Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 2/2013

01-08-2013 | Original Article

Synergistic interactions between camptothecin and EGFR or RAC1 inhibitors and between imatinib and Notch signaling or RAC1 inhibitors in glioblastoma cell lines

Authors: Linda Sooman, Simon Ekman, Claes Andersson, Hanna Göransson Kultima, Anders Isaksson, Fredrik Johansson, Michael Bergqvist, Erik Blomquist, Johan Lennartsson, Joachim Gullbo

Published in: Cancer Chemotherapy and Pharmacology | Issue 2/2013

Login to get access

Abstract

Purpose

The current treatment strategies for glioblastoma have limited health and survival benefits for the patients. A common obstacle in the treatment is chemoresistance. A possible strategy to evade this problem may be to combine chemotherapeutic drugs with agents inhibiting resistance mechanisms. The aim with this study was to identify molecular pathways influencing drug resistance in glioblastoma-derived cells and to evaluate the potential of pharmacological interference with these pathways to identify synergistic drug combinations.

Methods

Global gene expressions and drug sensitivities to three chemotherapeutic drugs (imatinib, camptothecin and temozolomide) were measured in six human glioblastoma-derived cell lines. Gene expressions that correlated to drug sensitivity or resistance were identified and mapped to specific pathways. Selective inhibitors of these pathways were identified. The effects of six combinations of inhibitors and chemotherapeutic drugs were evaluated in glioblastoma-derived cell lines. Drug combinations with synergistic effects were also evaluated in non-cancerous epithelial cells.

Results

Four drug combinations had synergistic effects in at least one of the tested glioblastoma-derived cell lines; camptothecin combined with gefitinib (epidermal growth factor receptor inhibitor) or NSC 23766 (ras-related C3 botulinum toxin substrate 1 inhibitor) and imatinib combined with DAPT (Notch signaling inhibitor) or NSC 23766. Of these, imatinib combined with DAPT or NSC 23766 did not have synergistic effects in non-cancerous epithelial cells. Two drug combinations had at least additive effects in one of the tested glioblastoma-derived cell lines; temozolomide combined with gefitinib or PF-573228 (focal adhesion kinase inhibitor).

