Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 1/2015

01-01-2015 | Original Article

TrkB inhibition by GNF-4256 slows growth and enhances chemotherapeutic efficacy in neuroblastoma xenografts

Authors: Jamie L. Croucher, Radhika Iyer, Nanxin Li, Valentina Molteni, Jon Loren, W. Perry Gordon, Tove Tuntland, Bo Liu, Garrett M. Brodeur

Published in: Cancer Chemotherapy and Pharmacology | Issue 1/2015

Login to get access

Abstract

Purpose

Neuroblastoma (NB) is one of the most common and deadly pediatric solid tumors. NB is characterized by clinical heterogeneity, from spontaneous regression to relentless progression despite intensive multimodality therapy. There is compelling evidence that members of the tropomyosin receptor kinase (Trk) family play important roles in these disparate clinical behaviors. Indeed, TrkB and its ligand, brain-derived neurotrophic factor (BDNF), are expressed in 50–60 % of high-risk NBs. The BDNF/TrkB autocrine pathway enhances survival, invasion, metastasis, angiogenesis and drug resistance.

Methods

We tested a novel pan-Trk inhibitor, GNF-4256 (Genomics Institute of the Novartis Research Foundation), in vitro and in vivo in a nu/nu athymic xenograft mouse model to determine its efficacy in inhibiting the growth of TrkB-expressing human NB cells (SY5Y-TrkB). Additionally, we assessed the ability of GNF-4256 to enhance NB cell growth inhibition in vitro and in vivo, when combined with conventional chemotherapeutic agents, irinotecan and temozolomide (Irino–TMZ).

Results

GNF-4256 inhibits TrkB phosphorylation and the in vitro growth of TrkB-expressing NBs in a dose-dependent manner, with an IC50 around 7 and 50 nM, respectively. Furthermore, GNF-4256 inhibits the growth of NB xenografts as a single agent (p < 0.0001 for mice treated at 40 or 100 mg/kg BID, compared to controls), and it significantly enhances the antitumor efficacy of irinotecan plus temozolomide (Irino–TMZ, p < 0.0071 compared to Irino–TMZ alone).

Conclusions

Our data suggest that GNF-4256 is a potent and specific Trk inhibitor capable of significantly slowing SY5Y-TrkB growth, both in vitro and in vivo. More importantly, the addition of GNF-4256 significantly enhanced the antitumor efficacy of Irino–TMZ, as measured by in vitro and in vivo growth inhibition and increased event-free survival in a mouse xenograft model, without additional toxicity. These data strongly suggest that inhibition of TrkB with GNF-4256 can enhance the efficacy of current chemotherapeutic treatment for recurrent/refractory high-risk NBs with minimal or no additional toxicity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3(3):203–216PubMedCrossRef Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3(3):203–216PubMedCrossRef
2.
3.
4.
go back to reference Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR et al (2009) Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res 15(10):3244–3250PubMedCentralPubMedCrossRef Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR et al (2009) Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res 15(10):3244–3250PubMedCentralPubMedCrossRef
5.
go back to reference Thiele CJ, Li Z, McKee AE (2009) On Trk—the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res 15(19):5962–5967PubMedCentralPubMedCrossRef Thiele CJ, Li Z, McKee AE (2009) On Trk—the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res 15(19):5962–5967PubMedCentralPubMedCrossRef
6.
go back to reference Nakagawara A (2001) Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett 169(2):107–114PubMedCrossRef Nakagawara A (2001) Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett 169(2):107–114PubMedCrossRef
7.
go back to reference Brodeur GM, Nakagawara A, Yamashiro DJ, Ikegaki N, Liu XG, Azar CG et al (1997) Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol 31(1–2):49–55PubMedCrossRef Brodeur GM, Nakagawara A, Yamashiro DJ, Ikegaki N, Liu XG, Azar CG et al (1997) Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol 31(1–2):49–55PubMedCrossRef
8.
go back to reference Kogner P, Barbany G, Dominici C, Castello MA, Raschella G, Persson H (1993) Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res 53(9):2044–2050PubMed Kogner P, Barbany G, Dominici C, Castello MA, Raschella G, Persson H (1993) Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res 53(9):2044–2050PubMed
9.
go back to reference Nakagawara A, Arima M, Azar CG, Scavarda NJ, Brodeur GM (1992) Inverse relationship between trk expression and N-myc amplification in human neuroblastomas. Cancer Res 52(5):1364–1368PubMed Nakagawara A, Arima M, Azar CG, Scavarda NJ, Brodeur GM (1992) Inverse relationship between trk expression and N-myc amplification in human neuroblastomas. Cancer Res 52(5):1364–1368PubMed
10.
go back to reference Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM (1993) Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328(12):847–854PubMedCrossRef Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM (1993) Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328(12):847–854PubMedCrossRef
11.
go back to reference Nakagawara A, Brodeur GM (1997) Role of neurotrophins and their receptors in human neuroblastomas: a primary culture study. Eur J Cancer 33(12):2050–2053PubMedCrossRef Nakagawara A, Brodeur GM (1997) Role of neurotrophins and their receptors in human neuroblastomas: a primary culture study. Eur J Cancer 33(12):2050–2053PubMedCrossRef
12.
go back to reference Suzuki T, Bogenmann E, Shimada H, Stram D, Seeger RC (1993) Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J Natl Cancer Inst 85(5):377–384PubMedCrossRef Suzuki T, Bogenmann E, Shimada H, Stram D, Seeger RC (1993) Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J Natl Cancer Inst 85(5):377–384PubMedCrossRef
13.
go back to reference Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A et al (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374(6521):450–453 see commentsPubMedCrossRef Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A et al (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374(6521):450–453 see commentsPubMedCrossRef
14.
go back to reference Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P et al (2002) Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res 62(22):6462–6466PubMed Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P et al (2002) Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res 62(22):6462–6466PubMed
