Skip to main content
Top
Published in: CardioVascular and Interventional Radiology 9/2018

01-09-2018 | Technical Note

Evaluation of the Needle Positioning Accuracy of a Light Puncture Robot Under MRI Guidance: Results of a Clinical Trial on Healthy Volunteers

Authors: Julien Ghelfi, Alexandre Moreau-Gaudry, Nikolai Hungr, Céline Fouard, Baptiste Véron, Maud Medici, Emilie Chipon, Philippe Cinquin, Ivan Bricault

Published in: CardioVascular and Interventional Radiology | Issue 9/2018

Login to get access

Abstract

Purpose

To assess the accuracy of Light Puncture Robot (LPR) as a patient-mounted robot, in positioning a sham needle under MRI guidance for abdominal percutaneous interventions.

Materials and Methods

This monocentric, prospective and non-controlled study was approved by the ethics review board. The study evaluated the accuracy of LPR V3 to achieve a virtual puncture in 20 healthy volunteers. Three trajectories were tried on each volunteer, under 3-T MRI guidance.

Results

Accuracy under 5 mm in attaining a 10 cm-deep target was reached in 72% of attempts after 2 robot motions with a median error of 4.1 mm [2.1; 5.1]. Median procedure time for one trajectory was 12.9 min [10.2; 18.0] and median installation time was 9.0 min [6.0; 13.0].

Conclusion

LPR accuracy in the deployment of a sham needle inside the MRI tunnel and its setup time are promising. Further studies need to be conducted to confirm these results before clinical trials.
Literature
2.
go back to reference Walsh C, Sapkota B, Kalra M, et al. Smaller and deeper lesions increase the number of acquired scan series in computed tomography-guided lung biopsy. J Thorac Imaging. 2011;26:196–203.CrossRefPubMed Walsh C, Sapkota B, Kalra M, et al. Smaller and deeper lesions increase the number of acquired scan series in computed tomography-guided lung biopsy. J Thorac Imaging. 2011;26:196–203.CrossRefPubMed
3.
go back to reference Onik G, Cosman E, Wells T, et al. CT-guided aspirations for the body: comparison of hand guidance with stereotaxis. Radiology. 1988;166(2):389–94.CrossRefPubMed Onik G, Cosman E, Wells T, et al. CT-guided aspirations for the body: comparison of hand guidance with stereotaxis. Radiology. 1988;166(2):389–94.CrossRefPubMed
4.
go back to reference Arnolli M, Hanumara N, Franken M, et al. An overview of systems for CT- and MRI-guided percutaneous needle placement in the thorax and abdomen. Int J Med Robot. 2015;11(4):458–75.CrossRefPubMed Arnolli M, Hanumara N, Franken M, et al. An overview of systems for CT- and MRI-guided percutaneous needle placement in the thorax and abdomen. Int J Med Robot. 2015;11(4):458–75.CrossRefPubMed
5.
go back to reference Cleary K, Melzer A, Watson V, et al. Interventional robotic systems: applications and technology state of the art. Minim Invasive Ther Allied Technol. 2006;15(2):101–13.CrossRefPubMedPubMedCentral Cleary K, Melzer A, Watson V, et al. Interventional robotic systems: applications and technology state of the art. Minim Invasive Ther Allied Technol. 2006;15(2):101–13.CrossRefPubMedPubMedCentral
6.
go back to reference Schell B, Eichler K, Mack MG, et al. Robot-assisted biopsies in a high-field MRI system—first clinical results. Rofo. 2012;184(1):42–7.CrossRefPubMed Schell B, Eichler K, Mack MG, et al. Robot-assisted biopsies in a high-field MRI system—first clinical results. Rofo. 2012;184(1):42–7.CrossRefPubMed
7.
go back to reference Stoianovici D, Cleary K, Patriciu A, et al. AcuBot: a robot for radiological interventions. IEEE Trans Robot Autom. 2003;19(5):927–30.CrossRef Stoianovici D, Cleary K, Patriciu A, et al. AcuBot: a robot for radiological interventions. IEEE Trans Robot Autom. 2003;19(5):927–30.CrossRef
8.
go back to reference Cleary K, Watson V, Lindisch D, et al. Precision placement of instruments for minimally invasive procedures using a “needle driver” robot. Int J Med Robot. 2005;1(2):40–7.CrossRefPubMed Cleary K, Watson V, Lindisch D, et al. Precision placement of instruments for minimally invasive procedures using a “needle driver” robot. Int J Med Robot. 2005;1(2):40–7.CrossRefPubMed
9.
go back to reference Groetz S, Wilhelm K, Willinek W, et al. A new robotic assistance system for percutaneous CT-guided punctures: initial experience. Minim Invasive Ther Allied Technol. 2016;25(2):79–85.CrossRefPubMed Groetz S, Wilhelm K, Willinek W, et al. A new robotic assistance system for percutaneous CT-guided punctures: initial experience. Minim Invasive Ther Allied Technol. 2016;25(2):79–85.CrossRefPubMed
10.
go back to reference Christoforou E, Seimenis I, Andreou E, et al. A novel, general-purpose, MR-compatible, manually actuated robotic manipulation system for minimally invasive interventions under direct MRI guidance. Int J Med Robot. 2014;10(1):22–34.CrossRefPubMed Christoforou E, Seimenis I, Andreou E, et al. A novel, general-purpose, MR-compatible, manually actuated robotic manipulation system for minimally invasive interventions under direct MRI guidance. Int J Med Robot. 2014;10(1):22–34.CrossRefPubMed
11.
go back to reference Melzer A, Gutmann B, Remmele T, et al. Innomotion for percutaneous image-guided interventions: principles and evaluation of this MR- and CT-compatible robotic system. IEEE Eng Med Biol Mag. 2008;27(3):66–73.CrossRefPubMed Melzer A, Gutmann B, Remmele T, et al. Innomotion for percutaneous image-guided interventions: principles and evaluation of this MR- and CT-compatible robotic system. IEEE Eng Med Biol Mag. 2008;27(3):66–73.CrossRefPubMed
12.
go back to reference Maurin B, Bayle B, Piccin O, et al. A patient-mounted robotic platform for CT-scan guided procedures. IEEE Trans Biomed Eng. 2008;55(10):2417–25.CrossRefPubMed Maurin B, Bayle B, Piccin O, et al. A patient-mounted robotic platform for CT-scan guided procedures. IEEE Trans Biomed Eng. 2008;55(10):2417–25.CrossRefPubMed
15.
go back to reference Hungr N, Fouard C, Robert A, et al. Interventional radiology robot for CT and MRI guided percutaneous interventions. Med Image Comput Comput Assist Interv. 2011;14:137–44.PubMed Hungr N, Fouard C, Robert A, et al. Interventional radiology robot for CT and MRI guided percutaneous interventions. Med Image Comput Comput Assist Interv. 2011;14:137–44.PubMed
16.
go back to reference Hungr N, Bricault I, Cinquin P, et al. Design and validation of a CT and MRI guided robot for percutaneous needle procedures. IEEE Trans Robot. 2016;32(4):973–87.CrossRef Hungr N, Bricault I, Cinquin P, et al. Design and validation of a CT and MRI guided robot for percutaneous needle procedures. IEEE Trans Robot. 2016;32(4):973–87.CrossRef
17.
go back to reference Bricault I, Zemiti N, Jouniaux E, et al. Light puncture robot for CT and MRI interventions: designing a new robotic architecture to perform abdominal and thoracic punctures. IEEE Eng Med Biol Mag. 2008;27(3):42–50.CrossRefPubMed Bricault I, Zemiti N, Jouniaux E, et al. Light puncture robot for CT and MRI interventions: designing a new robotic architecture to perform abdominal and thoracic punctures. IEEE Eng Med Biol Mag. 2008;27(3):42–50.CrossRefPubMed
18.
go back to reference Taillant E, Avila-Vilchis J, Allegrini C, et al. CT and MR compatible Light Puncture Robot: architectural design and first experiments. In: Barillot C, Haynor D, Hellier P, editors. Medical image computing and computer-assisted intervention—MICCAI, proceedings, part II. Saint-Malo, France: Springer; 2004. p. 145–152. Taillant E, Avila-Vilchis J, Allegrini C, et al. CT and MR compatible Light Puncture Robot: architectural design and first experiments. In: Barillot C, Haynor D, Hellier P, editors. Medical image computing and computer-assisted intervention—MICCAI, proceedings, part II. Saint-Malo, France: Springer; 2004. p. 145–152.
19.
go back to reference Zemiti N, Bricault I, Fouard C, et al. LPR: a CT and MRI-compatible puncture robot to enhance accuracy and safety of image-guided interventions. IEEE/ASME Trans Mechatron. 2008;13(3):306–15.CrossRef Zemiti N, Bricault I, Fouard C, et al. LPR: a CT and MRI-compatible puncture robot to enhance accuracy and safety of image-guided interventions. IEEE/ASME Trans Mechatron. 2008;13(3):306–15.CrossRef
20.
go back to reference Krieger A, Metzger G, Fichtinger G, et al. A hybrid method for 6-DOF tracking of MRI-compatible robotic interventional devices. In: Robotics Automation; 2006. p. 3844–3849. Krieger A, Metzger G, Fichtinger G, et al. A hybrid method for 6-DOF tracking of MRI-compatible robotic interventional devices. In: Robotics Automation; 2006. p. 3844–3849.
21.
go back to reference Promayon E, Fouard C, Bailet M, et al. Using CamiTK for rapid prototyping of interactive computer assisted medical intervention applications. In: Conf Proc IEEE Eng Med Biol Soc; 2013. p. 4933–4936. Promayon E, Fouard C, Bailet M, et al. Using CamiTK for rapid prototyping of interactive computer assisted medical intervention applications. In: Conf Proc IEEE Eng Med Biol Soc; 2013. p. 4933–4936.
Metadata
Title
Evaluation of the Needle Positioning Accuracy of a Light Puncture Robot Under MRI Guidance: Results of a Clinical Trial on Healthy Volunteers
Authors
Julien Ghelfi
Alexandre Moreau-Gaudry
Nikolai Hungr
Céline Fouard
Baptiste Véron
Maud Medici
Emilie Chipon
Philippe Cinquin
Ivan Bricault
Publication date
01-09-2018
Publisher
Springer US
Published in
CardioVascular and Interventional Radiology / Issue 9/2018
Print ISSN: 0174-1551
Electronic ISSN: 1432-086X
DOI
https://doi.org/10.1007/s00270-018-2001-5

Other articles of this Issue 9/2018

CardioVascular and Interventional Radiology 9/2018 Go to the issue