Conclusion

Four synergistic and two at least additive drug combinations were identified in glioblastoma-derived cells. Pathways targeted by these drug combinations may serve as targets for future drug development with the potential to increase efficacy of currently used/evaluated chemotherapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bai RY, Staedtke V, Riggins GJ (2011) Molecular targeting of glioblastoma: drug discovery and therapies. Trends Mol Med 17:301–312PubMedCrossRef Bai RY, Staedtke V, Riggins GJ (2011) Molecular targeting of glioblastoma: drug discovery and therapies. Trends Mol Med 17:301–312PubMedCrossRef
2.
go back to reference Blaney SM, Takimoto C, Murry DJ, Kuttesch N, McCully C, Cole DE, Godwin K, Balis FM (1998) Plasma and cerebrospinal fluid pharmacokinetics of 9-aminocamptothecin (9-AC), irinotecan (CPT-11), and SN-38 in nonhuman primates. Cancer Chemother Pharmacol 41:464–468PubMedCrossRef Blaney SM, Takimoto C, Murry DJ, Kuttesch N, McCully C, Cole DE, Godwin K, Balis FM (1998) Plasma and cerebrospinal fluid pharmacokinetics of 9-aminocamptothecin (9-AC), irinotecan (CPT-11), and SN-38 in nonhuman primates. Cancer Chemother Pharmacol 41:464–468PubMedCrossRef
3.
go back to reference Bleeker FE, Molenaar RJ, Leenstra S (2012) Recent advances in the molecular understanding of glioblastoma. J Neurooncol 108:11–27PubMedCrossRef Bleeker FE, Molenaar RJ, Leenstra S (2012) Recent advances in the molecular understanding of glioblastoma. J Neurooncol 108:11–27PubMedCrossRef
4.
go back to reference Brown PD, Krishnan S, Sarkaria JN, Wu W, Jaeckle KA, Uhm JH, Geoffroy FJ, Arusell R, Kitange G, Jenkins RB, Kugler JW, Morton RF, Rowland KM Jr., Mischel P, Yong WH, Scheithauer BW, Schiff D, Giannini C, Buckner JC, North Central Cancer Treatment Group Study N (2008) Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J Clin Oncol 26: 5603–5609 Brown PD, Krishnan S, Sarkaria JN, Wu W, Jaeckle KA, Uhm JH, Geoffroy FJ, Arusell R, Kitange G, Jenkins RB, Kugler JW, Morton RF, Rowland KM Jr., Mischel P, Yong WH, Scheithauer BW, Schiff D, Giannini C, Buckner JC, North Central Cancer Treatment Group Study N (2008) Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J Clin Oncol 26: 5603–5609
5.
go back to reference Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446PubMedCrossRef Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446PubMedCrossRef
6.
go back to reference Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRef Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRef
7.
go back to reference Engh JA (2011) Notch1 identified as a prognostic factor for glioma patients. Neurosurgery 68:N22–N23PubMedCrossRef Engh JA (2011) Notch1 identified as a prognostic factor for glioma patients. Neurosurgery 68:N22–N23PubMedCrossRef
8.
go back to reference Gursel DB, Berry N, Boockvar JA (2012) The contribution of Notch signaling to glioblastoma via activation of cancer stem cell self-renewal: the role of the endothelial network. Neurosurgery 70:N19–N21PubMedCrossRef Gursel DB, Berry N, Boockvar JA (2012) The contribution of Notch signaling to glioblastoma via activation of cancer stem cell self-renewal: the role of the endothelial network. Neurosurgery 70:N19–N21PubMedCrossRef
9.
go back to reference Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9:617–628PubMedCrossRef Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9:617–628PubMedCrossRef
10.
go back to reference Hao H, Naomoto Y, Bao X, Watanabe N, Sakurama K, Noma K, Motoki T, Tomono Y, Fukazawa T, Shirakawa Y, Yamatsuji T, Matsuoka J, Wang ZG, Takaoka M (2009) Focal adhesion kinase as potential target for cancer therapy (Review). Oncol Rep 22:973–979PubMedCrossRef Hao H, Naomoto Y, Bao X, Watanabe N, Sakurama K, Noma K, Motoki T, Tomono Y, Fukazawa T, Shirakawa Y, Yamatsuji T, Matsuoka J, Wang ZG, Takaoka M (2009) Focal adhesion kinase as potential target for cancer therapy (Review). Oncol Rep 22:973–979PubMedCrossRef
11.
go back to reference Hare CB, Elion GB, Houghton PJ, Houghton JA, Keir S, Marcelli SL, Bigner DD, Friedman HS (1997) Therapeutic efficacy of the topoisomerase I inhibitor 7-ethyl-10-(4-[1-piperidino]-1-piperidino)-carbonyloxy-camptothecin against pediatric and adult central nervous system tumor xenografts. Cancer Chemother Pharmacol 39:187–191PubMedCrossRef Hare CB, Elion GB, Houghton PJ, Houghton JA, Keir S, Marcelli SL, Bigner DD, Friedman HS (1997) Therapeutic efficacy of the topoisomerase I inhibitor 7-ethyl-10-(4-[1-piperidino]-1-piperidino)-carbonyloxy-camptothecin against pediatric and adult central nervous system tumor xenografts. Cancer Chemother Pharmacol 39:187–191PubMedCrossRef
12.
go back to reference Holdhoff M, Supko JG, Gallia GL, Hann CL, Bonekamp D, Ye X, Cao B, Olivi A, Grossman SA (2010) Intratumoral concentrations of imatinib after oral administration in patients with glioblastoma multiforme. J Neurooncol 97:241–245PubMedCrossRef Holdhoff M, Supko JG, Gallia GL, Hann CL, Bonekamp D, Ye X, Cao B, Olivi A, Grossman SA (2010) Intratumoral concentrations of imatinib after oral administration in patients with glioblastoma multiforme. J Neurooncol 97:241–245PubMedCrossRef
13.
go back to reference Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264PubMedCrossRef Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264PubMedCrossRef
14.
go back to reference Jakobsen JN, Hasselbalch B, Stockhausen MT, Lassen U, Poulsen HS (2011) Irinotecan and bevacizumab in recurrent glioblastoma multiforme. Expert Opin Pharmacother 12:825–833PubMedCrossRef Jakobsen JN, Hasselbalch B, Stockhausen MT, Lassen U, Poulsen HS (2011) Irinotecan and bevacizumab in recurrent glioblastoma multiforme. Expert Opin Pharmacother 12:825–833PubMedCrossRef
15.
go back to reference Jiao X, Sherman BT, da Huang W, Stephens R, Baseler MW, Lane HC, Lempicki RA (2012) DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28:1805–1806PubMedCrossRef Jiao X, Sherman BT, da Huang W, Stephens R, Baseler MW, Lane HC, Lempicki RA (2012) DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28:1805–1806PubMedCrossRef
16.
go back to reference Johannessen TC, Bjerkvig R (2012) Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. Expert Rev Anticancer Ther 12:635–642PubMedCrossRef Johannessen TC, Bjerkvig R (2012) Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. Expert Rev Anticancer Ther 12:635–642PubMedCrossRef
17.
go back to reference Karvela M, Helgason GV, Holyoake TL (2012) Mechanisms and novel approaches in overriding tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Expert Rev Anticancer Ther 12:381–392PubMedCrossRef Karvela M, Helgason GV, Holyoake TL (2012) Mechanisms and novel approaches in overriding tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Expert Rev Anticancer Ther 12:381–392PubMedCrossRef
18.
go back to reference Kim S, Prichard CN, Younes MN, Yazici YD, Jasser SA, Bekele BN, Myers JN (2006) Cetuximab and irinotecan interact synergistically to inhibit the growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Clin Cancer Res 12:600–607PubMedCrossRef Kim S, Prichard CN, Younes MN, Yazici YD, Jasser SA, Bekele BN, Myers JN (2006) Cetuximab and irinotecan interact synergistically to inhibit the growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Clin Cancer Res 12:600–607PubMedCrossRef
19.
go back to reference Koizumi F, Kanzawa F, Ueda Y, Koh Y, Tsukiyama S, Taguchi F, Tamura T, Saijo N, Nishio K (2004) Synergistic interaction between the EGFR tyrosine kinase inhibitor gefitinib (“Iressa”) and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. Int J Cancer 108:464–472PubMedCrossRef Koizumi F, Kanzawa F, Ueda Y, Koh Y, Tsukiyama S, Taguchi F, Tamura T, Saijo N, Nishio K (2004) Synergistic interaction between the EGFR tyrosine kinase inhibitor gefitinib (“Iressa”) and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. Int J Cancer 108:464–472PubMedCrossRef
20.
go back to reference Kopan R (2012) Notch signaling. Cold Spring Harb Perspect Biol 4:a011213 Kopan R (2012) Notch signaling. Cold Spring Harb Perspect Biol 4:a011213
21.
go back to reference Lindhagen E, Nygren P, Larsson R (2008) The fluorometric microculture cytotoxicity assay. Nat Protoc 3:1364–1369PubMedCrossRef Lindhagen E, Nygren P, Larsson R (2008) The fluorometric microculture cytotoxicity assay. Nat Protoc 3:1364–1369PubMedCrossRef
22.
go back to reference Portnow J, Badie B, Chen M, Liu A, Blanchard S, Synold TW (2009) The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res 15:7092–7098PubMedCrossRef Portnow J, Badie B, Chen M, Liu A, Blanchard S, Synold TW (2009) The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res 15:7092–7098PubMedCrossRef
23.
go back to reference Ramis G, Thomas-Moya E, Fernandez de Mattos S, Rodriguez J, Villalonga P (2012) EGFR inhibition in glioma cells modulates Rho signaling to inhibit cell motility and invasion and cooperates with temozolomide to reduce cell growth. PLoS ONE 7:e38770PubMedCrossRef Ramis G, Thomas-Moya E, Fernandez de Mattos S, Rodriguez J, Villalonga P (2012) EGFR inhibition in glioma cells modulates Rho signaling to inhibit cell motility and invasion and cooperates with temozolomide to reduce cell growth. PLoS ONE 7:e38770PubMedCrossRef
24.
go back to reference Reardon DA, Rich JN, Friedman HS, Bigner DD (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24:1253–1265PubMedCrossRef Reardon DA, Rich JN, Friedman HS, Bigner DD (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24:1253–1265PubMedCrossRef
25.
go back to reference Santarpia L, Lippman SM, El-Naggar AK (2012) Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 16:103–119PubMedCrossRef Santarpia L, Lippman SM, El-Naggar AK (2012) Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 16:103–119PubMedCrossRef
26.
go back to reference Sasine JP, Feun LG (2011) Topoisomerase I inhibitors in the treatment of primary CNS Malignancies: an update on recent trends. Anticancer Agents Med Chem 10:683–696 Sasine JP, Feun LG (2011) Topoisomerase I inhibitors in the treatment of primary CNS Malignancies: an update on recent trends. Anticancer Agents Med Chem 10:683–696
27.
go back to reference Schoenenberger CA, Mannherz HG, Jockusch BM (2011) Actin: from structural plasticity to functional diversity. Eur J Cell Biol 90:797–804PubMedCrossRef Schoenenberger CA, Mannherz HG, Jockusch BM (2011) Actin: from structural plasticity to functional diversity. Eur J Cell Biol 90:797–804PubMedCrossRef
28.
go back to reference Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK (2012) Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 16:15–31PubMedCrossRef Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK (2012) Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 16:15–31PubMedCrossRef
29.
go back to reference Shah GD, Silver JS, Rosenfeld SS, Gavrilovic IT, Abrey LE, Lassman AB (2007) Myelosuppression in patients benefiting from imatinib with hydroxyurea for recurrent malignant gliomas. J Neurooncol 85:217–222PubMedCrossRef Shah GD, Silver JS, Rosenfeld SS, Gavrilovic IT, Abrey LE, Lassman AB (2007) Myelosuppression in patients benefiting from imatinib with hydroxyurea for recurrent malignant gliomas. J Neurooncol 85:217–222PubMedCrossRef
30.
go back to reference Slack-Davis JK, Martin KH, Tilghman RW, Iwanicki M, Ung EJ, Autry C, Luzzio MJ, Cooper B, Kath JC, Roberts WG, Parsons JT (2007) Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem 282:14845–14852PubMedCrossRef Slack-Davis JK, Martin KH, Tilghman RW, Iwanicki M, Ung EJ, Autry C, Luzzio MJ, Cooper B, Kath JC, Roberts WG, Parsons JT (2007) Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem 282:14845–14852PubMedCrossRef
31.
go back to reference Sobrero AF, Maurel J, Fehrenbacher L, Scheithauer W, Abubakr YA, Lutz MP, Vega-Villegas ME, Eng C, Steinhauer EU, Prausova J, Lenz HJ, Borg C, Middleton G, Kroning H, Luppi G, Kisker O, Zubel A, Langer C, Kopit J, Burris HA 3rd (2008) EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol 26:2311–2319PubMedCrossRef Sobrero AF, Maurel J, Fehrenbacher L, Scheithauer W, Abubakr YA, Lutz MP, Vega-Villegas ME, Eng C, Steinhauer EU, Prausova J, Lenz HJ, Borg C, Middleton G, Kroning H, Luppi G, Kisker O, Zubel A, Langer C, Kopit J, Burris HA 3rd (2008) EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol 26:2311–2319PubMedCrossRef
32.
go back to reference Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, Scherf U, Lee JK, Reinhold WO, Weinstein JN, Mesirov JP, Lander ES, Golub TR (2001) Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci USA 98:10787–10792PubMedCrossRef Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, Scherf U, Lee JK, Reinhold WO, Weinstein JN, Mesirov JP, Lander ES, Golub TR (2001) Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci USA 98:10787–10792PubMedCrossRef
33.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996 Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996
34.
go back to reference Tomicic MT, Kaina B (2013) Topoisomerase degradation, DSB repair, p53 and IAPs in cancer cell resistance to camptothecin-like topoisomerase I inhibitors. Biochim Biophys Acta 1835:11–27PubMed Tomicic MT, Kaina B (2013) Topoisomerase degradation, DSB repair, p53 and IAPs in cancer cell resistance to camptothecin-like topoisomerase I inhibitors. Biochim Biophys Acta 1835:11–27PubMed
35.
go back to reference Vassal G, Terrier-Lacombe MJ, Bissery MC, Venuat AM, Gyergyay F, Benard J, Morizet J, Boland I, Ardouin P, Bressac-de-Paillerets B, Gouyette A (1996) Therapeutic activity of CPT-11, a DNA-topoisomerase I inhibitor, against peripheral primitive neuroectodermal tumour and neuroblastoma xenografts. Br J Cancer 74:537–545PubMedCrossRef Vassal G, Terrier-Lacombe MJ, Bissery MC, Venuat AM, Gyergyay F, Benard J, Morizet J, Boland I, Ardouin P, Bressac-de-Paillerets B, Gouyette A (1996) Therapeutic activity of CPT-11, a DNA-topoisomerase I inhibitor, against peripheral primitive neuroectodermal tumour and neuroblastoma xenografts. Br J Cancer 74:537–545PubMedCrossRef
36.
go back to reference Wen PY, Yung WK, Lamborn KR, Dahia PL, Wang Y, Peng B, Abrey LE, Raizer J, Cloughesy TF, Fink K, Gilbert M, Chang S, Junck L, Schiff D, Lieberman F, Fine HA, Mehta M, Robins HI, DeAngelis LM, Groves MD, Puduvalli VK, Levin V, Conrad C, Maher EA, Aldape K, Hayes M, Letvak L, Egorin MJ, Capdeville R, Kaplan R, Murgo AJ, Stiles C, Prados MD (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: north American Brain Tumor Consortium Study 99–08. Clin Cancer Res 12:4899–4907PubMedCrossRef Wen PY, Yung WK, Lamborn KR, Dahia PL, Wang Y, Peng B, Abrey LE, Raizer J, Cloughesy TF, Fink K, Gilbert M, Chang S, Junck L, Schiff D, Lieberman F, Fine HA, Mehta M, Robins HI, DeAngelis LM, Groves MD, Puduvalli VK, Levin V, Conrad C, Maher EA, Aldape K, Hayes M, Letvak L, Egorin MJ, Capdeville R, Kaplan R, Murgo AJ, Stiles C, Prados MD (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: north American Brain Tumor Consortium Study 99–08. Clin Cancer Res 12:4899–4907PubMedCrossRef
37.
go back to reference Vredenburgh JJ, Desjardins A, Reardon DA, Friedman HS (2009) Experience with irinotecan for the treatment of malignant glioma. Neuro Oncol 11:80–91PubMedCrossRef Vredenburgh JJ, Desjardins A, Reardon DA, Friedman HS (2009) Experience with irinotecan for the treatment of malignant glioma. Neuro Oncol 11:80–91PubMedCrossRef
38.
go back to reference Yoon CH, Hyun KH, Kim RK, Lee H, Lim EJ, Chung HY, An S, Park MJ, Suh Y, Kim MJ, Lee SJ (2011) The small GTPase Rac1 is involved in the maintenance of stemness and malignancies in glioma stem-like cells. FEBS Lett 585:2331–2338PubMedCrossRef Yoon CH, Hyun KH, Kim RK, Lee H, Lim EJ, Chung HY, An S, Park MJ, Suh Y, Kim MJ, Lee SJ (2011) The small GTPase Rac1 is involved in the maintenance of stemness and malignancies in glioma stem-like cells. FEBS Lett 585:2331–2338PubMedCrossRef
Metadata
Title
Synergistic interactions between camptothecin and EGFR or RAC1 inhibitors and between imatinib and Notch signaling or RAC1 inhibitors in glioblastoma cell lines
Authors
Linda Sooman
Simon Ekman
Claes Andersson
Hanna Göransson Kultima
Anders Isaksson
Fredrik Johansson
Michael Bergqvist
Erik Blomquist
Johan Lennartsson
Joachim Gullbo
Publication date
01-08-2013
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 2/2013
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-013-2197-7

Other articles of this Issue 2/2013

Cancer Chemotherapy and Pharmacology 2/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine