Skip to main content
Top
Published in: World Journal of Surgery 2/2017

01-02-2017 | Original Scientific Report

Impact of a Novel Bioabsorbable Implant on Radiation Treatment Planning for Breast Cancer

Authors: Michael J. Cross, Gail S. Lebovic, Joseph Ross, Scott Jones, Arnold Smith, Steven Harms

Published in: World Journal of Surgery | Issue 2/2017

Login to get access

Abstract

Background

Techniques for accurately delineating the tumor bed after breast-conserving surgery (BCS) can be challenging. As a result, the accuracy, and efficiency of radiation treatment (RT) planning can be negatively impacted. Surgically placed clips or the post-surgical seroma are commonly used to determine target volume; however, these methods can lead to a high degree of uncertainty and variability. A novel 3-dimensional bioabsorbable marker was used during BCS and assessed for its impact on RT planning.

Methods

One hundred and ten implants were sutured to the margins of the tumor bed excision site in 108 patients undergoing BCS. Routine CT imaging of the breast tissue was performed for RT planning, and the marker was assessed for visibility and utility in target delineation. RT regimens, target volumes and associated treatment costs were analyzed.

Results

In all patients, the marker was easily visible and in 95.7 % of cases, it proved useful for RT planning. 36.8 % of patients received conventional whole breast irradiation plus boost, 56.6 % received hypo-fractionation plus boost, and 6.6 % received accelerated partial breast irradiation. A shift toward increased use of hypo-fractionated regimens was noted over the three year period of this study. There were no device-related complications or cancer recurrences in this group of patients.

Conclusions

This study demonstrated the use of a novel 3-dimensional marker as a safe and effective method for delineating the tumor bed with a significant utility for RT planning. With routine use of the device, an increased use of hypofractionation with a resultant 25 % cost savings was noted.
Literature
1.
go back to reference Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, Aguilar M, Marubini E (2002) Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 347:1227–1232CrossRefPubMed Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, Aguilar M, Marubini E (2002) Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 347:1227–1232CrossRefPubMed
2.
go back to reference Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong JH, Wolmark N (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347:1233–1241CrossRefPubMed Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong JH, Wolmark N (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347:1233–1241CrossRefPubMed
3.
go back to reference Pierce LJ, Griffith KA, Hayman JA, Douglas KR, Lichter AS (2005) Conservative surgery and radiotherapy for stage I/II breast cancer using lung density correction: 10-year and 15-year results. Int J Radiat Oncol Biol Phys 61:1317–1327CrossRefPubMed Pierce LJ, Griffith KA, Hayman JA, Douglas KR, Lichter AS (2005) Conservative surgery and radiotherapy for stage I/II breast cancer using lung density correction: 10-year and 15-year results. Int J Radiat Oncol Biol Phys 61:1317–1327CrossRefPubMed
4.
go back to reference Nattinger AB, Hoffmann RG, Kneusel RT, Schapira MM (2000) Relation between appropriateness of primary therapy for early stage breast carcinoma and increased use of breast-conserving surgery. Lancet 356:1148–1153CrossRefPubMed Nattinger AB, Hoffmann RG, Kneusel RT, Schapira MM (2000) Relation between appropriateness of primary therapy for early stage breast carcinoma and increased use of breast-conserving surgery. Lancet 356:1148–1153CrossRefPubMed
5.
go back to reference Bouboul E, Buffat L, Belkacémi Y, Lefranc JP, Uzan S, Lhuillier P, Faivre C et al (1999) Local recurrences and distant metastases after breast-conserving surgery and radiation therapy for early breast cancer. Int J Radiat Oncol Biol Phys 43:25–38CrossRef Bouboul E, Buffat L, Belkacémi Y, Lefranc JP, Uzan S, Lhuillier P, Faivre C et al (1999) Local recurrences and distant metastases after breast-conserving surgery and radiation therapy for early breast cancer. Int J Radiat Oncol Biol Phys 43:25–38CrossRef
6.
go back to reference Veronesi U, Marubini E, Del Vecchio M, Manzari A, Andreola S, Greco M, Luini A, Merson M, Saccozzi R, Rilke F et al (1995) Local recurrences and distant metastases after conservative breast cancer treatments: partly independent events. J Natl Cancer Inst 87:19–27CrossRefPubMed Veronesi U, Marubini E, Del Vecchio M, Manzari A, Andreola S, Greco M, Luini A, Merson M, Saccozzi R, Rilke F et al (1995) Local recurrences and distant metastases after conservative breast cancer treatments: partly independent events. J Natl Cancer Inst 87:19–27CrossRefPubMed
7.
go back to reference Liljegren G, Holmberg L, Bergh J, Lindgren A, Tabár L, Nordgren H, Adami HO (1999) 10-year results after sector resection with or without postoperative radiotherapy for stage I berast cancer: a randomized trial. J Clin Oncol 17:2326–2333PubMed Liljegren G, Holmberg L, Bergh J, Lindgren A, Tabár L, Nordgren H, Adami HO (1999) 10-year results after sector resection with or without postoperative radiotherapy for stage I berast cancer: a randomized trial. J Clin Oncol 17:2326–2333PubMed
8.
go back to reference Moran MS, Schnitt SJ, Giuliano AE, Harris JR, Khan SA, Horton J, Klimberg S et al (2014) Society of Surgical Oncology—American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Ann Surg Oncol 21:704–716CrossRefPubMed Moran MS, Schnitt SJ, Giuliano AE, Harris JR, Khan SA, Horton J, Klimberg S et al (2014) Society of Surgical Oncology—American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Ann Surg Oncol 21:704–716CrossRefPubMed
9.
go back to reference Bekelman JE, Sylwestrzak G, Barron J, Liu J, Epstein AJ, Freedman G, Malin J, Emanuel EJ (2014) Uptake and costs of hypofractionated vs conventional whole breast irradiation after breast conserving surgery in the United States, 2008–2013. JAMA 312(23):2542–2550CrossRefPubMedPubMedCentral Bekelman JE, Sylwestrzak G, Barron J, Liu J, Epstein AJ, Freedman G, Malin J, Emanuel EJ (2014) Uptake and costs of hypofractionated vs conventional whole breast irradiation after breast conserving surgery in the United States, 2008–2013. JAMA 312(23):2542–2550CrossRefPubMedPubMedCentral
10.
go back to reference Vicini FA (2005) A randomized phase III study of conventional whole breast irradiation (WBI) versus partial breast irradiation (PBI) for women with stage 0, I, or II breast cancer. Radiation Therapy Oncology Group, Philadelphia, PA, protocol #0413 Vicini FA (2005) A randomized phase III study of conventional whole breast irradiation (WBI) versus partial breast irradiation (PBI) for women with stage 0, I, or II breast cancer. Radiation Therapy Oncology Group, Philadelphia, PA, protocol #0413
11.
go back to reference Arthur DW, Vicini FA (2005) Accelerated partial breast irradiation as a part of breast conservation therapy. J Clin Oncol 23:1726–1735CrossRefPubMed Arthur DW, Vicini FA (2005) Accelerated partial breast irradiation as a part of breast conservation therapy. J Clin Oncol 23:1726–1735CrossRefPubMed
12.
go back to reference Scanderberg D (2010) Yashar C, White G, Rice R, Pawlicki T. Evaluation of three APBI techniques under NSABP B-39 guidelines. J Appl Clin Med Phys 11(1):274–280 Scanderberg D (2010) Yashar C, White G, Rice R, Pawlicki T. Evaluation of three APBI techniques under NSABP B-39 guidelines. J Appl Clin Med Phys 11(1):274–280
13.
go back to reference Livi Lorenzo, Meattini I, Marrazzo L, Simontacchi G, Pallotta S, Saieva C, Paiar F et al (2015) Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5-year survival analysis of a phase 3 randomized controlled trial. Eur J Cancer 51:451–463CrossRefPubMed Livi Lorenzo, Meattini I, Marrazzo L, Simontacchi G, Pallotta S, Saieva C, Paiar F et al (2015) Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5-year survival analysis of a phase 3 randomized controlled trial. Eur J Cancer 51:451–463CrossRefPubMed
14.
go back to reference Hepel JT, Leonard KL, Hiatt JR, DiPetrillo TA, Wazer DE (2014) Factors influencing eligibility for breast boost using noninvasive image-guided breast brachytherapy. Brachytherapy 13(6):579–583CrossRefPubMed Hepel JT, Leonard KL, Hiatt JR, DiPetrillo TA, Wazer DE (2014) Factors influencing eligibility for breast boost using noninvasive image-guided breast brachytherapy. Brachytherapy 13(6):579–583CrossRefPubMed
15.
go back to reference Hepel JT, Hiatt JR, Sha S, Leonard KL, Graves TA, Wiggins DL, Mastras D, Pittier A (2014) The rationale, technique, and feasibility of partial breast irradiation using noninvasive image-guided breast brachytherapy. Brachytherapy 13(5):493–501CrossRefPubMed Hepel JT, Hiatt JR, Sha S, Leonard KL, Graves TA, Wiggins DL, Mastras D, Pittier A (2014) The rationale, technique, and feasibility of partial breast irradiation using noninvasive image-guided breast brachytherapy. Brachytherapy 13(5):493–501CrossRefPubMed
16.
go back to reference Murphy JO, Sacchini VS (2013) New innovative techniques in radiotherapy for breast cancer. Minerva Chir 68(2):139–154PubMed Murphy JO, Sacchini VS (2013) New innovative techniques in radiotherapy for breast cancer. Minerva Chir 68(2):139–154PubMed
17.
go back to reference Benitez PR, Chen PY, Vicini FA, Wallace M, Kestin L, Edmundson G, Gustafson G, Martinez A (2004) Partial breast irradiation in breast-conserving therapy by way of interstitial brachytherapy. Am J Surg 188:355–364CrossRefPubMed Benitez PR, Chen PY, Vicini FA, Wallace M, Kestin L, Edmundson G, Gustafson G, Martinez A (2004) Partial breast irradiation in breast-conserving therapy by way of interstitial brachytherapy. Am J Surg 188:355–364CrossRefPubMed
18.
go back to reference Xu Q, Chen Y, Grimm J (2012) Dosimetric investigation of accelerated partial breast irradiation (APBI) using CyberKnife. Med Phys 39(11):6621–6628CrossRefPubMed Xu Q, Chen Y, Grimm J (2012) Dosimetric investigation of accelerated partial breast irradiation (APBI) using CyberKnife. Med Phys 39(11):6621–6628CrossRefPubMed
19.
go back to reference Chafe S, Moughan J, McCormick B, Wong J, Pass H, Rabinovitch R, Arthur DW et al (2013) Late Toxicity and patient self-assessment of breast appearance/satisfaction on RTOG 0319: A Phase 2 trial of 3-dimensional conformal radiation therapy—accelerated partial breast irradiation following lumpectomy for stages I and II breast cancer. Int J Rad Onc Biol Phys 86(5):854–859CrossRef Chafe S, Moughan J, McCormick B, Wong J, Pass H, Rabinovitch R, Arthur DW et al (2013) Late Toxicity and patient self-assessment of breast appearance/satisfaction on RTOG 0319: A Phase 2 trial of 3-dimensional conformal radiation therapy—accelerated partial breast irradiation following lumpectomy for stages I and II breast cancer. Int J Rad Onc Biol Phys 86(5):854–859CrossRef
20.
go back to reference Polgar C, Fodor J, Major T, Takacsi-Nagy Z, Kasler M, Hammer J, Van Limbergen E, Nemeth G (2002) Radiotherapy confined to the tumor bed following breast conserving surgery current status, controversies, and future projects. Strahlenther Onkol 178(11):597–606CrossRefPubMed Polgar C, Fodor J, Major T, Takacsi-Nagy Z, Kasler M, Hammer J, Van Limbergen E, Nemeth G (2002) Radiotherapy confined to the tumor bed following breast conserving surgery current status, controversies, and future projects. Strahlenther Onkol 178(11):597–606CrossRefPubMed
21.
go back to reference Polgar C, Major T, Somogyi A, Takacsi-Nagy Z, Mangel LC, Forrai G, Sulyok Z, Fodor J, Nemeth G (2000) CT-image-bassed conformal brachytherapy of breast cancer. The significance of semi-3-D and 3-D treatment planning. Strahlenther Onkol 176(3):118–124CrossRefPubMed Polgar C, Major T, Somogyi A, Takacsi-Nagy Z, Mangel LC, Forrai G, Sulyok Z, Fodor J, Nemeth G (2000) CT-image-bassed conformal brachytherapy of breast cancer. The significance of semi-3-D and 3-D treatment planning. Strahlenther Onkol 176(3):118–124CrossRefPubMed
22.
go back to reference Benda RK (2003) Yasuda G, Sethi A, Gabram SG, Hinerman RW, Mendenhall NP. Breast boost: are we missing the target? Cancer 97:905–909CrossRefPubMed Benda RK (2003) Yasuda G, Sethi A, Gabram SG, Hinerman RW, Mendenhall NP. Breast boost: are we missing the target? Cancer 97:905–909CrossRefPubMed
23.
go back to reference Hanbeukers B, van den Ende P, van der Ent F, Houben R, Jager J, Keymeulen K, Murrer L, Sastrowijoto S, van de Vijver K, Boersma L (2009) Customized computed tomography-based boost volumes in breast-conserving therapy: use of three-dimensional histologic information for clinical target volume margins. Int J Radiat Oncol Biol Phys 75(3):757–763CrossRefPubMed Hanbeukers B, van den Ende P, van der Ent F, Houben R, Jager J, Keymeulen K, Murrer L, Sastrowijoto S, van de Vijver K, Boersma L (2009) Customized computed tomography-based boost volumes in breast-conserving therapy: use of three-dimensional histologic information for clinical target volume margins. Int J Radiat Oncol Biol Phys 75(3):757–763CrossRefPubMed
24.
go back to reference Hepel JT, Evans SB, Hiatt JR, Price LL, DiPetrillo T, Wazer DE, MacAusland SG (2009) Planning the breast boost: comparison of three techniques and evolution of tumor bed during treatment. Int J Radiat Oncol Biol Phys 74(2):458–463CrossRefPubMed Hepel JT, Evans SB, Hiatt JR, Price LL, DiPetrillo T, Wazer DE, MacAusland SG (2009) Planning the breast boost: comparison of three techniques and evolution of tumor bed during treatment. Int J Radiat Oncol Biol Phys 74(2):458–463CrossRefPubMed
25.
go back to reference Machtay M, Lanciano R, Hoffman J, Hanks GE (1994) Inaccuracies in using the lumpectomy scar for planning electron boosts in primary breast carcinoma. Int J Radiat Oncol Biol Phys 30(1):43–48CrossRefPubMed Machtay M, Lanciano R, Hoffman J, Hanks GE (1994) Inaccuracies in using the lumpectomy scar for planning electron boosts in primary breast carcinoma. Int J Radiat Oncol Biol Phys 30(1):43–48CrossRefPubMed
26.
go back to reference Roth AM, Kauer-Dorner D, Resch A, Schmid A, thill M, Niehoff P, Melchert C, Berger D, Kovacs G (2013) Is oncoplastic surgery a contraindication for accelerated partial breast radiation using the interstitial multicatheter brachytherapy method? Brachytherapy 13(4):394–399CrossRef Roth AM, Kauer-Dorner D, Resch A, Schmid A, thill M, Niehoff P, Melchert C, Berger D, Kovacs G (2013) Is oncoplastic surgery a contraindication for accelerated partial breast radiation using the interstitial multicatheter brachytherapy method? Brachytherapy 13(4):394–399CrossRef
27.
go back to reference Eblan MJ, Vanderwalde NA, Zeman EM, Jones E (2014) Hypofractionation for breast cancer: lessons learned from our neighbors to the north and across the pond. Oncology 28(6):536–546PubMed Eblan MJ, Vanderwalde NA, Zeman EM, Jones E (2014) Hypofractionation for breast cancer: lessons learned from our neighbors to the north and across the pond. Oncology 28(6):536–546PubMed
28.
go back to reference Kirby AM, Yarnold JR, Evans PM, Morgan VA, Schmidt MA, Scurr ED, Desouza NM (2009) Tumor bed delineation for partial breast and breast boost radiotherapy planned in the prone position: what does MRI add to X-ray CT localization of titanium clips placed in the excision cavity wall? Int J Radiat Oncol Biol Phys 74(4):1276–1282CrossRefPubMed Kirby AM, Yarnold JR, Evans PM, Morgan VA, Schmidt MA, Scurr ED, Desouza NM (2009) Tumor bed delineation for partial breast and breast boost radiotherapy planned in the prone position: what does MRI add to X-ray CT localization of titanium clips placed in the excision cavity wall? Int J Radiat Oncol Biol Phys 74(4):1276–1282CrossRefPubMed
29.
go back to reference van der Laan HP, Dolsma WV, Maduro JH, Korevaar EW, Langendijk JA (2008) Dosimetric consequences of the shift towards computed tomography guided target definition and planning for breast conserving radiotherapy. Radiat Oncol 3:6CrossRefPubMedPubMedCentral van der Laan HP, Dolsma WV, Maduro JH, Korevaar EW, Langendijk JA (2008) Dosimetric consequences of the shift towards computed tomography guided target definition and planning for breast conserving radiotherapy. Radiat Oncol 3:6CrossRefPubMedPubMedCentral
30.
go back to reference Kirby AM, Evans PM, Nerukar AY, Desai SS, Krupa J, Devalia H, della Rovere GQ, Harris EJ, Kyriakidou J, Yarnold JR (2010) How does knowledge of three-dimensional excision margins following breast conservation surgery impact upon clinical target volume definition for partial breast radiotherapy? Radiother Oncol 94(3):292–299CrossRefPubMed Kirby AM, Evans PM, Nerukar AY, Desai SS, Krupa J, Devalia H, della Rovere GQ, Harris EJ, Kyriakidou J, Yarnold JR (2010) How does knowledge of three-dimensional excision margins following breast conservation surgery impact upon clinical target volume definition for partial breast radiotherapy? Radiother Oncol 94(3):292–299CrossRefPubMed
31.
go back to reference Peterson D, Truong PT, Parpia S, Olivottto IA, Berrang T, Kim DH, Kong I, Germain I et al (2015) Predictors of adverse cosmetic outcome in the RAPID trial: an exploratory analysis. Int J of Rad Onc Biol Phys 91(5):968–976CrossRef Peterson D, Truong PT, Parpia S, Olivottto IA, Berrang T, Kim DH, Kong I, Germain I et al (2015) Predictors of adverse cosmetic outcome in the RAPID trial: an exploratory analysis. Int J of Rad Onc Biol Phys 91(5):968–976CrossRef
32.
go back to reference Smith LA, Kuske RR, Cross MJ (2014) Improved targeting of the lumpectomy cavity using a spiral 3-dimensional marker. Poster presentation; Am Soc Ther Rad Onc (ASTRO), San Francisco, October, (2014) Smith LA, Kuske RR, Cross MJ (2014) Improved targeting of the lumpectomy cavity using a spiral 3-dimensional marker. Poster presentation; Am Soc Ther Rad Onc (ASTRO), San Francisco, October, (2014)
33.
go back to reference Harman J, Govender S, Benjamin B, Simpson J (2014) Poster presentation; An improved method for marking the surgical cavity during partial mastectomy. Royal Aust New Zealand Conf Clin Radiol (RANZCR), Auckland, October, (2014) Harman J, Govender S, Benjamin B, Simpson J (2014) Poster presentation; An improved method for marking the surgical cavity during partial mastectomy. Royal Aust New Zealand Conf Clin Radiol (RANZCR), Auckland, October, (2014)
34.
go back to reference Kaufman CS, Hall W, Hill L, Caro R, Nix S, Evans E, Zacharias K et al (2015) Poster presentation; Initial experience with a novel 3-dimensional bioabsorbable lumpectomy marker. Am Soc of Breast Surgeons, Orlando, April Kaufman CS, Hall W, Hill L, Caro R, Nix S, Evans E, Zacharias K et al (2015) Poster presentation; Initial experience with a novel 3-dimensional bioabsorbable lumpectomy marker. Am Soc of Breast Surgeons, Orlando, April
35.
go back to reference Eaton BR, Losken A, Okwan-Duodu D, Schuster DM, Switchenko JM, Mister D et al (2014) Local recurrence patterns in breast cancer patients treated with Oncoplastic reduction mammoplasty and radiotherapy. Ann Surg Onc 21:93–99CrossRef Eaton BR, Losken A, Okwan-Duodu D, Schuster DM, Switchenko JM, Mister D et al (2014) Local recurrence patterns in breast cancer patients treated with Oncoplastic reduction mammoplasty and radiotherapy. Ann Surg Onc 21:93–99CrossRef
36.
go back to reference Landis DM, Luo W, Song J, Bellon JR, Punglia RS, Wong JS, Killoran JH, Gelman R, Harris JR (2007) Variability among breast radiation oncologists in delineation of the postsurgical lumpectomy cavity. Int J Radiat Oncol Biol Phys 67:1299–1308CrossRefPubMed Landis DM, Luo W, Song J, Bellon JR, Punglia RS, Wong JS, Killoran JH, Gelman R, Harris JR (2007) Variability among breast radiation oncologists in delineation of the postsurgical lumpectomy cavity. Int J Radiat Oncol Biol Phys 67:1299–1308CrossRefPubMed
37.
go back to reference Rabinovitch R, Finlayson C, Pan Z, Lewin J, Humphries S, Biffi W, Francoise R (2000) Radiographic evaluation of surgical clips is better than ultrasound for defining the lumpectomy cavity in breast boost treatment planning: a prospective clinical study. Int J Radiat Oncol Biol Phys 47(2):313–317CrossRefPubMed Rabinovitch R, Finlayson C, Pan Z, Lewin J, Humphries S, Biffi W, Francoise R (2000) Radiographic evaluation of surgical clips is better than ultrasound for defining the lumpectomy cavity in breast boost treatment planning: a prospective clinical study. Int J Radiat Oncol Biol Phys 47(2):313–317CrossRefPubMed
38.
go back to reference Harrington KJ, Harrison M, Bayle P, Evans K, Dunn PA, Lambert HE, Saidan Z, Lynn J, Stewart JS (1996) Surgical clips in planning the electron boost in breast cancer: a qualitative and quantitative evaluation. Int J Radiat Oncol Biol Phys 34(3):579–584CrossRefPubMed Harrington KJ, Harrison M, Bayle P, Evans K, Dunn PA, Lambert HE, Saidan Z, Lynn J, Stewart JS (1996) Surgical clips in planning the electron boost in breast cancer: a qualitative and quantitative evaluation. Int J Radiat Oncol Biol Phys 34(3):579–584CrossRefPubMed
39.
go back to reference Penninkhof J, Quint S, Boer HD, Mens JW, Heijmen B, Dirkx M (2009) Surgical clips for position verification and correction of non-rigid breast tissue in simultaneously integrated boost (SIB) treatments. Radiother Oncol 90(1):110–115CrossRefPubMed Penninkhof J, Quint S, Boer HD, Mens JW, Heijmen B, Dirkx M (2009) Surgical clips for position verification and correction of non-rigid breast tissue in simultaneously integrated boost (SIB) treatments. Radiother Oncol 90(1):110–115CrossRefPubMed
40.
go back to reference Coles CE, Wilson CB, Cumming J, Benson JR, Forouhi P, Wilkinson JS, Jena R, Wishart GC (2009) Titanium clip placement to allow accurate tumour bed localization following breast conserving surgery: audit on behalf on the IMPORT Trial Management Group. Eur J Surg Oncol 35(6):578–582CrossRefPubMed Coles CE, Wilson CB, Cumming J, Benson JR, Forouhi P, Wilkinson JS, Jena R, Wishart GC (2009) Titanium clip placement to allow accurate tumour bed localization following breast conserving surgery: audit on behalf on the IMPORT Trial Management Group. Eur J Surg Oncol 35(6):578–582CrossRefPubMed
41.
go back to reference Pirlamarla A, Ferro A, Yue NJ, Haffty BG, Goyal S (2014) Optimization of surgical clip placement for breast-conservation therapy. Pract Radiat Oncol 4:153–159CrossRefPubMed Pirlamarla A, Ferro A, Yue NJ, Haffty BG, Goyal S (2014) Optimization of surgical clip placement for breast-conservation therapy. Pract Radiat Oncol 4:153–159CrossRefPubMed
42.
go back to reference Coles CE, Harris EJ, Donovan EM, Bliss P, Evans PM, Fairfoul J, Mackenzie C, Rawlings C et al (2011) Evaluation of implanted gold seeds for breast radiotherapy planning and on treatment verification: a feasibility study on behalf of the IMPORT trialists. Radiother Oncol 100:276–281CrossRefPubMed Coles CE, Harris EJ, Donovan EM, Bliss P, Evans PM, Fairfoul J, Mackenzie C, Rawlings C et al (2011) Evaluation of implanted gold seeds for breast radiotherapy planning and on treatment verification: a feasibility study on behalf of the IMPORT trialists. Radiother Oncol 100:276–281CrossRefPubMed
43.
go back to reference Shaikh T, Chen T, Khan A, Yue NJ, Kearney T, Cohler A, Haffty BG, Goyal S (2010) Improvement in interobserver accuracy in delineation of the lumpectomy cavity using fiducial markers. Int J Radiat Oncol Biol Phys 78:1127–1134CrossRefPubMed Shaikh T, Chen T, Khan A, Yue NJ, Kearney T, Cohler A, Haffty BG, Goyal S (2010) Improvement in interobserver accuracy in delineation of the lumpectomy cavity using fiducial markers. Int J Radiat Oncol Biol Phys 78:1127–1134CrossRefPubMed
44.
go back to reference Kirby AM, Evans PM, Nerurkar AY, Desai SS, Krupa J, Devalia H, della Rovere GQ et al (2010) How does knowledge of three-dimensional excision margins following breast conservation surgery impact upon clinical target volume definition for partial-breast radiotherapy? Radiother Oncol 94:292–299CrossRefPubMed Kirby AM, Evans PM, Nerurkar AY, Desai SS, Krupa J, Devalia H, della Rovere GQ et al (2010) How does knowledge of three-dimensional excision margins following breast conservation surgery impact upon clinical target volume definition for partial-breast radiotherapy? Radiother Oncol 94:292–299CrossRefPubMed
45.
go back to reference Kirby AM, Coles CE, Yarnold JR (2010) Target volume definition for external beam partial breast radiotherapy: clinical, pathological and technical studies informing current approaches. Radiother Oncol 94:255–263CrossRefPubMed Kirby AM, Coles CE, Yarnold JR (2010) Target volume definition for external beam partial breast radiotherapy: clinical, pathological and technical studies informing current approaches. Radiother Oncol 94:255–263CrossRefPubMed
47.
go back to reference Giezen M, Kouwenhoven E, Scholten AN, Coerkamp EG, Heijenbrok M, Jansen WP, Mast ME et al (2010) MRI versus CT-based volume delineation of lumpectomy cavity in supine position in breast-conserving therapy: an exploratory study. Int J Radiat Oncol Biol Phys 82:1332–1340CrossRef Giezen M, Kouwenhoven E, Scholten AN, Coerkamp EG, Heijenbrok M, Jansen WP, Mast ME et al (2010) MRI versus CT-based volume delineation of lumpectomy cavity in supine position in breast-conserving therapy: an exploratory study. Int J Radiat Oncol Biol Phys 82:1332–1340CrossRef
Metadata
Title
Impact of a Novel Bioabsorbable Implant on Radiation Treatment Planning for Breast Cancer
Authors
Michael J. Cross
Gail S. Lebovic
Joseph Ross
Scott Jones
Arnold Smith
Steven Harms
Publication date
01-02-2017
Publisher
Springer International Publishing
Published in
World Journal of Surgery / Issue 2/2017
Print ISSN: 0364-2313
Electronic ISSN: 1432-2323
DOI
https://doi.org/10.1007/s00268-016-3711-y

Other articles of this Issue 2/2017

World Journal of Surgery 2/2017 Go to the issue