Skip to main content
Top
Published in: Surgical and Radiologic Anatomy 10/2016

01-12-2016 | Anatomic Bases of Medical, Radiological and Surgical Techniques

Anatomical study of the internal thoracic arteries; implications for use in coronary artery bypass graft surgery

Authors: Olivier Chavanon, B. Romary, C. Martin, P. Chaffanjon

Published in: Surgical and Radiologic Anatomy | Issue 10/2016

Login to get access

Abstract

Purpose

The feasibility of coronary artery bypass grafting using an internal thoracic artery (ITA) depends on the length of the graft with respect to the optimal route to reach the coronary target. The goal of this study was to assess the gain in length afforded by skeletonization and to evaluate the lengths of different pathways of the ITAs to the left coronary arteries.

Methods

The left and right ITAs were dissected out from 20 specimens and measured before and after skeletonization. Distance between the origin of the right ITA and the base of the left atrial appendage, corresponding to the proximal circumflex artery, was measured for both the transverse pericardial sinus and preaortic routes.

Results

Skeletonization gave a significant gain of length for both ITAs. Analysis showed no significant correlation between the ITA length and the height, weight, and BMI of specimens. We found no association between the length of the sternum and the length of skeletonized RITA or LITA. The anterior route of the skeletonized right ITA was shorter than the transverse pericardial sinus route in 18 cases. The average length to the circumflex artery territory was 132.8 ± 23.5 mm in front of the aorta and 150.5 ± 18.8 through the transverse pericardial sinus with a gain of length of 17.7 mm (p < 0.0001).

Conclusion

Skeletonization gave significant gains in length of both ITAs. The preaortic route for the skeletonized right ITA toward the circumflex territory was shorter than the transverse pericardial sinus route in 90 % of cases.
Literature
1.
go back to reference Berdajs D, Turina M (2011) Operative anatomy of the heart. Springer, Berlin, HeidelbergCrossRef Berdajs D, Turina M (2011) Operative anatomy of the heart. Springer, Berlin, HeidelbergCrossRef
2.
go back to reference Blin D, Chavanon O (1999) Exposure for harvesting coronary bypass grafts. In: Branchereau A, Berguer R (eds) Vascular surgical approaches. Futura Publishing, New York, pp 113–122 Blin D, Chavanon O (1999) Exposure for harvesting coronary bypass grafts. In: Branchereau A, Berguer R (eds) Vascular surgical approaches. Futura Publishing, New York, pp 113–122
3.
go back to reference Buxton BF, Ruengsakulrach P, Fuller J, Rosalion A, Reid CM, Tatoulis J (2000) The right internal thoracic artery graft benefits of grafting the left coronary system and native vessels with a high grade stenosis. Eur J Cardiothorac Surg 18:255–261CrossRefPubMed Buxton BF, Ruengsakulrach P, Fuller J, Rosalion A, Reid CM, Tatoulis J (2000) The right internal thoracic artery graft benefits of grafting the left coronary system and native vessels with a high grade stenosis. Eur J Cardiothorac Surg 18:255–261CrossRefPubMed
4.
go back to reference Buxton BF, Hayward PA, Newcomb AE, Moten S, Seevanayagam S, Gordon I (2009) Choice of conduits for coronary artery bypass grafting: craft or science? Eur J Cardiothorac Surg 35:658–670CrossRefPubMed Buxton BF, Hayward PA, Newcomb AE, Moten S, Seevanayagam S, Gordon I (2009) Choice of conduits for coronary artery bypass grafting: craft or science? Eur J Cardiothorac Surg 35:658–670CrossRefPubMed
5.
go back to reference Buxton BF, Shi WY, Tatoulis J, Fuller JA, Rosalion A, Hayward PA (2014) Total arterial revascularization with internal thoracic and radial artery grafts in triple-vessel coronary artery disease is associated with improved survival. J Thorac Cardiovasc Surg 148:1238–1243CrossRefPubMed Buxton BF, Shi WY, Tatoulis J, Fuller JA, Rosalion A, Hayward PA (2014) Total arterial revascularization with internal thoracic and radial artery grafts in triple-vessel coronary artery disease is associated with improved survival. J Thorac Cardiovasc Surg 148:1238–1243CrossRefPubMed
6.
go back to reference Cameron A, Davis KB, Green G, Schaff HV (1996) Coronary bypass surgery with internal-thoracic-artery-grafts. Effects on survival over a 15-year period. N Engl J Med 334:216–219CrossRefPubMed Cameron A, Davis KB, Green G, Schaff HV (1996) Coronary bypass surgery with internal-thoracic-artery-grafts. Effects on survival over a 15-year period. N Engl J Med 334:216–219CrossRefPubMed
7.
go back to reference Deja MA, Woś S, Gołba KS, Zurek P, Domaradzki W, Bachowski R et al (1999) Intraoperative and laboratory evaluation of skeletonized versus pedicled internal thoracic artery. Ann Thorac Surg 68:2164–2168CrossRefPubMed Deja MA, Woś S, Gołba KS, Zurek P, Domaradzki W, Bachowski R et al (1999) Intraoperative and laboratory evaluation of skeletonized versus pedicled internal thoracic artery. Ann Thorac Surg 68:2164–2168CrossRefPubMed
8.
go back to reference Di Mauro M, Iacò AL, Acitelli A, D’Ambrosio G, Filipponi L, Salustri E et al (2015) Bilateral internal mammary artery for multi-territory myocardial revascularization: long-term follow-up of pedicled versus skeletonized conduits. Eur J Cardiothorac Surg 47:698–702CrossRefPubMed Di Mauro M, Iacò AL, Acitelli A, D’Ambrosio G, Filipponi L, Salustri E et al (2015) Bilateral internal mammary artery for multi-territory myocardial revascularization: long-term follow-up of pedicled versus skeletonized conduits. Eur J Cardiothorac Surg 47:698–702CrossRefPubMed
9.
go back to reference Fouquet O, Tariel F, Desulauze P, Mével G (2015) Does a skeletonized internal thoracic artery give fewer postoperative complications than a pedicled artery for patients undergoing coronary artery bypass grafting? Interact Cardiovasc Thorac Surg 20:663–668CrossRefPubMed Fouquet O, Tariel F, Desulauze P, Mével G (2015) Does a skeletonized internal thoracic artery give fewer postoperative complications than a pedicled artery for patients undergoing coronary artery bypass grafting? Interact Cardiovasc Thorac Surg 20:663–668CrossRefPubMed
10.
go back to reference He GW (1999) Arterial grafts for coronary artery bypass grafting: biological characteristics, functional classification, and clinical choice. Ann Thorac Surg 67:277–284CrossRefPubMed He GW (1999) Arterial grafts for coronary artery bypass grafting: biological characteristics, functional classification, and clinical choice. Ann Thorac Surg 67:277–284CrossRefPubMed
11.
go back to reference Hu X, Zhao Q (2011) Skeletonized internal thoracic artery harvest improves prognosis in high-risk population after coronary artery bypass surgery for good quality grafts. Ann Thorac Surg 92:48–58CrossRefPubMed Hu X, Zhao Q (2011) Skeletonized internal thoracic artery harvest improves prognosis in high-risk population after coronary artery bypass surgery for good quality grafts. Ann Thorac Surg 92:48–58CrossRefPubMed
12.
go back to reference Kappetein AP (2010) Bilateral mammary artery vs. single mammary artery grafting: promising early results: but will the match finish with enough players? Eur Heart J 31:2444–2446CrossRefPubMed Kappetein AP (2010) Bilateral mammary artery vs. single mammary artery grafting: promising early results: but will the match finish with enough players? Eur Heart J 31:2444–2446CrossRefPubMed
13.
go back to reference Loop FD, Lytle BW, Cosgrove DM, Stewart RW, Goormastic M, Williams GW et al (1986) Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med 314:1–6CrossRefPubMed Loop FD, Lytle BW, Cosgrove DM, Stewart RW, Goormastic M, Williams GW et al (1986) Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med 314:1–6CrossRefPubMed
14.
go back to reference Lytle BW, Blackstone EH, Sabik JF, Houghtaling P, Loop FD, Cosgrove DM (2004) The effect of bilateral internal thoracic artery grafting on survival during 20 postoperative years. Ann Thorac Surg 78:2005–2012 (discussion 2012–4) CrossRefPubMed Lytle BW, Blackstone EH, Sabik JF, Houghtaling P, Loop FD, Cosgrove DM (2004) The effect of bilateral internal thoracic artery grafting on survival during 20 postoperative years. Ann Thorac Surg 78:2005–2012 (discussion 2012–4) CrossRefPubMed
15.
go back to reference Pettinari M, Sergeant P, Meuris B (2015) Bilateral internal thoracic artery grafting increases long-term survival in elderly patients. Eur J Cardiothorac Surg 47:703–709CrossRefPubMed Pettinari M, Sergeant P, Meuris B (2015) Bilateral internal thoracic artery grafting increases long-term survival in elderly patients. Eur J Cardiothorac Surg 47:703–709CrossRefPubMed
16.
go back to reference Puskas JD, Sadiq A, Vassiliades TA, Kilgo PD, Lattouf OM (2012) Bilateral internal thoracic artery grafting is associated with significantly improved long-term survival, even among diabetic patients. Ann Thorac Surg 94:710–715 (discussion 715–6) CrossRefPubMed Puskas JD, Sadiq A, Vassiliades TA, Kilgo PD, Lattouf OM (2012) Bilateral internal thoracic artery grafting is associated with significantly improved long-term survival, even among diabetic patients. Ann Thorac Surg 94:710–715 (discussion 715–6) CrossRefPubMed
17.
go back to reference Sá MP, Cavalcanti PE, Santos HJ, Soares AF, Miranda RG, Araújo ML et al (2014) Flow capacity of skeletonized versus pedicled internal thoracic artery in coronary artery bypass graft surgery: systematic review, meta-analysis and meta-regression. Eur J Cardiothorac Surg. doi:10.1093/ejcts/ezu344 (first published online September 15) PubMed Sá MP, Cavalcanti PE, Santos HJ, Soares AF, Miranda RG, Araújo ML et al (2014) Flow capacity of skeletonized versus pedicled internal thoracic artery in coronary artery bypass graft surgery: systematic review, meta-analysis and meta-regression. Eur J Cardiothorac Surg. doi:10.​1093/​ejcts/​ezu344 (first published online September 15) PubMed
18.
go back to reference Saso S, James D, Vecht JA, Kidher E, Kokotsakis J, Malinovski V et al (2010) Effect of skeletonization of the internal thoracic artery for coronary revascularization on the incidence of sternal wound infection. Ann Thorac Surg 89:661–670CrossRefPubMed Saso S, James D, Vecht JA, Kidher E, Kokotsakis J, Malinovski V et al (2010) Effect of skeletonization of the internal thoracic artery for coronary revascularization on the incidence of sternal wound infection. Ann Thorac Surg 89:661–670CrossRefPubMed
19.
go back to reference Shah PJ, Bui K, Blackmore S, Gordon I, Hare DL, Fuller J et al (2005) Has the in situ right internal thoracic artery been overlooked? An angiographic study of the radial artery, internal thoracic arteries and saphenous vein graft patencies in symptomatic patients. Eur J Cardiothorac Surg 27:870–875CrossRefPubMed Shah PJ, Bui K, Blackmore S, Gordon I, Hare DL, Fuller J et al (2005) Has the in situ right internal thoracic artery been overlooked? An angiographic study of the radial artery, internal thoracic arteries and saphenous vein graft patencies in symptomatic patients. Eur J Cardiothorac Surg 27:870–875CrossRefPubMed
20.
go back to reference Members Task Force, Montalescot G, Sechtem U, Achenbach S et al (2013) ESC guidelines on the management of stable coronary artery disease. Eur Heart J 2013(34):2949–3003 Members Task Force, Montalescot G, Sechtem U, Achenbach S et al (2013) ESC guidelines on the management of stable coronary artery disease. Eur Heart J 2013(34):2949–3003
21.
go back to reference Tatoulis J, Buxton BF, Fuller JA (2011) The right internal thoracic artery: the forgotten conduit—5,766 patients and 991 angiograms. Ann Thorac Surg. 92:9–15 (discussion 15–7) CrossRefPubMed Tatoulis J, Buxton BF, Fuller JA (2011) The right internal thoracic artery: the forgotten conduit—5,766 patients and 991 angiograms. Ann Thorac Surg. 92:9–15 (discussion 15–7) CrossRefPubMed
22.
go back to reference Van Son JA, Smedts F, de Wilde PC, Pijls NH, Wong-Alcala L, Kubat K et al (1993) Histological study of the internal mammary artery with emphasis on its suitability as a coronary artery bypass graft. Ann Thorac Surg 55:106–113CrossRefPubMed Van Son JA, Smedts F, de Wilde PC, Pijls NH, Wong-Alcala L, Kubat K et al (1993) Histological study of the internal mammary artery with emphasis on its suitability as a coronary artery bypass graft. Ann Thorac Surg 55:106–113CrossRefPubMed
23.
go back to reference Vander Salm TJ, Chowdhary S, Okike ON, Pezzella AT, Pasque MK (1989) Internal mammary artery grafts: the shortest route to the coronary arteries. Ann Thorac Surg 47:421–427CrossRefPubMed Vander Salm TJ, Chowdhary S, Okike ON, Pezzella AT, Pasque MK (1989) Internal mammary artery grafts: the shortest route to the coronary arteries. Ann Thorac Surg 47:421–427CrossRefPubMed
24.
go back to reference Wendler O, Tscholl D, Huang Q, Schäfers HJ (1999) Free flow capacity of skeletonized versus pedicled internal thoracic artery grafts in coronary artery bypass grafts. Eur J Cardiothorac Surg 15:247–250CrossRefPubMed Wendler O, Tscholl D, Huang Q, Schäfers HJ (1999) Free flow capacity of skeletonized versus pedicled internal thoracic artery grafts in coronary artery bypass grafts. Eur J Cardiothorac Surg 15:247–250CrossRefPubMed
25.
go back to reference Zehr KJ, Lee PC, Poston RS, Gillinov AM, Hruban RH, Cameron DE (1993) Protection of the internal mammary artery pedicle with polytetrafluoroethylene membrane. J Card Surg 8:650–655CrossRefPubMed Zehr KJ, Lee PC, Poston RS, Gillinov AM, Hruban RH, Cameron DE (1993) Protection of the internal mammary artery pedicle with polytetrafluoroethylene membrane. J Card Surg 8:650–655CrossRefPubMed
Metadata
Title
Anatomical study of the internal thoracic arteries; implications for use in coronary artery bypass graft surgery
Authors
Olivier Chavanon
B. Romary
C. Martin
P. Chaffanjon
Publication date
01-12-2016
Publisher
Springer Paris
Published in
Surgical and Radiologic Anatomy / Issue 10/2016
Print ISSN: 0930-1038
Electronic ISSN: 1279-8517
DOI
https://doi.org/10.1007/s00276-016-1678-x

Other articles of this Issue 10/2016

Surgical and Radiologic Anatomy 10/2016 Go to the issue

Anatomic Bases of Medical, Radiological and Surgical Techniques

The olfactory fascia: an evo–devo concept of the fibrocartilaginous nose