15.
go back to reference Jaboin J, Hong A, Kim CJ, Thiele CJ (2003) Cisplatin-induced cytotoxicity is blocked by brain-derived neurotrophic factor activation of TrkB signal transduction path in neuroblastoma. Cancer Lett 193(1):109–114PubMedCrossRef Jaboin J, Hong A, Kim CJ, Thiele CJ (2003) Cisplatin-induced cytotoxicity is blocked by brain-derived neurotrophic factor activation of TrkB signal transduction path in neuroblastoma. Cancer Lett 193(1):109–114PubMedCrossRef
16.
go back to reference Jaboin J, Kim CJ, Kaplan DR, Thiele CJ (2002) Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res 62(22):6756–6763PubMed Jaboin J, Kim CJ, Kaplan DR, Thiele CJ (2002) Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res 62(22):6756–6763PubMed
17.
go back to reference Matsumoto K, Wada RK, Yamashiro JM, Kaplan DR, Thiele CJ (1995) Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res 55(8):1798–1806PubMed Matsumoto K, Wada RK, Yamashiro JM, Kaplan DR, Thiele CJ (1995) Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res 55(8):1798–1806PubMed
18.
go back to reference Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM (1994) Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14(1):759–767PubMedCentralPubMed Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM (1994) Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14(1):759–767PubMedCentralPubMed
19.
go back to reference Nakamura K, Martin KC, Jackson JK, Beppu K, Woo CW, Thiele CJ (2006) Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res 66(8):4249–4255PubMedCrossRef Nakamura K, Martin KC, Jackson JK, Beppu K, Woo CW, Thiele CJ (2006) Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res 66(8):4249–4255PubMedCrossRef
20.
go back to reference Evans AE, Kisselbach KD, Liu X, Eggert A, Ikegaki N, Camoratto AM et al (2001) Effect of CEP-751 (KT-6587) on neuroblastoma xenografts expressing TrkB. Med Pediatr Oncol 36(1):181–184PubMedCrossRef Evans AE, Kisselbach KD, Liu X, Eggert A, Ikegaki N, Camoratto AM et al (2001) Effect of CEP-751 (KT-6587) on neuroblastoma xenografts expressing TrkB. Med Pediatr Oncol 36(1):181–184PubMedCrossRef
21.
go back to reference Evans AE, Kisselbach KD, Yamashiro DJ, Ikegaki N, Camoratto AM, Dionne CA et al (1999) Antitumor activity of CEP-751 (KT-6587) on human neuroblastoma and medulloblastoma xenografts. Clin Cancer Res 5(11):3594–3602PubMed Evans AE, Kisselbach KD, Yamashiro DJ, Ikegaki N, Camoratto AM, Dionne CA et al (1999) Antitumor activity of CEP-751 (KT-6587) on human neuroblastoma and medulloblastoma xenografts. Clin Cancer Res 5(11):3594–3602PubMed
22.
go back to reference Iyer R, Evans AE, Qi X, Ho R, Minturn JE, Zhao H et al (2010) Lestaurtinib enhances the antitumor efficacy of chemotherapy in murine xenograft models of neuroblastoma. Clin Cancer Res 16(5):1478–1485PubMedCentralPubMedCrossRef Iyer R, Evans AE, Qi X, Ho R, Minturn JE, Zhao H et al (2010) Lestaurtinib enhances the antitumor efficacy of chemotherapy in murine xenograft models of neuroblastoma. Clin Cancer Res 16(5):1478–1485PubMedCentralPubMedCrossRef
23.
go back to reference Minturn JE, Evans AE, Villablanca JG, Yanik GA, Park JR, Shusterman S et al (2011) Phase I trial of lestaurtinib for children with refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. Cancer Chemother Pharmacol 68(4):1057–1065PubMedCentralPubMedCrossRef Minturn JE, Evans AE, Villablanca JG, Yanik GA, Park JR, Shusterman S et al (2011) Phase I trial of lestaurtinib for children with refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. Cancer Chemother Pharmacol 68(4):1057–1065PubMedCentralPubMedCrossRef
24.
go back to reference Iyer R, Varela CR, Minturn JE, Ho R, Simpson AM, Light JE et al (2012) AZ64 Inhibits TrkB and enhances the efficacy of chemotherapy and local radiation in neuroblastoma xenografts. Cancer Chemother Pharmacol (in press) Iyer R, Varela CR, Minturn JE, Ho R, Simpson AM, Light JE et al (2012) AZ64 Inhibits TrkB and enhances the efficacy of chemotherapy and local radiation in neuroblastoma xenografts. Cancer Chemother Pharmacol (in press)
25.
go back to reference Thress K, Macintyre T, Wang H, Whitston D, Liu ZY, Hoffmann E et al (2009) Identification and preclinical characterization of AZ-23, a novel, selective, and orally bioavailable inhibitor of the Trk kinase pathway. Mol Cancer Ther 8(7):1818–1827PubMedCrossRef Thress K, Macintyre T, Wang H, Whitston D, Liu ZY, Hoffmann E et al (2009) Identification and preclinical characterization of AZ-23, a novel, selective, and orally bioavailable inhibitor of the Trk kinase pathway. Mol Cancer Ther 8(7):1818–1827PubMedCrossRef
26.
go back to reference Zage PE, Graham TC, Zeng L, Fang W, Pien C, Thress K et al (2011) The selective Trk inhibitor AZ623 inhibits brain-derived neurotrophic factor-mediated neuroblastoma cell proliferation and signaling and is synergistic with topotecan. Cancer 117(6):1321–1391PubMedCrossRef Zage PE, Graham TC, Zeng L, Fang W, Pien C, Thress K et al (2011) The selective Trk inhibitor AZ623 inhibits brain-derived neurotrophic factor-mediated neuroblastoma cell proliferation and signaling and is synergistic with topotecan. Cancer 117(6):1321–1391PubMedCrossRef
27.
go back to reference Blackwell LJ, Birkos S, Hallam R, Van De Carr G, Arroway J, Suto CM et al (2009) High-throughput screening of the cyclic AMP-dependent protein kinase (PKA) using the caliper microfluidic platform. Methods Mol Biol 565:225–237PubMedCrossRef Blackwell LJ, Birkos S, Hallam R, Van De Carr G, Arroway J, Suto CM et al (2009) High-throughput screening of the cyclic AMP-dependent protein kinase (PKA) using the caliper microfluidic platform. Methods Mol Biol 565:225–237PubMedCrossRef
28.
go back to reference Thompson J, Zamboni WC, Cheshire PJ, Richmond L, Luo X, Houghton JA et al (1997) Efficacy of oral irinotecan against neuroblastoma xenografts. Anticancer Drugs 8(4):313–322PubMedCrossRef Thompson J, Zamboni WC, Cheshire PJ, Richmond L, Luo X, Houghton JA et al (1997) Efficacy of oral irinotecan against neuroblastoma xenografts. Anticancer Drugs 8(4):313–322PubMedCrossRef
29.
go back to reference Stewart CF, Zamboni WC, Crom WR, Houghton PJ (1997) Disposition of irinotecan and SN-38 following oral and intravenous irinotecan dosing in mice. Cancer Chemother Pharmacol 40(3):259–265PubMedCrossRef Stewart CF, Zamboni WC, Crom WR, Houghton PJ (1997) Disposition of irinotecan and SN-38 following oral and intravenous irinotecan dosing in mice. Cancer Chemother Pharmacol 40(3):259–265PubMedCrossRef
30.
go back to reference Greco A, Mariani C, Miranda C, Pagliardini S, Pierotti MA (1993) Characterization of the NTRK1 genomic region involved in chromosomal rearrangements generating TRK oncogenes. Genomics 18(2):397–400PubMedCrossRef Greco A, Mariani C, Miranda C, Pagliardini S, Pierotti MA (1993) Characterization of the NTRK1 genomic region involved in chromosomal rearrangements generating TRK oncogenes. Genomics 18(2):397–400PubMedCrossRef
31.
go back to reference Greco A, Miranda C, Pagliardini S, Fusetti L, Bongarzone I, Pierotti MA (1997) Chromosome 1 rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer 19(2):112–123PubMedCrossRef Greco A, Miranda C, Pagliardini S, Fusetti L, Bongarzone I, Pierotti MA (1997) Chromosome 1 rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer 19(2):112–123PubMedCrossRef
32.
go back to reference Greco A, Roccato E, Pierotti MA (2004) TRK oncogenes in papillary thyroid carcinoma. Cancer Treat Res 122:207–219PubMedCrossRef Greco A, Roccato E, Pierotti MA (2004) TRK oncogenes in papillary thyroid carcinoma. Cancer Treat Res 122:207–219PubMedCrossRef
33.
go back to reference Pierotti MA, Bongarzone I, Borrello MG, Mariani C, Miranda C, Sozzi G et al (1995) Rearrangements of TRK proto-oncogene in papillary thyroid carcinomas. J Endocrinol Invest 18(2):130–133PubMedCrossRef Pierotti MA, Bongarzone I, Borrello MG, Mariani C, Miranda C, Sozzi G et al (1995) Rearrangements of TRK proto-oncogene in papillary thyroid carcinomas. J Endocrinol Invest 18(2):130–133PubMedCrossRef
34.
go back to reference Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D et al (2013) Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med 19(11):1469–1472PubMedCrossRef Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D et al (2013) Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med 19(11):1469–1472PubMedCrossRef
35.
go back to reference Davidson B, Reich R, Lazarovici P, Ann Florenes V, Nielsen S, Nesland JM (2004) Altered expression and activation of the nerve growth factor receptors TrkA and p75 provide the first evidence of tumor progression to effusion in breast carcinoma. Breast Cancer Res Treat 83(2):119–128PubMedCrossRef Davidson B, Reich R, Lazarovici P, Ann Florenes V, Nielsen S, Nesland JM (2004) Altered expression and activation of the nerve growth factor receptors TrkA and p75 provide the first evidence of tumor progression to effusion in breast carcinoma. Breast Cancer Res Treat 83(2):119–128PubMedCrossRef
36.
go back to reference Descamps S, Lebourhis X, Delehedde M, Boilly B, Hondermarck H (1998) Nerve growth factor is mitogenic for cancerous but not normal human breast epithelial cells. J Biol Chem 273(27):16659–16662PubMedCrossRef Descamps S, Lebourhis X, Delehedde M, Boilly B, Hondermarck H (1998) Nerve growth factor is mitogenic for cancerous but not normal human breast epithelial cells. J Biol Chem 273(27):16659–16662PubMedCrossRef
37.
go back to reference Descamps S, Pawlowski V, Revillion F, Hornez L, Hebbar M, Boilly B et al (2001) Expression of nerve growth factor receptors and their prognostic value in human breast cancer. Cancer Res 61(11):4337–4340PubMed Descamps S, Pawlowski V, Revillion F, Hornez L, Hebbar M, Boilly B et al (2001) Expression of nerve growth factor receptors and their prognostic value in human breast cancer. Cancer Res 61(11):4337–4340PubMed
38.
go back to reference Dolle L, Adriaenssens E, El Yazidi-Belkoura I, Le Bourhis X, Nurcombe V, Hondermarck H (2004) Nerve growth factor receptors and signaling in breast cancer. Curr Cancer Drug Targets 4(6):463–470PubMedCrossRef Dolle L, Adriaenssens E, El Yazidi-Belkoura I, Le Bourhis X, Nurcombe V, Hondermarck H (2004) Nerve growth factor receptors and signaling in breast cancer. Curr Cancer Drug Targets 4(6):463–470PubMedCrossRef
39.
go back to reference Dolle L, El Yazidi-Belkoura I, Adriaenssens E, Nurcombe V, Hondermarck H (2003) Nerve growth factor overexpression and autocrine loop in breast cancer cells. Oncogene 22(36):5592–5601PubMedCrossRef Dolle L, El Yazidi-Belkoura I, Adriaenssens E, Nurcombe V, Hondermarck H (2003) Nerve growth factor overexpression and autocrine loop in breast cancer cells. Oncogene 22(36):5592–5601PubMedCrossRef
40.
go back to reference Jin W, Kim GM, Kim MS, Lim MH, Yun C, Jeong J et al (2010) TrkC plays an essential role in breast tumor growth and metastasis. Carcinogenesis 31(11):1939–1947PubMedCrossRef Jin W, Kim GM, Kim MS, Lim MH, Yun C, Jeong J et al (2010) TrkC plays an essential role in breast tumor growth and metastasis. Carcinogenesis 31(11):1939–1947PubMedCrossRef
41.
go back to reference Lagadec C, Meignan S, Adriaenssens E, Foveau B, Vanhecke E, Romon R et al (2009) TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene 28(18):1960–1970PubMedCrossRef Lagadec C, Meignan S, Adriaenssens E, Foveau B, Vanhecke E, Romon R et al (2009) TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene 28(18):1960–1970PubMedCrossRef
42.
go back to reference George DJ, Suzuki H, Bova GS, Isaacs JT (1998) Mutational analysis of the TrkA gene in prostate cancer. Prostate 36(3):172–180PubMedCrossRef George DJ, Suzuki H, Bova GS, Isaacs JT (1998) Mutational analysis of the TrkA gene in prostate cancer. Prostate 36(3):172–180PubMedCrossRef
43.
go back to reference MacGrogan D, Saint-Andre JP, Dicou E (1992) Expression of nerve growth factor and nerve growth factor receptor genes in human tissues and in prostatic adenocarcinoma cell lines. J Neurochem 59(4):1381–1391PubMedCrossRef MacGrogan D, Saint-Andre JP, Dicou E (1992) Expression of nerve growth factor and nerve growth factor receptor genes in human tissues and in prostatic adenocarcinoma cell lines. J Neurochem 59(4):1381–1391PubMedCrossRef
44.
go back to reference Pflug BR, Dionne C, Kaplan DR, Lynch J, Djakiew D (1995) Expression of a Trk high affinity nerve growth factor receptor in the human prostate. Endocrinology 136(1):262–268PubMed Pflug BR, Dionne C, Kaplan DR, Lynch J, Djakiew D (1995) Expression of a Trk high affinity nerve growth factor receptor in the human prostate. Endocrinology 136(1):262–268PubMed
45.
go back to reference Walch ET, Marchetti D (1999) Role of neurotrophins and neurotrophins receptors in the in vitro invasion and heparanase production of human prostate cancer cells. Clin Exp Metastasis 17(4):307–314PubMedCrossRef Walch ET, Marchetti D (1999) Role of neurotrophins and neurotrophins receptors in the in vitro invasion and heparanase production of human prostate cancer cells. Clin Exp Metastasis 17(4):307–314PubMedCrossRef
46.
go back to reference Weeraratna AT, Arnold JT, George DJ, DeMarzo A, Isaacs JT (2000) Rational basis for Trk inhibition therapy for prostate cancer. Prostate 45(2):140–148PubMedCrossRef Weeraratna AT, Arnold JT, George DJ, DeMarzo A, Isaacs JT (2000) Rational basis for Trk inhibition therapy for prostate cancer. Prostate 45(2):140–148PubMedCrossRef
47.
go back to reference Miknyoczki SJ, Wan W, Chang H, Dobrzanski P, Ruggeri BA, Dionne CA et al (2002) The neurotrophin-trk receptor axes are critical for the growth and progression of human prostatic carcinoma and pancreatic ductal adenocarcinoma xenografts in nude mice. Clin Cancer Res 8(6):1924–1931PubMed Miknyoczki SJ, Wan W, Chang H, Dobrzanski P, Ruggeri BA, Dionne CA et al (2002) The neurotrophin-trk receptor axes are critical for the growth and progression of human prostatic carcinoma and pancreatic ductal adenocarcinoma xenografts in nude mice. Clin Cancer Res 8(6):1924–1931PubMed
48.
go back to reference Miknyoczki SJ, Chang H, Klein-Szanto A, Dionne CA, Ruggeri BA (1999) The Trk tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits significant antitumor efficacy in preclinical xenograft models of human pancreatic ductal adenocarcinoma. Clin Cancer Res 5(8):2205–2212PubMed Miknyoczki SJ, Chang H, Klein-Szanto A, Dionne CA, Ruggeri BA (1999) The Trk tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits significant antitumor efficacy in preclinical xenograft models of human pancreatic ductal adenocarcinoma. Clin Cancer Res 5(8):2205–2212PubMed
49.
go back to reference Miknyoczki SJ, Dionne CA, Klein-Szanto AJ, Ruggeri BA (1999) The novel Trk receptor tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits antitumor efficacy against human pancreatic carcinoma (Panc1) xenograft growth and in vivo invasiveness. Ann N Y Acad Sci 880:252–262PubMedCrossRef Miknyoczki SJ, Dionne CA, Klein-Szanto AJ, Ruggeri BA (1999) The novel Trk receptor tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits antitumor efficacy against human pancreatic carcinoma (Panc1) xenograft growth and in vivo invasiveness. Ann N Y Acad Sci 880:252–262PubMedCrossRef
50.
go back to reference Miknyoczki SJ, Lang D, Huang L, Klein-Szanto AJ, Dionne CA, Ruggeri BA (1999) Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior. Int J Cancer 81(3):417–427PubMedCrossRef Miknyoczki SJ, Lang D, Huang L, Klein-Szanto AJ, Dionne CA, Ruggeri BA (1999) Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior. Int J Cancer 81(3):417–427PubMedCrossRef
51.
go back to reference Sakamoto Y, Kitajima Y, Edakuni G, Sasatomi E, Mori M, Kitahara K et al (2001) Expression of Trk tyrosine kinase receptor is a biologic marker for cell proliferation and perineural invasion of human pancreatic ductal adenocarcinoma. Oncol Rep 8(3):477–484PubMed Sakamoto Y, Kitajima Y, Edakuni G, Sasatomi E, Mori M, Kitahara K et al (2001) Expression of Trk tyrosine kinase receptor is a biologic marker for cell proliferation and perineural invasion of human pancreatic ductal adenocarcinoma. Oncol Rep 8(3):477–484PubMed
52.
go back to reference Euhus DM, Timmons CF, Tomlinson GE (2002) ETV6-NTRK3—Trk-ing the primary event in human secretory breast cancer. Cancer Cell 2(5):347–348PubMedCrossRef Euhus DM, Timmons CF, Tomlinson GE (2002) ETV6-NTRK3—Trk-ing the primary event in human secretory breast cancer. Cancer Cell 2(5):347–348PubMedCrossRef
53.
go back to reference Makretsov N, He M, Hayes M, Chia S, Horsman DE, Sorensen PH et al (2004) A fluorescence in situ hybridization study of ETV6-NTRK3 fusion gene in secretory breast carcinoma. Genes Chromosom Cancer 40(2):152–157PubMedCrossRef Makretsov N, He M, Hayes M, Chia S, Horsman DE, Sorensen PH et al (2004) A fluorescence in situ hybridization study of ETV6-NTRK3 fusion gene in secretory breast carcinoma. Genes Chromosom Cancer 40(2):152–157PubMedCrossRef
54.
go back to reference Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA et al (2002) Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2(5):367–376PubMedCrossRef Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA et al (2002) Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2(5):367–376PubMedCrossRef
55.
go back to reference Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH (1998) A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18(2):184–187PubMedCrossRef Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH (1998) A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18(2):184–187PubMedCrossRef
56.
go back to reference Liu Q, Schwaller J, Kutok J, Cain D, Aster JC, Williams IR et al (2000) Signal transduction and transforming properties of the TEL–TRKC fusions associated with t(12, 15)(p13;q25) in congenital fibrosarcoma and acute myelogenous leukemia. EMBO J 19(8):1827–1838PubMedCentralPubMedCrossRef Liu Q, Schwaller J, Kutok J, Cain D, Aster JC, Williams IR et al (2000) Signal transduction and transforming properties of the TEL–TRKC fusions associated with t(12, 15)(p13;q25) in congenital fibrosarcoma and acute myelogenous leukemia. EMBO J 19(8):1827–1838PubMedCentralPubMedCrossRef
57.
go back to reference Rubin BP, Chen CJ, Morgan TW, Xiao S, Grier HE, Kozakewich HP et al (1998) Congenital mesoblastic nephroma t(12, 15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 153(5):1451–1458PubMedCentralPubMedCrossRef Rubin BP, Chen CJ, Morgan TW, Xiao S, Grier HE, Kozakewich HP et al (1998) Congenital mesoblastic nephroma t(12, 15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 153(5):1451–1458PubMedCentralPubMedCrossRef
58.
go back to reference Chou TT, Trojanowski JQ, Lee VM (2000) A novel apoptotic pathway induced by nerve growth factor-mediated TrkA activation in medulloblastoma. J Biol Chem 275(1):565–570PubMedCrossRef Chou TT, Trojanowski JQ, Lee VM (2000) A novel apoptotic pathway induced by nerve growth factor-mediated TrkA activation in medulloblastoma. J Biol Chem 275(1):565–570PubMedCrossRef
59.
go back to reference Grotzer MA, Janss AJ, Fung K, Biegel JA, Sutton LN, Rorke LB et al (2000) TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors. J Clin Oncol 18(5):1027–1035PubMed Grotzer MA, Janss AJ, Fung K, Biegel JA, Sutton LN, Rorke LB et al (2000) TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors. J Clin Oncol 18(5):1027–1035PubMed
60.
go back to reference Kim JY, Sutton ME, Lu DJ, Cho TA, Goumnerova LC, Goritchenko L et al (1999) Activation of neurotrophin-3 receptor TrkC induces apoptosis in medulloblastomas. Cancer Res 59(3):711–719PubMed Kim JY, Sutton ME, Lu DJ, Cho TA, Goumnerova LC, Goritchenko L et al (1999) Activation of neurotrophin-3 receptor TrkC induces apoptosis in medulloblastomas. Cancer Res 59(3):711–719PubMed
61.
go back to reference Segal RA, Goumnerova LC, Kwon YK, Stiles CD, Pomeroy SL (1994) Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Natl Acad Sci USA 91(26):12867–12871PubMedCentralPubMedCrossRef Segal RA, Goumnerova LC, Kwon YK, Stiles CD, Pomeroy SL (1994) Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Natl Acad Sci USA 91(26):12867–12871PubMedCentralPubMedCrossRef
62.
go back to reference Ng YK, Wong EY, Lau CP, Chan JP, Wong SC, Chan AS et al (2012) K252a induces anoikis-sensitization with suppression of cellular migration in Epstein-Barr virus (EBV)—associated nasopharyngeal carcinoma cells. Invest New Drugs 30(1):48–58PubMedCrossRef Ng YK, Wong EY, Lau CP, Chan JP, Wong SC, Chan AS et al (2012) K252a induces anoikis-sensitization with suppression of cellular migration in Epstein-Barr virus (EBV)—associated nasopharyngeal carcinoma cells. Invest New Drugs 30(1):48–58PubMedCrossRef
63.
go back to reference McGregor LM, McCune BK, Graff JR, McDowell PR, Romans KE, Yancopoulos GD et al (1999) Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA 96(8):4540–4545PubMedCentralPubMedCrossRef McGregor LM, McCune BK, Graff JR, McDowell PR, Romans KE, Yancopoulos GD et al (1999) Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA 96(8):4540–4545PubMedCentralPubMedCrossRef
64.
go back to reference Eggert A, Grotzer MA, Ikegaki N, Zhao H, Cnaan A, Brodeur GM et al (2001) Expression of the neurotrophin receptor TrkB is associated with unfavorable outcome in Wilms’ tumor. J Clin Oncol 19(3):689–696PubMed Eggert A, Grotzer MA, Ikegaki N, Zhao H, Cnaan A, Brodeur GM et al (2001) Expression of the neurotrophin receptor TrkB is associated with unfavorable outcome in Wilms’ tumor. J Clin Oncol 19(3):689–696PubMed
65.
go back to reference Martin-Zanca D, Oskam R, Mitra G, Copeland T, Barbacid M (1989) Molecular and biochemical characterization of the human trk proto-oncogene. Mol Cell Biol 9(1):24–33PubMedCentralPubMed Martin-Zanca D, Oskam R, Mitra G, Copeland T, Barbacid M (1989) Molecular and biochemical characterization of the human trk proto-oncogene. Mol Cell Biol 9(1):24–33PubMedCentralPubMed
66.
go back to reference Mitra G, Martin-Zanca D, Barbacid M (1987) Identification and biochemical characterization of p70TRK, product of the human TRK oncogene. Proc Natl Acad Sci U S A 84(19):6707–6711PubMedCentralPubMedCrossRef Mitra G, Martin-Zanca D, Barbacid M (1987) Identification and biochemical characterization of p70TRK, product of the human TRK oncogene. Proc Natl Acad Sci U S A 84(19):6707–6711PubMedCentralPubMedCrossRef
67.
go back to reference Yu Y, Zhang S, Wang X, Yang Z, Ou G (2010) Overexpression of TrkB promotes the progression of colon cancer. Apmis 118(3):188–195PubMedCrossRef Yu Y, Zhang S, Wang X, Yang Z, Ou G (2010) Overexpression of TrkB promotes the progression of colon cancer. Apmis 118(3):188–195PubMedCrossRef
68.
go back to reference Okugawa Y, Tanaka K, Inoue Y, Kawamura M, Kawamoto A, Hiro J et al (2013) Brain-derived neurotrophic factor/tropomyosin-related kinase B pathway in gastric cancer. Br J Cancer 108(1):121–130PubMedCentralPubMedCrossRef Okugawa Y, Tanaka K, Inoue Y, Kawamura M, Kawamoto A, Hiro J et al (2013) Brain-derived neurotrophic factor/tropomyosin-related kinase B pathway in gastric cancer. Br J Cancer 108(1):121–130PubMedCentralPubMedCrossRef
69.
go back to reference Guo D, Hou X, Zhang H, Sun W, Zhu L, Liang J et al (2011) More expressions of BDNF and TrkB in multiple hepatocellular carcinoma and anti-BDNF or K252a induced apoptosis, suppressed invasion of HepG2 and HCCLM3 cells. J Exp Clin Cancer Res 30:97PubMedCentralPubMedCrossRef Guo D, Hou X, Zhang H, Sun W, Zhu L, Liang J et al (2011) More expressions of BDNF and TrkB in multiple hepatocellular carcinoma and anti-BDNF or K252a induced apoptosis, suppressed invasion of HepG2 and HCCLM3 cells. J Exp Clin Cancer Res 30:97PubMedCentralPubMedCrossRef
70.
go back to reference Jin W, Lee JJ, Kim MS, Son BH, Cho YK, Kim HP (2011) DNA methylation-dependent regulation of TrkA, TrkB, and TrkC genes in human hepatocellular carcinoma. Biochem Biophys Res Commun 406(1):89–95PubMedCrossRef Jin W, Lee JJ, Kim MS, Son BH, Cho YK, Kim HP (2011) DNA methylation-dependent regulation of TrkA, TrkB, and TrkC genes in human hepatocellular carcinoma. Biochem Biophys Res Commun 406(1):89–95PubMedCrossRef
71.
go back to reference Harada T, Yatabe Y, Takeshita M, Koga T, Yano T, Wang Y et al (2011) Role and relevance of TrkB mutations and expression in non-small cell lung cancer. Clin Cancer Res 17(9):2638–2645PubMedCentralPubMedCrossRef Harada T, Yatabe Y, Takeshita M, Koga T, Yano T, Wang Y et al (2011) Role and relevance of TrkB mutations and expression in non-small cell lung cancer. Clin Cancer Res 17(9):2638–2645PubMedCentralPubMedCrossRef
72.
go back to reference Doebele R, Vaishnavi A, Capelletti M, Le A, Kako S, Butaney M et al (2013) NTRK1 gene fusions as a novel oncogene target in lung cancer. American Society of Clinical Oncology Annual Meeting 2013. ASCO University, Chicago, IL, p. suppl: abstr 8023 Doebele R, Vaishnavi A, Capelletti M, Le A, Kako S, Butaney M et al (2013) NTRK1 gene fusions as a novel oncogene target in lung cancer. American Society of Clinical Oncology Annual Meeting 2013. ASCO University, Chicago, IL, p. suppl: abstr 8023
73.
go back to reference Yu X, Liu L, Cai B, He Y, Wan X (2008) Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci 99(3):543–552PubMedCrossRef Yu X, Liu L, Cai B, He Y, Wan X (2008) Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci 99(3):543–552PubMedCrossRef
74.
go back to reference Desmet CJ, Peeper DS (2006) The neurotrophic receptor TrkB: a drug target in anti-cancer therapy? Cell Mol Life Sci 63(7–8):755–759PubMedCrossRef Desmet CJ, Peeper DS (2006) The neurotrophic receptor TrkB: a drug target in anti-cancer therapy? Cell Mol Life Sci 63(7–8):755–759PubMedCrossRef
Metadata
Title
TrkB inhibition by GNF-4256 slows growth and enhances chemotherapeutic efficacy in neuroblastoma xenografts
Authors
Jamie L. Croucher
Radhika Iyer
Nanxin Li
Valentina Molteni
Jon Loren
W. Perry Gordon
Tove Tuntland
Bo Liu
Garrett M. Brodeur
Publication date
01-01-2015
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 1/2015
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-014-2627-1

Other articles of this Issue 1/2015

Cancer Chemotherapy and Pharmacology 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine