Skip to main content
Top
Published in: CardioVascular and Interventional Radiology 5/2012

01-10-2012 | Review

Multimodality Image Fusion–Guided Procedures: Technique, Accuracy, and Applications

Authors: Nadine Abi-Jaoudeh, Jochen Kruecker, Samuel Kadoury, Hicham Kobeiter, Aradhana M. Venkatesan, Elliot Levy, Bradford J. Wood

Published in: CardioVascular and Interventional Radiology | Issue 5/2012

Login to get access

Abstract

Personalized therapies play an increasingly critical role in cancer care: Image guidance with multimodality image fusion facilitates the targeting of specific tissue for tissue characterization and plays a role in drug discovery and optimization of tailored therapies. Positron-emission tomography (PET), magnetic resonance imaging (MRI), and contrast-enhanced computed tomography (CT) may offer additional information not otherwise available to the operator during minimally invasive image-guided procedures, such as biopsy and ablation. With use of multimodality image fusion for image-guided interventions, navigation with advanced modalities does not require the physical presence of the PET, MRI, or CT imaging system. Several commercially available methods of image-fusion and device navigation are reviewed along with an explanation of common tracking hardware and software. An overview of current clinical applications for multimodality navigation is provided.
Literature
1.
go back to reference Crommelin DJ, Storm G, Luijten P (2011) “Personalised medicine” through “personalised medicines”: time to integrate advanced, non-invasive imaging approaches and smart drug delivery systems. Int J Pharm 415:5–8PubMedCrossRef Crommelin DJ, Storm G, Luijten P (2011) “Personalised medicine” through “personalised medicines”: time to integrate advanced, non-invasive imaging approaches and smart drug delivery systems. Int J Pharm 415:5–8PubMedCrossRef
2.
go back to reference Witte MH (2011) Translational/personalized medicine, pharmaco/surgico/radiogenomics, lymphatic spread of cancer, and medical ignoromes. J Surg Oncol 103:501–507PubMedCrossRef Witte MH (2011) Translational/personalized medicine, pharmaco/surgico/radiogenomics, lymphatic spread of cancer, and medical ignoromes. J Surg Oncol 103:501–507PubMedCrossRef
3.
4.
go back to reference Venkatesan AM, Kadoury S, Abi-Jaoudeh N et al (2011) Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology 260:848–856PubMedCrossRef Venkatesan AM, Kadoury S, Abi-Jaoudeh N et al (2011) Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology 260:848–856PubMedCrossRef
5.
go back to reference Krucker J, Xu S, Glossop N et al (2007) Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy. J Vasc Interv Radiol 18:1141–1150PubMedCrossRef Krucker J, Xu S, Glossop N et al (2007) Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy. J Vasc Interv Radiol 18:1141–1150PubMedCrossRef
6.
go back to reference Krucker J, Xu S, Venkatesan A et al (2011) Clinical utility of real-time fusion guidance for biopsy and ablation. J Vasc Interv Radiol 22:515–524PubMedCrossRef Krucker J, Xu S, Venkatesan A et al (2011) Clinical utility of real-time fusion guidance for biopsy and ablation. J Vasc Interv Radiol 22:515–524PubMedCrossRef
7.
go back to reference Giesel FL, Mehndiratta A, Locklin J et al (2009) Image fusion using CT, MRI and PET for treatment planning, navigation and follow up in percutaneous RFA. Exp Oncol 31:106–114PubMed Giesel FL, Mehndiratta A, Locklin J et al (2009) Image fusion using CT, MRI and PET for treatment planning, navigation and follow up in percutaneous RFA. Exp Oncol 31:106–114PubMed
8.
go back to reference Wood BJ, Kruecker J, Abi-Jaoudeh N et al (2010) Navigation systems for ablation. J Vasc Interv Radiol 21:S257–S263PubMedCrossRef Wood BJ, Kruecker J, Abi-Jaoudeh N et al (2010) Navigation systems for ablation. J Vasc Interv Radiol 21:S257–S263PubMedCrossRef
9.
go back to reference Wood BJ, Zhang H, Durrani A et al (2005) Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 16:493–505PubMedCrossRef Wood BJ, Zhang H, Durrani A et al (2005) Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 16:493–505PubMedCrossRef
10.
go back to reference Abi-Jaoudeh N, Glossop N, Dake M et al (2010) Electromagnetic navigation for thoracic aortic stent-graft deployment: a pilot study in swine. J Vasc Interv Radiol 21:888–895PubMedCrossRef Abi-Jaoudeh N, Glossop N, Dake M et al (2010) Electromagnetic navigation for thoracic aortic stent-graft deployment: a pilot study in swine. J Vasc Interv Radiol 21:888–895PubMedCrossRef
11.
go back to reference Hassfeld S, Muhling J, Zoller J (1995) Intraoperative navigation in oral and maxillofacial surgery. Int J Oral Maxillofac Surg 24:111–119PubMedCrossRef Hassfeld S, Muhling J, Zoller J (1995) Intraoperative navigation in oral and maxillofacial surgery. Int J Oral Maxillofac Surg 24:111–119PubMedCrossRef
12.
go back to reference Phee SJ, Yang K (2010) Interventional navigation systems for treatment of unresectable liver tumor. Med Biol Eng Comput 48:103–311PubMedCrossRef Phee SJ, Yang K (2010) Interventional navigation systems for treatment of unresectable liver tumor. Med Biol Eng Comput 48:103–311PubMedCrossRef
13.
go back to reference Racadio JM, Babic D, Homan R et al (2007) D guidance in the interventional radiology suite. Am J Roentgenol 189:W357–W364CrossRef Racadio JM, Babic D, Homan R et al (2007) D guidance in the interventional radiology suite. Am J Roentgenol 189:W357–W364CrossRef
14.
go back to reference Appelbaum L, Sosna J, Nissenbaum Y, Benshtein A, Goldberg SN (2011) Electromagnetic navigation system for CT-guided biopsy of small lesions. Am J Roentgenol 196:1194–1200CrossRef Appelbaum L, Sosna J, Nissenbaum Y, Benshtein A, Goldberg SN (2011) Electromagnetic navigation system for CT-guided biopsy of small lesions. Am J Roentgenol 196:1194–1200CrossRef
15.
go back to reference Santos RS, Gupta A, Ebright MI et al (2010) Electromagnetic navigation to aid radiofrequency ablation and biopsy of lung tumors. Annals Thorac Surg 89:265–268CrossRef Santos RS, Gupta A, Ebright MI et al (2010) Electromagnetic navigation to aid radiofrequency ablation and biopsy of lung tumors. Annals Thorac Surg 89:265–268CrossRef
16.
go back to reference Rosenow JM, Sootsman WK (2007) Application accuracy of an electromagnetic field-based image-guided navigation system. Stereotact Funct Neurosurg 85:75–81PubMedCrossRef Rosenow JM, Sootsman WK (2007) Application accuracy of an electromagnetic field-based image-guided navigation system. Stereotact Funct Neurosurg 85:75–81PubMedCrossRef
17.
go back to reference Penzkofer T, Bruners P, Isfort P et al (2011) Free-hand CT-based electromagnetically guided interventions: accuracy, efficiency and dose usage. Minim Invasive Ther Allied Technol 20:226–233PubMedCrossRef Penzkofer T, Bruners P, Isfort P et al (2011) Free-hand CT-based electromagnetically guided interventions: accuracy, efficiency and dose usage. Minim Invasive Ther Allied Technol 20:226–233PubMedCrossRef
18.
go back to reference Ricci WM, Russell TA, Kahler DM, Terrill-Grisoni L, Culley P (2008) A comparison of optical and electromagnetic computer-assisted navigation systems for fluoroscopic targeting. J Orthop Trauma 22:190–194PubMedCrossRef Ricci WM, Russell TA, Kahler DM, Terrill-Grisoni L, Culley P (2008) A comparison of optical and electromagnetic computer-assisted navigation systems for fluoroscopic targeting. J Orthop Trauma 22:190–194PubMedCrossRef
19.
go back to reference Rombaux P, Ledeghen S, Hamoir M et al (2003) Computer assisted surgery and endoscopic endonasal approach in 32 procedures. Acta Otorhinolaryngol Belg 57:131–137PubMed Rombaux P, Ledeghen S, Hamoir M et al (2003) Computer assisted surgery and endoscopic endonasal approach in 32 procedures. Acta Otorhinolaryngol Belg 57:131–137PubMed
21.
go back to reference Liodakis E, Chu K, Westphal R et al (2011) Assessment of the accuracy of infrared and electromagnetic navigation using an industrial robot: which factors are influencing the accuracy of navigation? J Orthop Res 29:1476–1483PubMedCrossRef Liodakis E, Chu K, Westphal R et al (2011) Assessment of the accuracy of infrared and electromagnetic navigation using an industrial robot: which factors are influencing the accuracy of navigation? J Orthop Res 29:1476–1483PubMedCrossRef
22.
go back to reference Ecke U, Luebben B, Maurer J, Boor S, Mann WJ (2003) Comparison of different computer-aided surgery systems in skull base surgery. Skull Base 13:43–50PubMedCrossRef Ecke U, Luebben B, Maurer J, Boor S, Mann WJ (2003) Comparison of different computer-aided surgery systems in skull base surgery. Skull Base 13:43–50PubMedCrossRef
23.
go back to reference Maeda NOK, Higashihara H et al (2008) A novel cone-beam CT guided intervention by XperGuide: accuracy and feasibility in a phantom model. J Vasc Interv Radiol 19:S90CrossRef Maeda NOK, Higashihara H et al (2008) A novel cone-beam CT guided intervention by XperGuide: accuracy and feasibility in a phantom model. J Vasc Interv Radiol 19:S90CrossRef
24.
go back to reference Tam A, Mohamed A, Pfister M, Rohm E, Wallace MJ (2009) C-arm cone beam computed tomographic needle path overlay for fluoroscopic-guided placement of translumbar central venous catheters. Cardiovasc Interv Radiol 32(4):820–824CrossRef Tam A, Mohamed A, Pfister M, Rohm E, Wallace MJ (2009) C-arm cone beam computed tomographic needle path overlay for fluoroscopic-guided placement of translumbar central venous catheters. Cardiovasc Interv Radiol 32(4):820–824CrossRef
25.
go back to reference Mohlenbruch M, Nelles M, Thomas D et al (2010) Cone-beam computed tomography-guided percutaneous radiologic gastrostomy. Cardiovasc Interv Radiol 33:315–320CrossRef Mohlenbruch M, Nelles M, Thomas D et al (2010) Cone-beam computed tomography-guided percutaneous radiologic gastrostomy. Cardiovasc Interv Radiol 33:315–320CrossRef
26.
go back to reference Wilhelm KE, Rudorf H, Greschus S et al (2009) Cone-beam computed tomography (CBCT) dacryocystography for imaging of the nasolacrimal duct system. Klin Neuroradiol 19:283–291PubMedCrossRef Wilhelm KE, Rudorf H, Greschus S et al (2009) Cone-beam computed tomography (CBCT) dacryocystography for imaging of the nasolacrimal duct system. Klin Neuroradiol 19:283–291PubMedCrossRef
27.
go back to reference Braak SJ, van Strijen MJ, van Leersum M, van Es HW, van Heesewijk JP (2010) Real-time 3D fluoroscopy guidance during needle interventions: technique, accuracy, and feasibility. Am J Roentgenol 194:W445–W451CrossRef Braak SJ, van Strijen MJ, van Leersum M, van Es HW, van Heesewijk JP (2010) Real-time 3D fluoroscopy guidance during needle interventions: technique, accuracy, and feasibility. Am J Roentgenol 194:W445–W451CrossRef
28.
go back to reference Leschka SC, Babic D, El Shikh S, Wossmann C, Schumacher M, Taschner CA (2012) C-arm cone beam computed tomography needle path overlay for image-guided procedures of the spine and pelvis. Neuroradiology 54:215–223PubMedCrossRef Leschka SC, Babic D, El Shikh S, Wossmann C, Schumacher M, Taschner CA (2012) C-arm cone beam computed tomography needle path overlay for image-guided procedures of the spine and pelvis. Neuroradiology 54:215–223PubMedCrossRef
29.
go back to reference Huber J, Wegner I, Meinzer HP et al (2011) Navigated renal access using electromagnetic tracking: an initial experience [multimedia article]. Surg Endosc 25:1307–1312PubMedCrossRef Huber J, Wegner I, Meinzer HP et al (2011) Navigated renal access using electromagnetic tracking: an initial experience [multimedia article]. Surg Endosc 25:1307–1312PubMedCrossRef
30.
go back to reference Tatli S, Gerbaudo VH, Mamede M, Tuncali K, Shyn PB, Silverman SG (2010) Abdominal masses sampled at PET/CT-guided percutaneous biopsy: Initial experience with registration of prior PET/CT images. Radiology 256:305–311PubMedCrossRef Tatli S, Gerbaudo VH, Mamede M, Tuncali K, Shyn PB, Silverman SG (2010) Abdominal masses sampled at PET/CT-guided percutaneous biopsy: Initial experience with registration of prior PET/CT images. Radiology 256:305–311PubMedCrossRef
31.
go back to reference Baegert C, Villard C, Schreck P, Soler L, Gangi A (2007) Trajectory optimization for the planning of percutaneous radiofrequency ablation of hepatic tumors. Comput Aided Surg 12:82–90PubMed Baegert C, Villard C, Schreck P, Soler L, Gangi A (2007) Trajectory optimization for the planning of percutaneous radiofrequency ablation of hepatic tumors. Comput Aided Surg 12:82–90PubMed
32.
go back to reference Wood BJ, Locklin JK, Viswanathan A et al (2007) Technologies for guidance of radiofrequency ablation in the multimodality interventional suite of the future. J Vasc Interv Radiol 18:9–24PubMedCrossRef Wood BJ, Locklin JK, Viswanathan A et al (2007) Technologies for guidance of radiofrequency ablation in the multimodality interventional suite of the future. J Vasc Interv Radiol 18:9–24PubMedCrossRef
33.
go back to reference McCreedy ES, Cheng R, Hemler PF, Viswanathan A, Wood BJ, McAuliffe MJ (2006) Radiofrequency ablation registration, segmentation, and fusion tool. IEEE Trans Inf Technol Biomed 10:490–496PubMedCrossRef McCreedy ES, Cheng R, Hemler PF, Viswanathan A, Wood BJ, McAuliffe MJ (2006) Radiofrequency ablation registration, segmentation, and fusion tool. IEEE Trans Inf Technol Biomed 10:490–496PubMedCrossRef
34.
go back to reference Spelle L, Ruijters D, Babic D et al (2009) First clinical experience in applying XperGuide in embolization of jugular paragangliomas by direct intratumoral puncture. Int J Comput Assist Radiol Surg 4:527–533PubMedCrossRef Spelle L, Ruijters D, Babic D et al (2009) First clinical experience in applying XperGuide in embolization of jugular paragangliomas by direct intratumoral puncture. Int J Comput Assist Radiol Surg 4:527–533PubMedCrossRef
35.
go back to reference Girard EE, Al-Ahmad A, Rosenberg J et al (2011) Contrast-enhanced C-arm CT evaluation of radiofrequency ablation lesions in the left ventricle. JACC Cardiovasc Imaging 4:259–268PubMedCrossRef Girard EE, Al-Ahmad A, Rosenberg J et al (2011) Contrast-enhanced C-arm CT evaluation of radiofrequency ablation lesions in the left ventricle. JACC Cardiovasc Imaging 4:259–268PubMedCrossRef
36.
go back to reference Manstad-Hulaas F, Ommedal S, Tangen GA, Aadahl P, Hernes TN (2007) Side-branched AAA stent graft insertion using navigation technology: a phantom study. Eur Surg Res 39:364–371PubMedCrossRef Manstad-Hulaas F, Ommedal S, Tangen GA, Aadahl P, Hernes TN (2007) Side-branched AAA stent graft insertion using navigation technology: a phantom study. Eur Surg Res 39:364–371PubMedCrossRef
37.
go back to reference Dijkstra ML, Eagleton MJ, Greenberg RK, Mastracci T, Hernandez A (2011) Intraoperative C-arm cone-beam computed tomography in fenestrated/branched aortic endografting. J Vasc Surg 53:583–590PubMedCrossRef Dijkstra ML, Eagleton MJ, Greenberg RK, Mastracci T, Hernandez A (2011) Intraoperative C-arm cone-beam computed tomography in fenestrated/branched aortic endografting. J Vasc Surg 53:583–590PubMedCrossRef
38.
go back to reference Kobeiter H, Nahum J, Becquemin JP (2011) Zero-contrast thoracic endovascular aortic repair using image fusion. Circulation 124:e280–e282PubMedCrossRef Kobeiter H, Nahum J, Becquemin JP (2011) Zero-contrast thoracic endovascular aortic repair using image fusion. Circulation 124:e280–e282PubMedCrossRef
39.
go back to reference Garcia JA, Bhakta S, Kay J et al (2009) On-line multi-slice computed tomography interactive overlay with conventional X-ray: a new and advanced imaging fusion concept. Int J Cardiol 133:e101–e105PubMedCrossRef Garcia JA, Bhakta S, Kay J et al (2009) On-line multi-slice computed tomography interactive overlay with conventional X-ray: a new and advanced imaging fusion concept. Int J Cardiol 133:e101–e105PubMedCrossRef
40.
go back to reference Deschamps F, Solomon SB, Thornton RH et al (2010) Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study. Cardiovasc Interv Radiol. doi: 10.1007/s00270-010-9846-6 Deschamps F, Solomon SB, Thornton RH et al (2010) Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study. Cardiovasc Interv Radiol. doi: 10.​1007/​s00270-010-9846-6
41.
go back to reference Leira HO, Amundsen T, Tangen GA, Bo LE, Manstad-Hulaas F, Lango T (2011) A novel research platform for electromagnetic navigated bronchoscopy using cone beam CT imaging and an animal model. Minim Invasive Ther Allied Technol 20:30–41PubMedCrossRef Leira HO, Amundsen T, Tangen GA, Bo LE, Manstad-Hulaas F, Lango T (2011) A novel research platform for electromagnetic navigated bronchoscopy using cone beam CT imaging and an animal model. Minim Invasive Ther Allied Technol 20:30–41PubMedCrossRef
42.
go back to reference Schwarz Y, Greif J, Becker HD, Ernst A, Mehta A (2006) Real-time electromagnetic navigation bronchoscopy to peripheral lung lesions using overlaid CT images: the first human study. Chest 129:988–994PubMedCrossRef Schwarz Y, Greif J, Becker HD, Ernst A, Mehta A (2006) Real-time electromagnetic navigation bronchoscopy to peripheral lung lesions using overlaid CT images: the first human study. Chest 129:988–994PubMedCrossRef
43.
44.
go back to reference Gildea TR, Mazzone PJ, Karnak D, Meziane M, Mehta AC (2006) Electromagnetic navigation diagnostic bronchoscopy: a prospective study. Am J Respir Crit Care Med 174:982–989PubMedCrossRef Gildea TR, Mazzone PJ, Karnak D, Meziane M, Mehta AC (2006) Electromagnetic navigation diagnostic bronchoscopy: a prospective study. Am J Respir Crit Care Med 174:982–989PubMedCrossRef
45.
go back to reference Turkbey B, Mani H, Shah V et al (2011) Multiparametric 3T prostate magnetic resonance imaging to detect cancer: Histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 186:1818–1824PubMedCrossRef Turkbey B, Mani H, Shah V et al (2011) Multiparametric 3T prostate magnetic resonance imaging to detect cancer: Histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 186:1818–1824PubMedCrossRef
46.
go back to reference Xu S, Kruecker J, Turkbey B et al (2008) Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput Aided Surgery 13:255–264CrossRef Xu S, Kruecker J, Turkbey B et al (2008) Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput Aided Surgery 13:255–264CrossRef
47.
go back to reference Pinto PA, Chung PH, Rastinehad AR et al (2011) Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J Urol 186:1281–1285PubMedCrossRef Pinto PA, Chung PH, Rastinehad AR et al (2011) Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J Urol 186:1281–1285PubMedCrossRef
Metadata
Title
Multimodality Image Fusion–Guided Procedures: Technique, Accuracy, and Applications
Authors
Nadine Abi-Jaoudeh
Jochen Kruecker
Samuel Kadoury
Hicham Kobeiter
Aradhana M. Venkatesan
Elliot Levy
Bradford J. Wood
Publication date
01-10-2012
Publisher
Springer-Verlag
Published in
CardioVascular and Interventional Radiology / Issue 5/2012
Print ISSN: 0174-1551
Electronic ISSN: 1432-086X
DOI
https://doi.org/10.1007/s00270-012-0446-5

Other articles of this Issue 5/2012

CardioVascular and Interventional Radiology 5/2012 Go to the issue