Skip to main content
Top
Published in: International Orthopaedics 6/2021

01-06-2021 | Original Paper

Measurement technique for posterior tibial slope on radiographs can affect its relationship to the risk of anterior cruciate ligament rupture

Authors: Edoardo Gaj, Edoardo Monaco, Angelo De Carli, Megan Rianne Wolf, Carlo Massafra, Andrea Redler, Daniele Mazza, Andrea Ferretti

Published in: International Orthopaedics | Issue 6/2021

Login to get access

Abstract

Purpose

The purpose of this study was to determine the most reliable radiographic measurement method to evaluate PTS as a risk factor for ACL reconstruction failure.

Methods

Patients who underwent ACL reconstruction or ACL revision reconstruction between January 2009 and December 2014 by a single surgeon were included. Fifty-two consecutive patients who underwent ACL revision reconstruction were compared to a random selection of 52 patients who underwent primary ACL reconstruction and a control group of 52 patients without ACL injury. ACL reconstruction was performed using either ipsilateral (primary) or contralateral (revision) quadrupled hamstring autograft. Lateral knee radiographs were evaluated using three methods: (1) longitudinal axis, (2) anterior tibial cortex axis, and (3) posterior tibial cortex.

Results

A significant difference was found between subjects who underwent ACL reconstruction and control knees (6.79° vs. 5.31°, p = 0.046) using the posterior tibial cortex method. No other statistical significance was found between groups. A multiple linear regression analysis found that the PTS as measured by any method was not affected by the patient’s age, sex, height, weight, and BMI. All methods of measurement for PTS demonstrated excellent (ICC > 0.90) intra-rater and inter-rater reliability, but only the posterior tibial cortex method maintained excellent intra-rater and inter-rater reliability (ICC > 0.90) when evaluating patients with ACL revision reconstruction.

Conclusions

The posterior tibial cortex measurement is the most reliable method for analyzing the PTS on lateral knee radiographs in patients undergoing ACL revision reconstruction.
Literature
3.
go back to reference Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22(8):894–899CrossRef Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22(8):894–899CrossRef
4.
go back to reference Hashemi J, Chandrashekar N, Gill B et al (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am 90(12):2724–2734CrossRef Hashemi J, Chandrashekar N, Gill B et al (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am 90(12):2724–2734CrossRef
5.
go back to reference Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21(1):134–145CrossRef Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21(1):134–145CrossRef
6.
go back to reference Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg (Br) 76(5):745–749CrossRef Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg (Br) 76(5):745–749CrossRef
7.
go back to reference Salmon LJ, Heath E, Akrawi H, Roe JP, Linklater J, Pinczewski LA (2018) 20-year outcomes of anterior cruciate ligament reconstruction with hamstring tendon autograft: the catastrophic effect of age and posterior tibial slope. Am J Sports Med 46(3):531–543CrossRef Salmon LJ, Heath E, Akrawi H, Roe JP, Linklater J, Pinczewski LA (2018) 20-year outcomes of anterior cruciate ligament reconstruction with hamstring tendon autograft: the catastrophic effect of age and posterior tibial slope. Am J Sports Med 46(3):531–543CrossRef
8.
go back to reference Wordeman SC, Quatman CE, Kaeding CC, Hewett TE (2012) In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury. Am J Sports Med 40(7):1673–1681CrossRef Wordeman SC, Quatman CE, Kaeding CC, Hewett TE (2012) In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury. Am J Sports Med 40(7):1673–1681CrossRef
9.
go back to reference Hashemi J, Chandrashekar N, Mansouri H et al (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38(1):54–62CrossRef Hashemi J, Chandrashekar N, Mansouri H et al (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38(1):54–62CrossRef
10.
go back to reference Chung SC-Y, Chan W-L, Wong S-H (2011) Lower limb alignment in anterior cruciate ligament–deficient versus –intact knees. J Orthop Surg 19(3):303–308CrossRef Chung SC-Y, Chan W-L, Wong S-H (2011) Lower limb alignment in anterior cruciate ligament–deficient versus –intact knees. J Orthop Surg 19(3):303–308CrossRef
11.
go back to reference Hohmann E, Bryant A, Reaburn P, Tetsworth K (2010) Does posterior tibial slope influence knee functionality in the anterior cruciate ligament–deficient and anterior cruciate ligament–reconstructed knee? Arthrosc J Arthrosc Relat Surg 26(11):1496–1502CrossRef Hohmann E, Bryant A, Reaburn P, Tetsworth K (2010) Does posterior tibial slope influence knee functionality in the anterior cruciate ligament–deficient and anterior cruciate ligament–reconstructed knee? Arthrosc J Arthrosc Relat Surg 26(11):1496–1502CrossRef
12.
go back to reference Zeng C, Yang T, Wu S et al (2016) Is posterior tibial slope associated with noncontact anterior cruciate ligament injury? Knee Surg Sport Traumatol Arthrosc 24(3):830–837CrossRef Zeng C, Yang T, Wu S et al (2016) Is posterior tibial slope associated with noncontact anterior cruciate ligament injury? Knee Surg Sport Traumatol Arthrosc 24(3):830–837CrossRef
13.
go back to reference Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32(2):376–382CrossRef Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32(2):376–382CrossRef
14.
go back to reference Cavaignac E, Pailhé R, Reina N, Murgier J, Laffosse JM, Chiron P, Swider P (2016) Can the gracilis replace the anterior cruciate liga- ment in the knee? A biomechanical study. Int Orthop 40(8):1647–1653CrossRef Cavaignac E, Pailhé R, Reina N, Murgier J, Laffosse JM, Chiron P, Swider P (2016) Can the gracilis replace the anterior cruciate liga- ment in the knee? A biomechanical study. Int Orthop 40(8):1647–1653CrossRef
15.
go back to reference Dejour D, Saffarini M, Demey G, Baverel L (2015) Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 23(10):2846–2852CrossRef Dejour D, Saffarini M, Demey G, Baverel L (2015) Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 23(10):2846–2852CrossRef
16.
go back to reference Sonnery-Cottet B, Mogos S, Thaunat M et al (2014) Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 42(8):1873–1880CrossRef Sonnery-Cottet B, Mogos S, Thaunat M et al (2014) Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 42(8):1873–1880CrossRef
17.
go back to reference Robin JG, Neyret P (2016) High tibial osteotomy in knee laxities: concepts review and results. EFORT Open Rev 1(1):3–11CrossRef Robin JG, Neyret P (2016) High tibial osteotomy in knee laxities: concepts review and results. EFORT Open Rev 1(1):3–11CrossRef
18.
go back to reference Elmansori A, Lording T, Dumas R, Elmajri K, Neyret P, Lustig S (2017) Proximal tibial bony and meniscal slopes are higher in ACL injured subjects than controls: a comparative MRI study. Knee Surg Sport Traumatol Arthrosc 25(5):1598–1605CrossRef Elmansori A, Lording T, Dumas R, Elmajri K, Neyret P, Lustig S (2017) Proximal tibial bony and meniscal slopes are higher in ACL injured subjects than controls: a comparative MRI study. Knee Surg Sport Traumatol Arthrosc 25(5):1598–1605CrossRef
19.
go back to reference Grassi A, Macchiarola L, Urrizola Barrientos F et al (2019) Steep posterior tibial slope, anterior tibial subluxation, deep posterior lateral femoral condyle, and meniscal deficiency are common findings in multiple anterior cruciate ligament failures: an MRI case-control study. Am J Sports Med 47(2):285–295CrossRef Grassi A, Macchiarola L, Urrizola Barrientos F et al (2019) Steep posterior tibial slope, anterior tibial subluxation, deep posterior lateral femoral condyle, and meniscal deficiency are common findings in multiple anterior cruciate ligament failures: an MRI case-control study. Am J Sports Med 47(2):285–295CrossRef
20.
go back to reference Hudek R, Fuchs B, Regenfelder F, Koch PP (2011) Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res 469(8):2377–2384CrossRef Hudek R, Fuchs B, Regenfelder F, Koch PP (2011) Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res 469(8):2377–2384CrossRef
21.
go back to reference Suprasanna K, Chamala T, Kumar A (2019) Comparison of anatomical risk factors for noncontact anterior cruciate ligament injury using magnetic resonance imaging. J Clin Orthop Trauma 10(1):143–148CrossRef Suprasanna K, Chamala T, Kumar A (2019) Comparison of anatomical risk factors for noncontact anterior cruciate ligament injury using magnetic resonance imaging. J Clin Orthop Trauma 10(1):143–148CrossRef
22.
go back to reference Bates NA, Mejia Jaramillo MC, Vargas M, McPherson AL, Schilaty ND, Nagelli CV, Krych AJ, Hewett TE. (2019) External loads associated with anterior cruciate ligament injuries increase the correlation between tibial slope and ligament strain during in vitro simulations of in vivo landings. Clin Biomech, Bristol, Avon 61:84–94. https://doi.org/10.1016/j.clinbiomech.2018.11.010.CrossRef Bates NA, Mejia Jaramillo MC, Vargas M, McPherson AL, Schilaty ND, Nagelli CV, Krych AJ, Hewett TE. (2019) External loads associated with anterior cruciate ligament injuries increase the correlation between tibial slope and ligament strain during in vitro simulations of in vivo landings. Clin Biomech, Bristol, Avon 61:84–94. https://​doi.​org/​10.​1016/​j.​clinbiomech.​2018.​11.​010.CrossRef
23.
go back to reference Bernhardson AS, Aman ZS, Dornan GJ et al (2019) Tibial slope and its effect on force in anterior cruciate ligament grafts: anterior cruciate ligament force increases linearly as posterior tibial slope increases. Am J Sports Med 47(2):296–302CrossRef Bernhardson AS, Aman ZS, Dornan GJ et al (2019) Tibial slope and its effect on force in anterior cruciate ligament grafts: anterior cruciate ligament force increases linearly as posterior tibial slope increases. Am J Sports Med 47(2):296–302CrossRef
Metadata
Title
Measurement technique for posterior tibial slope on radiographs can affect its relationship to the risk of anterior cruciate ligament rupture
Authors
Edoardo Gaj
Edoardo Monaco
Angelo De Carli
Megan Rianne Wolf
Carlo Massafra
Andrea Redler
Daniele Mazza
Andrea Ferretti
Publication date
01-06-2021
Publisher
Springer Berlin Heidelberg
Published in
International Orthopaedics / Issue 6/2021
Print ISSN: 0341-2695
Electronic ISSN: 1432-5195
DOI
https://doi.org/10.1007/s00264-020-04865-7

Other articles of this Issue 6/2021

International Orthopaedics 6/2021 Go to the issue