up once again due to possessing a number of exclusive traits for passive and active tumor targeting, some of which are EPR effect, high interstitial pressure of tumor, overexpressed receptors and angiogenesis. Although a limited number of liposomal and polymer-based therapeutic nanoparticles have gained applicability, a vast number of nanoparticles are still being trailed in order to be fully developed.

Conclusions

This study provides an overview of the advantages/disadvantages of nanocarriers for cancer drug delivery.
Literature
7.
10.
go back to reference Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74(1–3):47–61PubMedCrossRef Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74(1–3):47–61PubMedCrossRef
17.
19.
go back to reference Rawat M, Singh D, Saraf S, Saraf S (2006) Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 29(9):1790–1798PubMedCrossRef Rawat M, Singh D, Saraf S, Saraf S (2006) Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 29(9):1790–1798PubMedCrossRef
20.
go back to reference Benhabbour SR, Luft JC, Kim D, Jain A, Wadhwa S, Parrott MC, Liu R, DeSimone JM, Mumper RJ (2012) In vitro and in vivo assessment of targeting lipid-based nanoparticles to the epidermal growth factor-receptor (EGFR) using a novel Heptameric ZEGFR domain. J Control Release 158(1):63–71. doi:10.1016/j.jconrel.2011.10.013 PubMedCrossRef Benhabbour SR, Luft JC, Kim D, Jain A, Wadhwa S, Parrott MC, Liu R, DeSimone JM, Mumper RJ (2012) In vitro and in vivo assessment of targeting lipid-based nanoparticles to the epidermal growth factor-receptor (EGFR) using a novel Heptameric ZEGFR domain. J Control Release 158(1):63–71. doi:10.​1016/​j.​jconrel.​2011.​10.​013 PubMedCrossRef
21.
25.
go back to reference Arias JL (2011) Drug targeting strategies in cancer treatment: an overview. Mini Rev Med Chem 11(1):1–17PubMedCrossRef Arias JL (2011) Drug targeting strategies in cancer treatment: an overview. Mini Rev Med Chem 11(1):1–17PubMedCrossRef
35.
go back to reference Loh XJ, del Barrio J, Toh PP, Lee TC, Jiao D, Rauwald U, Appel EA, Scherman OA (2012) Triply triggered doxorubicin release from supramolecular nanocontainers. Biomacromolecules 13(1):84–91. doi:10.1021/bm201588m PubMedCrossRef Loh XJ, del Barrio J, Toh PP, Lee TC, Jiao D, Rauwald U, Appel EA, Scherman OA (2012) Triply triggered doxorubicin release from supramolecular nanocontainers. Biomacromolecules 13(1):84–91. doi:10.​1021/​bm201588m PubMedCrossRef
37.
go back to reference Luo Z, Hu Y, Cai K, Ding X, Zhang Q, Li M, Ma X, Zhang B, Zeng Y, Li P, Li J, Liu J, Zhao Y (2014) Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials 35(27):7951–7962. doi:10.1016/j.biomaterials.2014.05.058 PubMedCrossRef Luo Z, Hu Y, Cai K, Ding X, Zhang Q, Li M, Ma X, Zhang B, Zeng Y, Li P, Li J, Liu J, Zhao Y (2014) Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials 35(27):7951–7962. doi:10.​1016/​j.​biomaterials.​2014.​05.​058 PubMedCrossRef
44.
go back to reference Locatelli E, Comes Franchini M (2012) Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. J Nanopart Res 14(12):1–17. doi:10.1007/s11051-012-1316-4 CrossRef Locatelli E, Comes Franchini M (2012) Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. J Nanopart Res 14(12):1–17. doi:10.​1007/​s11051-012-1316-4 CrossRef
45.
go back to reference Lai P, Daear W, Lobenberg R, Prenner EJ (2014) Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(d, l-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids Surf B Biointerfaces 118:154–163. doi:10.1016/j.colsurfb.2014.03.017 PubMedCrossRef Lai P, Daear W, Lobenberg R, Prenner EJ (2014) Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(d, l-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids Surf B Biointerfaces 118:154–163. doi:10.​1016/​j.​colsurfb.​2014.​03.​017 PubMedCrossRef
47.
go back to reference Wang A, Gu F, Farokhzad O (2009) Nanoparticles for Cancer Diagnosis and Therapy. In: Webster TJ (ed) Safety of Nanoparticles. Nanostructure Science and Technology. Springer New York, pp 209–235. doi:10.1007/978-0-387-78608-7_10 Wang A, Gu F, Farokhzad O (2009) Nanoparticles for Cancer Diagnosis and Therapy. In: Webster TJ (ed) Safety of Nanoparticles. Nanostructure Science and Technology. Springer New York, pp 209–235. doi:10.​1007/​978-0-387-78608-7_​10
48.
go back to reference Herrero EP, Alonso MJ, Csaba N (2012) Polymer-based oral peptide nanomedicines. Ther Deliv 3(5):657–668PubMedCrossRef Herrero EP, Alonso MJ, Csaba N (2012) Polymer-based oral peptide nanomedicines. Ther Deliv 3(5):657–668PubMedCrossRef
55.
go back to reference Infante JR, Keedy VL, Jones SF, Zamboni WC, Chan E, Bendell JC, Lee W, Wu H, Ikeda S, Kodaira H, Rothenberg ML, Burris HA 3rd (2012) Phase I and pharmacokinetic study of IHL-305 (PEGylated liposomal irinotecan) in patients with advanced solid tumors. Cancer Chemother Pharmacol 70(5):699–705. doi:10.1007/s00280-012-1960-5 PubMedCrossRef Infante JR, Keedy VL, Jones SF, Zamboni WC, Chan E, Bendell JC, Lee W, Wu H, Ikeda S, Kodaira H, Rothenberg ML, Burris HA 3rd (2012) Phase I and pharmacokinetic study of IHL-305 (PEGylated liposomal irinotecan) in patients with advanced solid tumors. Cancer Chemother Pharmacol 70(5):699–705. doi:10.​1007/​s00280-012-1960-5 PubMedCrossRef
60.
go back to reference Park SM, Kim MS, Park SJ, Park ES, Choi KS, Kim YS, Kim HR (2013) Novel temperature-triggered liposome with high stability: formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU). J Control Release 170(3):373–379. doi:10.1016/j.jconrel.2013.06.003 PubMedCrossRef Park SM, Kim MS, Park SJ, Park ES, Choi KS, Kim YS, Kim HR (2013) Novel temperature-triggered liposome with high stability: formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU). J Control Release 170(3):373–379. doi:10.​1016/​j.​jconrel.​2013.​06.​003 PubMedCrossRef
62.
go back to reference Drummond DC, Noble CO, Guo Z, Hayes ME, Connolly-Ingram C, Gabriel BS, Hann B, Liu B, Park JW, Hong K, Benz CC, Marks JD, Kirpotin DB (2010) Development of a highly stable and targetable nanoliposomal formulation of topotecan. J Control Release 141(1):13–21. doi:10.1016/j.jconrel.2009.08.006 PubMedCrossRef Drummond DC, Noble CO, Guo Z, Hayes ME, Connolly-Ingram C, Gabriel BS, Hann B, Liu B, Park JW, Hong K, Benz CC, Marks JD, Kirpotin DB (2010) Development of a highly stable and targetable nanoliposomal formulation of topotecan. J Control Release 141(1):13–21. doi:10.​1016/​j.​jconrel.​2009.​08.​006 PubMedCrossRef
65.
go back to reference Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, Levy RJ, Labhasetwar V (2003) Polymer degradation and in vitro release of a model protein from poly(D, L-lactide-co-glycolide) nano- and microparticles. J Control Release 92(1–2):173–187PubMedCrossRef Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, Levy RJ, Labhasetwar V (2003) Polymer degradation and in vitro release of a model protein from poly(D, L-lactide-co-glycolide) nano- and microparticles. J Control Release 92(1–2):173–187PubMedCrossRef
66.
go back to reference Arleth L, Ashok B, Onyuksel H, Thiyagarajan P, Jacob J, Hjelm RP (2005) Detailed structure of hairy mixed micelles formed by phosphatidylcholine and PEGylated phospholipids in aqueous media. Langmuir 21(8):3279–3290. doi:10.1021/la047588y PubMedCrossRef Arleth L, Ashok B, Onyuksel H, Thiyagarajan P, Jacob J, Hjelm RP (2005) Detailed structure of hairy mixed micelles formed by phosphatidylcholine and PEGylated phospholipids in aqueous media. Langmuir 21(8):3279–3290. doi:10.​1021/​la047588y PubMedCrossRef
67.
go back to reference Muqbil I, Masood A, Sarkar FH, Mohammad RM, Azmi AS (2011) Progress in nanotechnology based approaches to enhance the potential of chemopreventive agents. Cancers (Basel) 3(1):428–445. doi:10.3390/cancers3010428 CrossRef Muqbil I, Masood A, Sarkar FH, Mohammad RM, Azmi AS (2011) Progress in nanotechnology based approaches to enhance the potential of chemopreventive agents. Cancers (Basel) 3(1):428–445. doi:10.​3390/​cancers3010428 CrossRef
71.
go back to reference Kakde D, Jain D, Shrivastava V, Kakde R, Patil A (2011) Cancer therapeutics-opportunities, challenges and advances in drug delivery. J Appl Pharm Sci 1(9):1–10 Kakde D, Jain D, Shrivastava V, Kakde R, Patil A (2011) Cancer therapeutics-opportunities, challenges and advances in drug delivery. J Appl Pharm Sci 1(9):1–10
75.
80.
go back to reference Jain AK, Das M, Swarnakar NK, Jain S (2011) Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carrier Syst 28(1):1–45PubMedCrossRef Jain AK, Das M, Swarnakar NK, Jain S (2011) Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carrier Syst 28(1):1–45PubMedCrossRef
91.
go back to reference Ahn HK, Jung M, Sym SJ, Shin DB, Kang SM, Kyung SY, Park JW, Jeong SH, Cho EK (2014) A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 74(2):277–282. doi:10.1007/s00280-014-2498-5 PubMedPubMedCentralCrossRef Ahn HK, Jung M, Sym SJ, Shin DB, Kang SM, Kyung SY, Park JW, Jeong SH, Cho EK (2014) A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 74(2):277–282. doi:10.​1007/​s00280-014-2498-5 PubMedPubMedCentralCrossRef
93.
go back to reference Hamaguchi T, Doi T, Eguchi-Nakajima T, Kato K, Yamada Y, Shimada Y, Fuse N, Ohtsu A, Matsumoto S, Takanashi M, Matsumura Y (2010) Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors. Clin Cancer Res 16(20):5058–5066. doi:10.1158/1078-0432.ccr-10-0387 PubMedCrossRef Hamaguchi T, Doi T, Eguchi-Nakajima T, Kato K, Yamada Y, Shimada Y, Fuse N, Ohtsu A, Matsumoto S, Takanashi M, Matsumura Y (2010) Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors. Clin Cancer Res 16(20):5058–5066. doi:10.​1158/​1078-0432.​ccr-10-0387 PubMedCrossRef
96.
go back to reference Harrington KJ, Lewanski CR, Northcote AD, Whittaker J, Wellbank H, Vile RG, Peters AM, Stewart JS (2001) Phase I-II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer. Ann Oncol 12(4):493–496PubMedCrossRef Harrington KJ, Lewanski CR, Northcote AD, Whittaker J, Wellbank H, Vile RG, Peters AM, Stewart JS (2001) Phase I-II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer. Ann Oncol 12(4):493–496PubMedCrossRef
97.
go back to reference Schutz CA, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M (2013) Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine (Lond) 8(3):449–467. doi:10.2217/nnm.13.8 CrossRef Schutz CA, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M (2013) Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine (Lond) 8(3):449–467. doi:10.​2217/​nnm.​13.​8 CrossRef
98.
go back to reference Tippayamontri T, Kotb R, Paquette B, Sanche L (2013) Efficacy of cisplatin and Lipoplatin in combined treatment with radiation of a colorectal tumor in nude mouse. Anticancer Res 33(8):3005–3014PubMed Tippayamontri T, Kotb R, Paquette B, Sanche L (2013) Efficacy of cisplatin and Lipoplatin in combined treatment with radiation of a colorectal tumor in nude mouse. Anticancer Res 33(8):3005–3014PubMed
101.
go back to reference Tippayamontri T, Kotb R, Paquette B, Sanche L (2011) Cellular uptake and cytoplasm/DNA distribution of cisplatin and oxaliplatin and their liposomal formulation in human colorectal cancer cell HCT116. Invest New Drugs 29(6):1321–1327. doi:10.1007/s10637-010-9494-3 PubMedCrossRef Tippayamontri T, Kotb R, Paquette B, Sanche L (2011) Cellular uptake and cytoplasm/DNA distribution of cisplatin and oxaliplatin and their liposomal formulation in human colorectal cancer cell HCT116. Invest New Drugs 29(6):1321–1327. doi:10.​1007/​s10637-010-9494-3 PubMedCrossRef
105.
go back to reference Duffaud F, Borner M, Chollet P, Vermorken JB, Bloch J, Degardin M, Rolland F, Dittrich C, Baron B, Lacombe D, Fumoleau P (2004) Phase II study of OSI-211 (liposomal lurtotecan) in patients with metastatic or loco-regional recurrent squamous cell carcinoma of the head and neck. An EORTC New Drug Development Group study. Eur J Cancer 40(18):2748–2752. doi:10.1016/j.ejca.2004.08.024 PubMed Duffaud F, Borner M, Chollet P, Vermorken JB, Bloch J, Degardin M, Rolland F, Dittrich C, Baron B, Lacombe D, Fumoleau P (2004) Phase II study of OSI-211 (liposomal lurtotecan) in patients with metastatic or loco-regional recurrent squamous cell carcinoma of the head and neck. An EORTC New Drug Development Group study. Eur J Cancer 40(18):2748–2752. doi:10.​1016/​j.​ejca.​2004.​08.​024 PubMed
106.
107.
go back to reference Booser DJ, Esteva FJ, Rivera E, Valero V, Esparza-Guerra L, Priebe W, Hortobagyi GN (2002) Phase II study of liposomal annamycin in the treatment of doxorubicin-resistant breast cancer. Cancer Chemother Pharmacol 50(1):6–8. doi:10.1007/s00280-002-0464-0 PubMedCrossRef Booser DJ, Esteva FJ, Rivera E, Valero V, Esparza-Guerra L, Priebe W, Hortobagyi GN (2002) Phase II study of liposomal annamycin in the treatment of doxorubicin-resistant breast cancer. Cancer Chemother Pharmacol 50(1):6–8. doi:10.​1007/​s00280-002-0464-0 PubMedCrossRef
109.
go back to reference Deeken JF, Slack R, Weiss GJ, Ramanathan RK, Pishvaian MJ, Hwang J, Lewandowski K, Subramaniam D, He AR, Cotarla I, Rahman A, Marshall JL (2013) A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies. Cancer Chemother Pharmacol 71(3):627–633. doi:10.1007/s00280-012-2048-y PubMedCrossRef Deeken JF, Slack R, Weiss GJ, Ramanathan RK, Pishvaian MJ, Hwang J, Lewandowski K, Subramaniam D, He AR, Cotarla I, Rahman A, Marshall JL (2013) A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies. Cancer Chemother Pharmacol 71(3):627–633. doi:10.​1007/​s00280-012-2048-y PubMedCrossRef
110.
111.
go back to reference Pal A, Khan S, Wang YF, Kamath N, Sarkar AK, Ahmad A, Sheikh S, Ali S, Carbonaro D, Zhang A, Ahmad I (2005) Preclinical safety, pharmacokinetics and antitumor efficacy profile of liposome-entrapped SN-38 formulation. Anticancer Res 25(1A):331–341PubMed Pal A, Khan S, Wang YF, Kamath N, Sarkar AK, Ahmad A, Sheikh S, Ali S, Carbonaro D, Zhang A, Ahmad I (2005) Preclinical safety, pharmacokinetics and antitumor efficacy profile of liposome-entrapped SN-38 formulation. Anticancer Res 25(1A):331–341PubMed
112.
114.
go back to reference Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T, De Witt D, Figa M, Figueiredo M, Horhota A, Low S, McDonnell K, Peeke E, Retnarajan B, Sabnis A, Schnipper E, Song JJ, Song YH, Summa J, Tompsett D, Troiano G, Van Geen Hoven T, Wright J, LoRusso P, Kantoff PW, Bander NH, Sweeney C, Farokhzad OC, Langer R, Zale S (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4(128):128ra139. doi:10.1126/scitranslmed.3003651 CrossRef Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T, De Witt D, Figa M, Figueiredo M, Horhota A, Low S, McDonnell K, Peeke E, Retnarajan B, Sabnis A, Schnipper E, Song JJ, Song YH, Summa J, Tompsett D, Troiano G, Van Geen Hoven T, Wright J, LoRusso P, Kantoff PW, Bander NH, Sweeney C, Farokhzad OC, Langer R, Zale S (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4(128):128ra139. doi:10.​1126/​scitranslmed.​3003651 CrossRef
115.
go back to reference Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, Hilker C, Deuster S, Herrmann R, Rochlitz C (2012) Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol 13(12):1234–1241. doi:10.1016/s1470-2045(12)70476-x PubMedCrossRef Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, Hilker C, Deuster S, Herrmann R, Rochlitz C (2012) Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol 13(12):1234–1241. doi:10.​1016/​s1470-2045(12)70476-x PubMedCrossRef
116.
go back to reference Wickham T, Futch K (2012) A phase I study of MM-302, a HER2-targeted liposomal doxorubicin. Patients with advanced, HER2-positive breast cancer. Cancer Res 72:P5–P18CrossRef Wickham T, Futch K (2012) A phase I study of MM-302, a HER2-targeted liposomal doxorubicin. Patients with advanced, HER2-positive breast cancer. Cancer Res 72:P5–P18CrossRef
117.
go back to reference Matsumura Y, Gotoh M, Muro K, Yamada Y, Shirao K, Shimada Y, Okuwa M, Matsumoto S, Miyata Y, Ohkura H, Chin K, Baba S, Yamao T, Kannami A, Takamatsu Y, Ito K, Takahashi K (2004) Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 15(3):517–525PubMedCrossRef Matsumura Y, Gotoh M, Muro K, Yamada Y, Shirao K, Shimada Y, Okuwa M, Matsumoto S, Miyata Y, Ohkura H, Chin K, Baba S, Yamao T, Kannami A, Takamatsu Y, Ito K, Takahashi K (2004) Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 15(3):517–525PubMedCrossRef
118.
120.
go back to reference Zhou J, Shum KT, Burnett JC, Rossi JJ (2013) Nanoparticle-Based Delivery of RNAi Therapeutics: progress and Challenges. Pharmaceuticals (Basel) 6(1):85–107. doi:10.3390/ph6010085 CrossRef Zhou J, Shum KT, Burnett JC, Rossi JJ (2013) Nanoparticle-Based Delivery of RNAi Therapeutics: progress and Challenges. Pharmaceuticals (Basel) 6(1):85–107. doi:10.​3390/​ph6010085 CrossRef
121.
go back to reference Aleku M, Schulz P, Keil O, Santel A, Schaeper U, Dieckhoff B, Janke O, Endruschat J, Durieux B, Roder N, Loffler K, Lange C, Fechtner M, Mopert K, Fisch G, Dames S, Arnold W, Jochims K, Giese K, Wiedenmann B, Scholz A, Kaufmann J (2008) Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res 68(23):9788–9798. doi:10.1158/0008-5472.can-08-2428 PubMedCrossRef Aleku M, Schulz P, Keil O, Santel A, Schaeper U, Dieckhoff B, Janke O, Endruschat J, Durieux B, Roder N, Loffler K, Lange C, Fechtner M, Mopert K, Fisch G, Dames S, Arnold W, Jochims K, Giese K, Wiedenmann B, Scholz A, Kaufmann J (2008) Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res 68(23):9788–9798. doi:10.​1158/​0008-5472.​can-08-2428 PubMedCrossRef
125.
go back to reference Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668. doi:10.1021/mp900015y PubMedCrossRef Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668. doi:10.​1021/​mp900015y PubMedCrossRef
Metadata
Title
Trends on polymer- and lipid-based nanostructures for parenteral drug delivery to tumors
Authors
Elham Ajorlou
Ahmad Yari Khosroushahi
Publication date
01-02-2017
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 2/2017
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-016-3168-6

Other articles of this Issue 2/2017

Cancer Chemotherapy and Pharmacology 2/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine