Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation

Abstract

Ras genes, frequently mutated in human tumors, promote malignant transformation. Ras transformation requires membrane anchorage, which is promoted by Ras farnesylcysteine carboxymethylester and by a second signal. Previously we showed that the farnesylcysteine mimetic, farnesylthiosalicylic acid (FTS) disrupts Ras membrane anchorage. To understand how this disruption contributes to inhibition of cell transformation we searched for new Ras-interacting proteins and identified galectin-1, a lectin implicated in human tumors, as a selective binding partner of oncogenic H-Ras(12V). The observed size of H-Ras(12V)-galectin-1 complex, which is equal to the sum of the molecular weights of Ras and galectin-1 indicates a direct binding interaction between the two proteins. FTS disrupted H-Ras(12V)-galectin-1 interactions. Overexpression of galectin-1 increased membrane-associated Ras, Ras-GTP, and active ERK resulting in cell transformation, which was blocked by dominant negative Ras. Galectin-1 antisense RNA inhibited transformation by H-Ras(12V) and abolished membrane anchorage of green fluorescent protein (GFP)-H-Ras(12V) but not of GFP-H-Ras wild-type (wt), GFP-K-Ras(12V), or GFP-N-Ras(13V). H-Ras(12V)-galectin-1 interactions establish an essential link between two proteins associated with cell transformation and human malignancies that can be exploited to selectively target oncogenic Ras proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 6
Figure 5
Figure 7

Similar content being viewed by others

References

  • Allione A, Wells V, Forni G, Mallucci L, Novelli F . 1998 J. Immunol. 161: 2114–2119

  • Andre S, Kojima S, Yamazaki N, Fink C, Kaltner H, Kayser K, Gabius HJ . 1999 J. Cancer Res. Clin. Oncol. 125: 461–474

  • Barondes SH, Cooper DN, Gitt MA, Leffler H . 1994 J. Biol. Chem. 269: 20807–20810

  • Bar-Sagi D, Hall A . 2000 Cell 103: 227–238

  • Boguski MS, McCormick F . 1993 Nature 366: 643–654

  • Bos JL . 1989 Cancer Res. 49: 4682–4689

  • Bourne HR, Sanders DA, McCormick F . 1991 Nature 349: 117–127

  • Bresalier RS, Yan PS, Byrd JC, Lotan R, Raz A . 1997 Cancer 80: 776–787

  • Buss JE, Solski PA, Schaeffer JP, MacDonald MJ, Der CJ . 1989 Science 243: 1600–1603

  • Cho M, Cummings RD . 1995 J. Biol. Chem. 270: 5207–5212

  • Choy E, Chiu VK, Silletti J, Feoktistov M, Morimoto T, Michaelson D, Ivanov IE, Philips MR . 1999 Cell 98: 69–80

  • Clark GJ, Cox AD, Graham SM, Der CJ . 1995 Methods Enzymol. 255: 395–412

  • Downward J . 1998 Curr. Opin. Genet. Dev. 8: 49–54

  • Hadari YR, Arbel-Goren R, Levy Y, Amsterdam A, Alon R, Zakut R, Zick Y . 2000 J. Cell. Sci. 113: 2385–2397

  • Haklai R, Gana-Weisz G, Elad G, Paz A, Marciano D, Egozi Y, Ben Baruch G, Kloog Y . 1998 Biochemistry 37: 1306–1314

  • Hancock JF, Magee AI, Childs JE, Marshall CJ . 1989 Cell 57: 1167–1177

  • Herrmann C, Martin GA, Wittinghofer A . 1995 J. Biol. Chem. 270: 2901–2905

  • Hughes RC . 1999 Biochim. Biophys. Acta. 1473: 172–185

  • Inouye K, Mizutani S, Koide H, Kaziro Y . 2000 J. Biol. Chem. 275: 3737–3740

  • James GL, Goldstein JL, Brown MS, Rawson TE, Somers TC, McDowell RS, Crowley CW, Lucas BK, Levinson AD, Marsters Jr JC . 1993 Science 260: 1937–1942

  • Kloog Y, Cox AD, Sinensky M . 1999 Exp. Opin. Invest. Drugs 8: 2121–2140

  • Kohl NE, Mosser SD, deSolms SJ, Giuliani EA, Pompliano DL, Graham SL, Smith RL, Scolnick EM, Oliff A, Gibbs JB . 1993 Science 260: 1934–1937

  • Kopitz J, von Reitzenstein C, Burchert M, Cantz M, Gabius HJ . 1998 J. Biol. Chem. 273: 11205–11211

  • Lowy DR, Willumsen BM . 1993 Annu. Rev. Biochem. 62: 851–891

  • Marom M, Haklai R, Ben Baruch G, Marciano D, Egozi Y, Kloog Y . 1995 J. Biol. Chem. 270: 22263–22270

  • Melkonian KA, Ostermeyer AG, Chen JZ, Roth MG, Brown DA . 1999 J. Biol. Chem. 274: 3910–3917

  • Mineo C, James GL, Smart EJ, Anderson RG . 1996 J. Biol. Chem. 271: 11930–11935

  • Niv H, Gutman O, Henis YI, Kloog Y . 1999 J. Biol. Chem. 274: 1606–1613

  • Ohannesian DW, Lotan D, Thomas P, Jessup JM, Fukuda M, Gabius HJ, Lotan R . 1995 Cancer Res. 55: 2191–2199

  • Perillo NL, Marcus ME, Baum LG . 1998 J. Mol. Med. 76: 402–412

  • Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B . 1997 Nature 389: 300–305

  • Prior IA, Harding A, Yan J, Sluimer J, Parton RJ, Hancock JF . 2001 Nature Cell Biol. 3: 368–375

  • Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E, Rolls B, Hancock JF, Parton RG . 1999 Nature Cell Biol. 1: 98–105

  • Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, Wittinghofer A . 1997 Science 277: 333–337

  • Schlessinger J, Ullrich A . 1992 Neuron 9: 383–391

  • Shields JM, Pruitt K, McFall A, Shaub A, Der CJ . 2000 Trends Cell. Biol. 10: 147–154

  • Smart EJ, Ying YS, Mineo C, Anderson RG . 1995 Proc. Natl. Acad. Sci. USA 92: 10104–10108

  • Song SK, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP . 1996 J. Biol. Chem. 271: 9690–9697

  • van den Brule FA, Buicu C, Baldet M, Sobel ME, Cooper DN, Marschal P, Castronovo V . 1995 Biochem. Biophys. Res. Commun. 209: 760–767

  • Vespa GN, Lewis LA, Kozak KR, Moran M, Nguyen JT, Baum LG, Miceli MC . 1999 J. Immunol. 162: 799–806

  • Vyakarnam A, Dagher SF, Wang JL, Patterson RJ . 1997 Mol. Cell. Biol. 17: 4730–4737

  • Wells V, Mallucci L . 1991 Cell 64: 91–97

  • Willumsen BM, Cox AD, Solski PA, Der CJ, Buss JE . 1996 Oncogene 13: 1901–1909

  • Yamaoka K, Ingendoh A, Tsubuki S, Nagai Y, Sanai Y . 1996 J. Biochem. Tokyo 119: 878–886

  • Yamaoka K, Mishima K, Nagashima Y, Asai A, Sanai Y, Kirino T . 2000 J. Neurosci. Res. 59: 722–730

  • Yamaoka K, Ohno S, Kawasaki H, Suzuki K . 1991 Biochem. Biophys. Res. Commun. 179: 272–279

Download references

Acknowledgements

We thank A Admon for sequence analysis, HJ Gabius and K Yamaoka for galectin-1 antibodies, J Boss for the Ras-RBD assay, and S Smith for editorial assistance. This work was supported in part by Grant no. 97000141 from the U.S.–Israel Binational Science Foundation, by the Israel Cancer Foundation, and by the Austrian Friends of Tel-Aviv University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoel Kloog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paz, A., Haklai, R., Elad-Sfadia, G. et al. Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20, 7486–7493 (2001). https://doi.org/10.1038/sj.onc.1204950

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204950

Keywords

This article is cited by

Search

Quick links