Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 4/2009

01-09-2009 | Original Article

Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts

Authors: Vilma A. Sardão, Paulo J. Oliveira, Jon Holy, Catarina R. Oliveira, Kendall B. Wallace

Published in: Cancer Chemotherapy and Pharmacology | Issue 4/2009

Login to get access

Abstract

Purpose

Doxorubicin (DOX) is a widely prescribed chemotherapeutic. The hypothesis for the present study is that DOX-induced myocyte apoptosis involves mitochondrial dysfunction that is a consequence of nuclear DOX effects.

Methods

H9c2 myoblasts were incubated with 0, 0.5 and 1 μM DOX and nuclear and mitochondrial alterations were determined.

Results

Doxorubicin accumulation in the nucleus was detected after 3 h treatment, followed by an increase in p53 and a decrease in mitochondrial membrane potential. Apoptotic markers, such as caspase activation and chromatin condensation were detected after 24 h of DOX treatment. Bax and p53 translocation to mitochondria as well as the formation of Bax clusters in the cytosol were observed. Importantly, pifithrin-alpha, a p53 inhibitor, protected against DOX-induced mitochondrial depolarization, caspase activation and cell death.

Conclusion

Mitochondrial dysfunction in H9c2 myoblasts treated with DOX is a consequence of nuclear p53 activation rather than a direct effect of the drug on mitochondria.
Literature
1.
go back to reference Doroshow JH, Davies KJ (1986) Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem 261:3068–3074PubMed Doroshow JH, Davies KJ (1986) Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem 261:3068–3074PubMed
2.
go back to reference Davies KJ, Doroshow JH (1986) Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 261:3060–3067PubMed Davies KJ, Doroshow JH (1986) Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 261:3060–3067PubMed
3.
4.
go back to reference Goormaghtigh E, Pollakis G, Ruysschaert JM (1983) Mitochondrial membrane modifications induced by adriamycin-mediated electron transport. Biochem Pharmacol 32:889–893PubMedCrossRef Goormaghtigh E, Pollakis G, Ruysschaert JM (1983) Mitochondrial membrane modifications induced by adriamycin-mediated electron transport. Biochem Pharmacol 32:889–893PubMedCrossRef
5.
go back to reference Mimnaugh EG, Trush MA, Gram TE (1983) Enhancement of rat heart microsomal lipid peroxidation following doxorubicin treatment in vivo. Cancer Treat Rep 67:731–733PubMed Mimnaugh EG, Trush MA, Gram TE (1983) Enhancement of rat heart microsomal lipid peroxidation following doxorubicin treatment in vivo. Cancer Treat Rep 67:731–733PubMed
6.
go back to reference Palmeira CM, Serrano J, Kuehl DW et al (1997) Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochim Biophys Acta 1321:101–106PubMedCrossRef Palmeira CM, Serrano J, Kuehl DW et al (1997) Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochim Biophys Acta 1321:101–106PubMedCrossRef
7.
go back to reference Solem LE, Wallace KB (1993) Selective activation of the sodium-independent, cyclosporin A-sensitive calcium pore of cardiac mitochondria by doxorubicin. Toxicol Appl Pharmacol 121:50–57PubMedCrossRef Solem LE, Wallace KB (1993) Selective activation of the sodium-independent, cyclosporin A-sensitive calcium pore of cardiac mitochondria by doxorubicin. Toxicol Appl Pharmacol 121:50–57PubMedCrossRef
8.
go back to reference Bernardi P (1996) The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta 1275:5–9PubMedCrossRef Bernardi P (1996) The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta 1275:5–9PubMedCrossRef
9.
go back to reference Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249PubMedCrossRef Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249PubMedCrossRef
10.
go back to reference Di Lisa F (2001) Mitochondrial contribution in the progression of cardiac ischemic injury. IUBMB Life 52:255–261PubMedCrossRef Di Lisa F (2001) Mitochondrial contribution in the progression of cardiac ischemic injury. IUBMB Life 52:255–261PubMedCrossRef
11.
go back to reference Childs AC, Phaneuf SL, Dirks AJ et al (2002) Doxorubicin treatment in vivo causes cytochrome c release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res 62:4592–4598PubMed Childs AC, Phaneuf SL, Dirks AJ et al (2002) Doxorubicin treatment in vivo causes cytochrome c release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res 62:4592–4598PubMed
12.
go back to reference Yamanaka S, Tatsumi T, Shiraishi J et al (2003) Amlodipine inhibits doxorubicin-induced apoptosis in neonatal rat cardiac myocytes. J Am Coll Cardiol 41:870–878PubMedCrossRef Yamanaka S, Tatsumi T, Shiraishi J et al (2003) Amlodipine inhibits doxorubicin-induced apoptosis in neonatal rat cardiac myocytes. J Am Coll Cardiol 41:870–878PubMedCrossRef
13.
go back to reference Cutts SM, Nudelman A, Rephaeli A et al (2005) The power and potential of doxorubicin-DNA adducts. IUBMB Life 57:73–81PubMedCrossRef Cutts SM, Nudelman A, Rephaeli A et al (2005) The power and potential of doxorubicin-DNA adducts. IUBMB Life 57:73–81PubMedCrossRef
14.
go back to reference Cutts SM, Parsons PG, Sturm RA et al (1996) Adriamycin-induced DNA adducts inhibit the DNA interactions of transcription factors and RNA polymerase. J Biol Chem 271:5422–5429PubMedCrossRef Cutts SM, Parsons PG, Sturm RA et al (1996) Adriamycin-induced DNA adducts inhibit the DNA interactions of transcription factors and RNA polymerase. J Biol Chem 271:5422–5429PubMedCrossRef
15.
go back to reference L’Ecuyer T, Sanjeev S, Thomas R et al (2006) DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol 291:H1273–H1280PubMedCrossRef L’Ecuyer T, Sanjeev S, Thomas R et al (2006) DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol 291:H1273–H1280PubMedCrossRef
16.
go back to reference Chua CC, Liu X, Gao J et al (2006) Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol 290:H2606–H2613PubMedCrossRef Chua CC, Liu X, Gao J et al (2006) Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol 290:H2606–H2613PubMedCrossRef
17.
go back to reference Liu X, Chua CC, Gao J et al (2004) Pifithrin-alpha protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 286:H933–H939PubMedCrossRef Liu X, Chua CC, Gao J et al (2004) Pifithrin-alpha protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 286:H933–H939PubMedCrossRef
18.
go back to reference Shizukuda Y, Matoba S, Mian OY et al (2005) Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice. Mol Cell Biochem 273:25–32PubMedCrossRef Shizukuda Y, Matoba S, Mian OY et al (2005) Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice. Mol Cell Biochem 273:25–32PubMedCrossRef
19.
go back to reference Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202–16212PubMedCrossRef Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202–16212PubMedCrossRef
20.
21.
22.
go back to reference Nithipongvanitch R, Ittarat W, Cole MP et al (2007) Mitochondrial and nuclear p53 localization in cardiomyocytes: redox modulation by doxorubicin (Adriamycin)? Antioxid Redox Signal 9:1001–1008PubMedCrossRef Nithipongvanitch R, Ittarat W, Cole MP et al (2007) Mitochondrial and nuclear p53 localization in cardiomyocytes: redox modulation by doxorubicin (Adriamycin)? Antioxid Redox Signal 9:1001–1008PubMedCrossRef
23.
go back to reference Nithipongvanitch R, Ittarat W, Velez JM et al (2007) Evidence for p53 as guardian of the cardiomyocyte mitochondrial genome following acute adriamycin treatment. J Histochem Cytochem 55:629–639PubMedCrossRef Nithipongvanitch R, Ittarat W, Velez JM et al (2007) Evidence for p53 as guardian of the cardiomyocyte mitochondrial genome following acute adriamycin treatment. J Histochem Cytochem 55:629–639PubMedCrossRef
24.
go back to reference Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98:367–381PubMedCrossRef Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98:367–381PubMedCrossRef
25.
go back to reference L’Ecuyer T, Horenstein MS, Thomas R et al (2001) Anthracycline-induced cardiac injury using a cardiac cell line: potential for gene therapy studies. Mol Genet Metab 74:370–379PubMedCrossRef L’Ecuyer T, Horenstein MS, Thomas R et al (2001) Anthracycline-induced cardiac injury using a cardiac cell line: potential for gene therapy studies. Mol Genet Metab 74:370–379PubMedCrossRef
26.
go back to reference Frost BM, Eksborg S, Bjork O et al (2002) Pharmacokinetics of doxorubicin in children with acute lymphoblastic leukemia: multi-institutional collaborative study. Med Pediatr Oncol 38:329–337PubMedCrossRef Frost BM, Eksborg S, Bjork O et al (2002) Pharmacokinetics of doxorubicin in children with acute lymphoblastic leukemia: multi-institutional collaborative study. Med Pediatr Oncol 38:329–337PubMedCrossRef
27.
go back to reference Klein D, Kern RM, Sokol RZ (1995) A method for quantification and correction of proteins after transfer to immobilization membranes. Biochem Mol Biol Int 36:59–66PubMed Klein D, Kern RM, Sokol RZ (1995) A method for quantification and correction of proteins after transfer to immobilization membranes. Biochem Mol Biol Int 36:59–66PubMed
28.
go back to reference Broekemeier KM, Dempsey ME, Pfeiffer DR (1989) Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 264:7826–7830PubMed Broekemeier KM, Dempsey ME, Pfeiffer DR (1989) Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 264:7826–7830PubMed
29.
go back to reference Berthiaume JM, Wallace KB (2007) Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 23:15–25PubMedCrossRef Berthiaume JM, Wallace KB (2007) Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 23:15–25PubMedCrossRef
30.
go back to reference Hamza A, Amin A, Daoud S (2008) The protective effect of a purified extract of Withania somnifera against doxorubicin-induced cardiac toxicity in rats. Cell Biol Toxicol 24:63–73PubMedCrossRef Hamza A, Amin A, Daoud S (2008) The protective effect of a purified extract of Withania somnifera against doxorubicin-induced cardiac toxicity in rats. Cell Biol Toxicol 24:63–73PubMedCrossRef
31.
go back to reference Box VG (2007) The intercalation of DNA double helices with doxorubicin and nagalomycin. J Mol Graph Model 26:14–19PubMedCrossRef Box VG (2007) The intercalation of DNA double helices with doxorubicin and nagalomycin. J Mol Graph Model 26:14–19PubMedCrossRef
32.
go back to reference Kaufmann WK, Paules RS (1996) DNA damage and cell cycle checkpoints. FASEB J 10:238–247PubMed Kaufmann WK, Paules RS (1996) DNA damage and cell cycle checkpoints. FASEB J 10:238–247PubMed
33.
go back to reference Gomez-Lazaro M, Fernandez-Gomez FJ, Jordan J (2004) p53: twenty-five years understanding the mechanism of genome protection. J Physiol Biochem 60:287–307PubMedCrossRef Gomez-Lazaro M, Fernandez-Gomez FJ, Jordan J (2004) p53: twenty-five years understanding the mechanism of genome protection. J Physiol Biochem 60:287–307PubMedCrossRef
34.
go back to reference Miyashita T, Krajewski S, Krajewska M et al (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805PubMed Miyashita T, Krajewski S, Krajewska M et al (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805PubMed
35.
go back to reference Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299PubMedCrossRef Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299PubMedCrossRef
36.
go back to reference Brady NR, Hamacher-Brady A, Gottlieb RA (2006) Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors. Biochim Biophys Acta 1757:667–678PubMedCrossRef Brady NR, Hamacher-Brady A, Gottlieb RA (2006) Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors. Biochim Biophys Acta 1757:667–678PubMedCrossRef
37.
38.
go back to reference Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654PubMedCrossRef Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654PubMedCrossRef
39.
go back to reference Nakamura T, Ueda Y, Juan Y et al (2000) Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: in vivo study. Circulation 102:572–578PubMed Nakamura T, Ueda Y, Juan Y et al (2000) Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: in vivo study. Circulation 102:572–578PubMed
40.
go back to reference Berthiaume JM, Oliveira PJ, Fariss MW et al (2005) Dietary vitamin E decreases doxorubicin-induced oxidative stress without preventing mitochondrial dysfunction. Cardiovasc Toxicol 5:257–267PubMedCrossRef Berthiaume JM, Oliveira PJ, Fariss MW et al (2005) Dietary vitamin E decreases doxorubicin-induced oxidative stress without preventing mitochondrial dysfunction. Cardiovasc Toxicol 5:257–267PubMedCrossRef
41.
go back to reference Wattanapitayakul SK, Chularojmontri L, Herunsalee A et al (2005) Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic Clin Pharmacol Toxicol 96:80–87PubMedCrossRef Wattanapitayakul SK, Chularojmontri L, Herunsalee A et al (2005) Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic Clin Pharmacol Toxicol 96:80–87PubMedCrossRef
42.
go back to reference Albertini R, Abuja PM (1999) Prooxidant and antioxidant properties of Trolox C, analogue of vitamin E, in oxidation of low-density lipoprotein. Free Radic Res 30:181–188PubMedCrossRef Albertini R, Abuja PM (1999) Prooxidant and antioxidant properties of Trolox C, analogue of vitamin E, in oxidation of low-density lipoprotein. Free Radic Res 30:181–188PubMedCrossRef
43.
44.
go back to reference Sardão VA, Oliveira PJ, Holy J et al (2007) Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide—characterization of morphological features of cell death. BMC Cell Biol 8:11PubMedCrossRef Sardão VA, Oliveira PJ, Holy J et al (2007) Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide—characterization of morphological features of cell death. BMC Cell Biol 8:11PubMedCrossRef
45.
go back to reference Flora SJ (2007) Role of free radicals and antioxidants in health and disease. Cell Mol Biol 53:1–2PubMed Flora SJ (2007) Role of free radicals and antioxidants in health and disease. Cell Mol Biol 53:1–2PubMed
46.
go back to reference Kelly GS (1998) Clinical applications of N-acetylcysteine. Altern Med Rev 3:114–127PubMed Kelly GS (1998) Clinical applications of N-acetylcysteine. Altern Med Rev 3:114–127PubMed
47.
go back to reference Neuzil J, Wang XF, Dong LF et al (2006) Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett 580:5125–5129PubMedCrossRef Neuzil J, Wang XF, Dong LF et al (2006) Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett 580:5125–5129PubMedCrossRef
48.
go back to reference Halestrap AP (2006) Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 34:232–237PubMedCrossRef Halestrap AP (2006) Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 34:232–237PubMedCrossRef
49.
go back to reference Zhou S, Starkov A, Froberg MK et al (2001) Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 61:771–777PubMed Zhou S, Starkov A, Froberg MK et al (2001) Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 61:771–777PubMed
50.
go back to reference Oliveira PJ, Bjork JA, Santos MS et al (2004) Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol 200:159–168PubMedCrossRef Oliveira PJ, Bjork JA, Santos MS et al (2004) Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol 200:159–168PubMedCrossRef
51.
go back to reference Narula J, Haider N, Virmani R et al (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189PubMedCrossRef Narula J, Haider N, Virmani R et al (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189PubMedCrossRef
52.
go back to reference Kang PM, Izumo S (2003) Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends Mol Med 9:177–182PubMedCrossRef Kang PM, Izumo S (2003) Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends Mol Med 9:177–182PubMedCrossRef
53.
go back to reference Haunstetter A, Izumo S (1998) Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 82:1111–1129PubMed Haunstetter A, Izumo S (1998) Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 82:1111–1129PubMed
54.
go back to reference Kalyanaraman B, Joseph J, Kalivendi S et al (2002) Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem 234–235:119–124PubMedCrossRef Kalyanaraman B, Joseph J, Kalivendi S et al (2002) Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem 234–235:119–124PubMedCrossRef
55.
go back to reference Youn HJ, Kim HS, Jeon MH et al (2005) Induction of caspase-independent apoptosis in H9c2 cardiomyocytes by adriamycin treatment. Mol Cell Biochem 270:13–19PubMedCrossRef Youn HJ, Kim HS, Jeon MH et al (2005) Induction of caspase-independent apoptosis in H9c2 cardiomyocytes by adriamycin treatment. Mol Cell Biochem 270:13–19PubMedCrossRef
Metadata
Title
Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts
Authors
Vilma A. Sardão
Paulo J. Oliveira
Jon Holy
Catarina R. Oliveira
Kendall B. Wallace
Publication date
01-09-2009
Publisher
Springer-Verlag
Published in
Cancer Chemotherapy and Pharmacology / Issue 4/2009
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-009-0932-x

Other articles of this Issue 4/2009

Cancer Chemotherapy and Pharmacology 4/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine