Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 1/2008

01-01-2008 | Original Article

Orally administered FTS (salirasib) inhibits human pancreatic tumor growth in nude mice

Authors: Roni Haklai, Galit Elad-Sfadia, Yaakov Egozi, Yoel Kloog

Published in: Cancer Chemotherapy and Pharmacology | Issue 1/2008

Login to get access

Abstract

Background

S-trans,trans-farnesylthiosalicylic acid (salirasib, FTS) is a synthetic small molecule that acts as a potent Ras inhibitor. Salirasib inhibits specifically both oncogenically activated Ras and growth factor receptor-mediated Ras activation, resulting in the inhibition of Ras-dependent tumor growth. The objectives of this study were to develop a sensitive LC-MS/MS assay for determination of FTS in plasma, to assess the bioavailabilty of FTS after oral administration to mice, and then to examine the efficacy of orally administered FTS for inhibition of tumor growth in a nude mouse model.

Methods

FTS was isolated from mouse plasma by liquid chromatography on a Columbus 5-μm particle size, 50 × 2 mm id column with a methanol/5 mM ammonium acetate (80/20) mobile phase (isocratic elution) at a flow rate of 0.3 ml/min. MS/MS was performed on a PE Sciex API 365 with Turbo Ion Spray as interface and negative ion ionization; parent ion (m/z): 357.2; daughter ion (m/z) 153.2; retention time 2.3 min. For plasma analysis, the amount of analyte in each sample was calculated by comparing response of the analyte in that sample to a nine-point standard curve linear over the range 3–1000 ng/ml. Pharmacokinetic studies were performed in mice following intraperitoneal dosing (20 mk/kg in PBS) or oral dosing (40 mg/kg in either 0.5% aqueous CMC or corn oil). Panc-1 tumor growth in nude mice was determined following daily oral dosing with FTS in 0.5% CMC (40, 60, or 80 mg/kg), or in combination with weekly gemcitabine (30 mg/kg).

Results

Salirasib was readily detected in mouse plasma by LC-MS/MS at a detection limit of 3 ng/ml. For each route of administration, t max was 1 h and t 1/2 ranged from 1.86 to 2.66 h. Compared to IP administration, the oral bioavailabilty of FTS was 69.5% for oral CMC and 55% for oral corn oil suspensions, while clearance and volume of distribution were higher in both oral preparations. The orally administered salirasib inhibited panc-1 tumor growth in a dose dependent manner (67% reduction in tumor weight at the highest dose, P < 0.002 vs. control, n = 10 mice per group) and at a 40 mg/kg daily dose was synergistic with gemcitabine (83% increase in survival rate, n = 8 mice per group).

Conclusions

Salirasib exhibits good bioavailabilty after oral administration, as determined by a highly sensitive method for quantification in plasma. The orally available Ras inhibitor salirasib inhibited growth in nude mice, and may thus be considered for clinical trials.
Literature
1.
go back to reference Aharonson Z, Gana Weisz M, Varsano T, Haklai R, Marciano D, Kloog Y (1998) Stringent structural requirements for anti-Ras activity of S-prenyl analogues. Biochim Biophys Acta 1406:40–50PubMed Aharonson Z, Gana Weisz M, Varsano T, Haklai R, Marciano D, Kloog Y (1998) Stringent structural requirements for anti-Ras activity of S-prenyl analogues. Biochim Biophys Acta 1406:40–50PubMed
2.
go back to reference Kloog Y, Cox AD (2004) Prenyl-binding domains: potential targets for Ras inhibitors and anti-cancer drugs. Semin Cancer Biol 14:253–61PubMedCrossRef Kloog Y, Cox AD (2004) Prenyl-binding domains: potential targets for Ras inhibitors and anti-cancer drugs. Semin Cancer Biol 14:253–61PubMedCrossRef
3.
go back to reference Kloog Y, Cox AD (2000) RAS inhibitors: potential for cancer therapeutics. Mol Med Today 6:398–402PubMedCrossRef Kloog Y, Cox AD (2000) RAS inhibitors: potential for cancer therapeutics. Mol Med Today 6:398–402PubMedCrossRef
4.
go back to reference Elad-Sfadia G, Haklai R, Balan E, Kloog Y (2004) Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem 279:34922–30PubMedCrossRef Elad-Sfadia G, Haklai R, Balan E, Kloog Y (2004) Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem 279:34922–30PubMedCrossRef
5.
go back to reference Elad-Sfadia G, Haklai R, Ballan E, Gabius HJ, Kloog Y (2002) Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J Biol Chem 277:37169–75PubMedCrossRef Elad-Sfadia G, Haklai R, Ballan E, Gabius HJ, Kloog Y (2002) Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J Biol Chem 277:37169–75PubMedCrossRef
6.
go back to reference Paz A, Haklai R, Elad-Sfadia G, Ballan E, Kloog Y (2001) Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20:7486–93PubMedCrossRef Paz A, Haklai R, Elad-Sfadia G, Ballan E, Kloog Y (2001) Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20:7486–93PubMedCrossRef
7.
go back to reference Blum R, Kloog Y (2005) Tailoring Ras-pathway–inhibitor combinations for cancer therapy. Drug Resist Updat 8:369–80PubMedCrossRef Blum R, Kloog Y (2005) Tailoring Ras-pathway–inhibitor combinations for cancer therapy. Drug Resist Updat 8:369–80PubMedCrossRef
8.
go back to reference Yaari S, Jacob-Hirsch J, Amariglio N, Haklai R, Rechavi G, Kloog Y (2005) Disruption of cooperation between Ras and MycN in human neuroblastoma cells promotes growth arrest. Clin Cancer Res 11:4321–30PubMedCrossRef Yaari S, Jacob-Hirsch J, Amariglio N, Haklai R, Rechavi G, Kloog Y (2005) Disruption of cooperation between Ras and MycN in human neuroblastoma cells promotes growth arrest. Clin Cancer Res 11:4321–30PubMedCrossRef
9.
go back to reference Marom M, Haklai R, Ben Baruch G, Marciano D, Egozi Y, Kloog Y (1995) Selective inhibition of Ras-dependent cell growth by farnesylthiosalisylic acid. J Biol Chem 270:22263–70PubMedCrossRef Marom M, Haklai R, Ben Baruch G, Marciano D, Egozi Y, Kloog Y (1995) Selective inhibition of Ras-dependent cell growth by farnesylthiosalisylic acid. J Biol Chem 270:22263–70PubMedCrossRef
10.
go back to reference Jansen B, Schlagbauer-Wadl H, Kahr H, Heere-Ress E, Mayer BX, Eichler H, Pehamberger H, Gana-Weisz M, Ben-David E, Kloog Y, Wolff K (1999) Novel Ras antagonist blocks human melanoma growth. Proc Natl Acad Sci U S A 96:14019–24PubMedCrossRef Jansen B, Schlagbauer-Wadl H, Kahr H, Heere-Ress E, Mayer BX, Eichler H, Pehamberger H, Gana-Weisz M, Ben-David E, Kloog Y, Wolff K (1999) Novel Ras antagonist blocks human melanoma growth. Proc Natl Acad Sci U S A 96:14019–24PubMedCrossRef
11.
go back to reference Elad G, Paz A, Haklai R, Marciano D, Cox A, Kloog Y (1999) Targeting of K-Ras 4B by S-trans,trans-farnesyl thiosalicylic acid. Biochim Biophys Acta 1452:228–42PubMedCrossRef Elad G, Paz A, Haklai R, Marciano D, Cox A, Kloog Y (1999) Targeting of K-Ras 4B by S-trans,trans-farnesyl thiosalicylic acid. Biochim Biophys Acta 1452:228–42PubMedCrossRef
13.
14.
go back to reference Bos JL (1989) Ras oncogenes in human cancer: a review. Cancer Res 49:4682–9PubMed Bos JL (1989) Ras oncogenes in human cancer: a review. Cancer Res 49:4682–9PubMed
15.
go back to reference Kloog Y, Cox AD, Sinensky M (1999) Concepts in Ras-directed therapy. Expert Opin Investig Drugs 8:2121–40PubMedCrossRef Kloog Y, Cox AD, Sinensky M (1999) Concepts in Ras-directed therapy. Expert Opin Investig Drugs 8:2121–40PubMedCrossRef
16.
go back to reference Bivona TG, Philips MR (2003) Ras pathway signaling on endomembranes. Curr Opin Cell Biol 15:136–42PubMedCrossRef Bivona TG, Philips MR (2003) Ras pathway signaling on endomembranes. Curr Opin Cell Biol 15:136–42PubMedCrossRef
17.
go back to reference Denis GV, Yu Q, Ma P, Deeds L, Faller DV, Chen CY (2003) Bcl-2, via its BH4 domain, blocks apoptotic signaling mediated by mitochondrial Ras. J Biol Chem 278:5775–85PubMedCrossRef Denis GV, Yu Q, Ma P, Deeds L, Faller DV, Chen CY (2003) Bcl-2, via its BH4 domain, blocks apoptotic signaling mediated by mitochondrial Ras. J Biol Chem 278:5775–85PubMedCrossRef
18.
go back to reference Niv H, Gutman O, Henis YI, Kloog Y (1999) Membrane interactions of a constitutively active GFP-K-Ras 4B and their role in signaling: Evidence from lateral mobility studies. J Biol Chem 274:1606–13PubMedCrossRef Niv H, Gutman O, Henis YI, Kloog Y (1999) Membrane interactions of a constitutively active GFP-K-Ras 4B and their role in signaling: Evidence from lateral mobility studies. J Biol Chem 274:1606–13PubMedCrossRef
19.
go back to reference Haklai R, Gana-Weisz G, Elad G, Paz A, Marciano D, Egozi Y, Ben Baruch G, Kloog Y (1998) Dislodgment and accelerated degradation of Ras. Biochemistry 37:1306–14PubMedCrossRef Haklai R, Gana-Weisz G, Elad G, Paz A, Marciano D, Egozi Y, Ben Baruch G, Kloog Y (1998) Dislodgment and accelerated degradation of Ras. Biochemistry 37:1306–14PubMedCrossRef
20.
go back to reference Weisz B, Giehl K, Gana-Weisz M, Egozi Y, Ben-Baruch G, Marciano D, Gierschik P, Kloog Y (1999) A new functional Ras antagonist inhibits human pancreatic tumor growth in nude mice. Oncogene 18:2579–88PubMedCrossRef Weisz B, Giehl K, Gana-Weisz M, Egozi Y, Ben-Baruch G, Marciano D, Gierschik P, Kloog Y (1999) A new functional Ras antagonist inhibits human pancreatic tumor growth in nude mice. Oncogene 18:2579–88PubMedCrossRef
21.
go back to reference Halaschek-Wiener J, Kloog Y, Wacheck V, Jansen B (2003) Farnesyl thiosalicylic acid chemosensitizes human melanoma in vivo. J Invest Dermatol 120:109–15PubMedCrossRef Halaschek-Wiener J, Kloog Y, Wacheck V, Jansen B (2003) Farnesyl thiosalicylic acid chemosensitizes human melanoma in vivo. J Invest Dermatol 120:109–15PubMedCrossRef
22.
go back to reference Blum R, Jacob-Hirsch J, Amariglio N, Rechavi G, Kloog Y (2005) Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res 65:999–1006PubMed Blum R, Jacob-Hirsch J, Amariglio N, Rechavi G, Kloog Y (2005) Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res 65:999–1006PubMed
23.
go back to reference Beiner ME, Niv H, Haklai R, Elad-Sfadia G, Kloog Y, Ben-Baruch G (2006) Ras antagonist inhibits growth and chemosensitizes human epithelial ovarian cancer cells. Int J Gynecol Cancer 16(Suppl 1):200–6PubMedCrossRef Beiner ME, Niv H, Haklai R, Elad-Sfadia G, Kloog Y, Ben-Baruch G (2006) Ras antagonist inhibits growth and chemosensitizes human epithelial ovarian cancer cells. Int J Gynecol Cancer 16(Suppl 1):200–6PubMedCrossRef
24.
go back to reference Halaschek-Wiener J, Wacheck V, Schlagbauer-Wadl H, Wolff K, Kloog Y, Jansen B (2000) A novel Ras antagonist regulates both oncogenic Ras and the tumor suppressor p53 in colon cancer cells. Mol Med 6:693–704PubMed Halaschek-Wiener J, Wacheck V, Schlagbauer-Wadl H, Wolff K, Kloog Y, Jansen B (2000) A novel Ras antagonist regulates both oncogenic Ras and the tumor suppressor p53 in colon cancer cells. Mol Med 6:693–704PubMed
25.
go back to reference Erlich S, Tal-Or P, Liebling R, Blum R, Karunagaran D, Kloog Y, Pinkas-Kramarski R (2006) Ras inhibition results in growth arrest and death of androgen-dependent and androgen-independent prostate cancer cells. Biochem Pharmacol 72:427–36PubMedCrossRef Erlich S, Tal-Or P, Liebling R, Blum R, Karunagaran D, Kloog Y, Pinkas-Kramarski R (2006) Ras inhibition results in growth arrest and death of androgen-dependent and androgen-independent prostate cancer cells. Biochem Pharmacol 72:427–36PubMedCrossRef
26.
go back to reference Barkan B, Starinsky S, Friedman E, Stein R, Kloog Y (2006) The Ras inhibitor farnesylthiosalicylic acid as a potential therapy for neurofibromatosis type 1. Clin Cancer Res 12:5533–42PubMedCrossRef Barkan B, Starinsky S, Friedman E, Stein R, Kloog Y (2006) The Ras inhibitor farnesylthiosalicylic acid as a potential therapy for neurofibromatosis type 1. Clin Cancer Res 12:5533–42PubMedCrossRef
27.
go back to reference Jansen B, Heere-Ress E, Schlagbauer-Wadl H, Halaschek-Wiener J, Waltering S, Moll I, Pehamberger H, Marciano D, Kloog Y, Wolff K (1999) Farnesylthiosalicylic acid inhibits the growth of human Merkel cell carcinoma in SCID mice. J Mol Med 77:792–7PubMedCrossRef Jansen B, Heere-Ress E, Schlagbauer-Wadl H, Halaschek-Wiener J, Waltering S, Moll I, Pehamberger H, Marciano D, Kloog Y, Wolff K (1999) Farnesylthiosalicylic acid inhibits the growth of human Merkel cell carcinoma in SCID mice. J Mol Med 77:792–7PubMedCrossRef
28.
go back to reference Weisz B, Giehl K, Gana-Weisz M, Egozi, Ben-Baruch G, Marciano D, Gierschik P, Kloog Y (1999) A new functional Ras antagonist inhibits human pancreatic tumor growth in nude mice. Oncogene 18:2579–88PubMedCrossRef Weisz B, Giehl K, Gana-Weisz M, Egozi, Ben-Baruch G, Marciano D, Gierschik P, Kloog Y (1999) A new functional Ras antagonist inhibits human pancreatic tumor growth in nude mice. Oncogene 18:2579–88PubMedCrossRef
29.
go back to reference Gana-Weisz M, Halaschek-Wiener J, Jansen B, Elad G, Haklai R, Kloog Y (2002) The Ras inhibitor S-trans, trans-farnesylthiosalicylic acid chemosensitizes human tumor cells without causing resistance. Clin Cancer Res 8:555–65PubMed Gana-Weisz M, Halaschek-Wiener J, Jansen B, Elad G, Haklai R, Kloog Y (2002) The Ras inhibitor S-trans, trans-farnesylthiosalicylic acid chemosensitizes human tumor cells without causing resistance. Clin Cancer Res 8:555–65PubMed
30.
go back to reference de Rooij J, Bos JL (1997) Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14:623–5PubMedCrossRef de Rooij J, Bos JL (1997) Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14:623–5PubMedCrossRef
31.
go back to reference Fridman M, Maruta H, Gonez J, Walker F, Treutlein H, Zeng J, Burgess A (2000) Point mutants of c-raf-1 RBD with elevated binding to v-Ha-Ras. J Biol Chem 275:30363–71PubMedCrossRef Fridman M, Maruta H, Gonez J, Walker F, Treutlein H, Zeng J, Burgess A (2000) Point mutants of c-raf-1 RBD with elevated binding to v-Ha-Ras. J Biol Chem 275:30363–71PubMedCrossRef
32.
go back to reference Macdonald JS, McCoy S, Whitehead RP, Iqbal S, Wade JLr, Giguere JK, Abbruzzese JL (2005) A phase II study of farnesyltransferase inhibitor R115777 in pancreatic cancer: a southwest oncology group (SWOG9924) study. Invest new drugs 23:485–87PubMedCrossRef Macdonald JS, McCoy S, Whitehead RP, Iqbal S, Wade JLr, Giguere JK, Abbruzzese JL (2005) A phase II study of farnesyltransferase inhibitor R115777 in pancreatic cancer: a southwest oncology group (SWOG9924) study. Invest new drugs 23:485–87PubMedCrossRef
Metadata
Title
Orally administered FTS (salirasib) inhibits human pancreatic tumor growth in nude mice
Authors
Roni Haklai
Galit Elad-Sfadia
Yaakov Egozi
Yoel Kloog
Publication date
01-01-2008
Publisher
Springer-Verlag
Published in
Cancer Chemotherapy and Pharmacology / Issue 1/2008
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-007-0451-6

Other articles of this Issue 1/2008

Cancer Chemotherapy and Pharmacology 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine