Skip to main content
Top
Published in: International Orthopaedics 8/2013

01-08-2013 | Original Paper

Enhanced migration of human bone marrow stromal cells in modified collagen hydrogels

Authors: Daniel Guenther, Alexandra Oks, Max Ettinger, Emmanouil Liodakis, Maximilian Petri, Christian Krettek, Michael Jagodzinski, Carl Haasper

Published in: International Orthopaedics | Issue 8/2013

Login to get access

Abstract

Purpose

Collagen I hydrogels are widely used as scaffolds for regeneration of articular cartilage defects. We hypothesised that ingrowth might be improved by removing the superficial layer of a compressed hydrogel. The control group consisted of the original unmodified product.

Methods

The migration of human bone marrow stromal cells (hBMSCs) into the hydrogel was evaluated by confocal microscopy. We quantified the DNA concentration of the hydrogel for each group and time point and evaluated the chondrogenic differentiation of cells.

Results

After one week, the detectable amount of cells at the depth of 26–50 μm was significantly higher in the modified matrix (MM) than in the non-modified matrix (NM) (p = 0.011). The maximum depth of penetration was 75 μm (NM) and 200 μm (MM). After three weeks, the maximum depth of penetration was 175 μm (NM) and 200 μm (MM). Likewise, at a depth of 0–25 μm the amount of detectable cells was significantly higher in the MM group (p = 0.003). After 14 days, the concentration of DNA was significantly higher in the samples of the MM than in the control group (p = 0.000). Staining of histological sections and labelling with collagen II antibodies showed that a chondrogenic differentiation of cells in the scaffold can occur during in vitro cultivation.

Conclusions

Removing the superficial layer is essential to ensuring proper ingrowth of cells within the compressed hydrogel. Compressed hydrogels contribute better to cartilage regeneration after surface modification.
Literature
2.
go back to reference Barry F, Boynton RE, Liu B, Murphy JM (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268(2):189–200. doi:10.1006/excr.2001.5278 PubMedCrossRef Barry F, Boynton RE, Liu B, Murphy JM (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268(2):189–200. doi:10.​1006/​excr.​2001.​5278 PubMedCrossRef
3.
go back to reference Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30(1):215–224PubMedCrossRef Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30(1):215–224PubMedCrossRef
4.
go back to reference Albrecht C, Tichy B, Nürnberger S, Hosiner S, Zak L, Aldrian S, Marlovits S (2011) Gene expression and cell differentiation in matrix-associated chondrocyte transplantation grafts: a comparative study. Osteoarthritis Cartilage 19(10):1219–1227. doi:10.1016/j.joca.2011.07.004 PubMedCrossRef Albrecht C, Tichy B, Nürnberger S, Hosiner S, Zak L, Aldrian S, Marlovits S (2011) Gene expression and cell differentiation in matrix-associated chondrocyte transplantation grafts: a comparative study. Osteoarthritis Cartilage 19(10):1219–1227. doi:10.​1016/​j.​joca.​2011.​07.​004 PubMedCrossRef
5.
go back to reference Efe T, Theisen C, Fuchs-Winkelmann S, Stein T, Getgood A, Rominger MB, Paletta JR, Schofer MD (2012) Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc 20(10):1915–1922. doi:10.1007/s00167-011-1777-5 PubMedCrossRef Efe T, Theisen C, Fuchs-Winkelmann S, Stein T, Getgood A, Rominger MB, Paletta JR, Schofer MD (2012) Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc 20(10):1915–1922. doi:10.​1007/​s00167-011-1777-5 PubMedCrossRef
6.
go back to reference Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J, Löer I, Barthel T, Rudert M, Nöth U (2011) A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med 39(12):2558–2565. doi:10.1177/0363546511423369 PubMedCrossRef Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J, Löer I, Barthel T, Rudert M, Nöth U (2011) A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med 39(12):2558–2565. doi:10.​1177/​0363546511423369​ PubMedCrossRef
7.
go back to reference Hesse E, Hefferan TE, Tarara JE, Haasper C, Meller R, Krettek C, Lu L, Yaszemski MJ (2010) Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells. J Biomed Mater Res A 94(2):442–449. doi:10.1002/jbm.a.32696 PubMed Hesse E, Hefferan TE, Tarara JE, Haasper C, Meller R, Krettek C, Lu L, Yaszemski MJ (2010) Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells. J Biomed Mater Res A 94(2):442–449. doi:10.​1002/​jbm.​a.​32696 PubMed
8.
go back to reference Yuan T, Li K, Guo L, Fan H, Zhang X (2011) Modulation of immunological properties of allogeneic mesenchymal stem cells by collagen scaffolds in cartilage tissue engineering. J Biomed Mater Res A 98(3):332–341. doi:10.1002/jbm.a.33121 PubMed Yuan T, Li K, Guo L, Fan H, Zhang X (2011) Modulation of immunological properties of allogeneic mesenchymal stem cells by collagen scaffolds in cartilage tissue engineering. J Biomed Mater Res A 98(3):332–341. doi:10.​1002/​jbm.​a.​33121 PubMed
9.
go back to reference Budde S, Jagodzinski M, Wehmeier M, Hurschler C, Richter B, Broese M, Paulsen F, Tschernig T, Krettek C, Haasper C (2010) No effect in combining chondrogenic predifferentiation and mechanical cyclic compression on osteochondral constructs stimulated in a bioreactor. Ann Anat 192(4):237–246. doi:10.1016/j.aanat.2010.04.001 PubMedCrossRef Budde S, Jagodzinski M, Wehmeier M, Hurschler C, Richter B, Broese M, Paulsen F, Tschernig T, Krettek C, Haasper C (2010) No effect in combining chondrogenic predifferentiation and mechanical cyclic compression on osteochondral constructs stimulated in a bioreactor. Ann Anat 192(4):237–246. doi:10.​1016/​j.​aanat.​2010.​04.​001 PubMedCrossRef
10.
go back to reference Haasper C, Colditz M, Budde S, Hesse E, Tschernig T, Frink M, Krettek C, Hurschler C, Jagodzinski M (2009) Perfusion and cyclic compression of mesenchymal cell-loaded and clinically applicable osteochondral grafts. Knee Surg Sports Traumatol Arthrosc 17(11):1384–1392. doi:10.1007/s00167-009-0791-3 PubMedCrossRef Haasper C, Colditz M, Budde S, Hesse E, Tschernig T, Frink M, Krettek C, Hurschler C, Jagodzinski M (2009) Perfusion and cyclic compression of mesenchymal cell-loaded and clinically applicable osteochondral grafts. Knee Surg Sports Traumatol Arthrosc 17(11):1384–1392. doi:10.​1007/​s00167-009-0791-3 PubMedCrossRef
11.
go back to reference Du C, Cui FZ, Zhang W, Feng QL, Zhu XD, de Groot K (2000) Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res 50(4):518–527PubMedCrossRef Du C, Cui FZ, Zhang W, Feng QL, Zhu XD, de Groot K (2000) Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res 50(4):518–527PubMedCrossRef
12.
go back to reference Pataquiva-Mateus AY, Wu HC, Lucchesi C, Ferraz MP, Monteiro FJ, Spector M (2012) Supplementation of collagen scaffolds with SPARC to facilitate mineralization. J Biomed Mater Res B Appl Biomater 100(3):862–870. doi:10.1002/jbm.b.32650 PubMed Pataquiva-Mateus AY, Wu HC, Lucchesi C, Ferraz MP, Monteiro FJ, Spector M (2012) Supplementation of collagen scaffolds with SPARC to facilitate mineralization. J Biomed Mater Res B Appl Biomater 100(3):862–870. doi:10.​1002/​jbm.​b.​32650 PubMed
13.
go back to reference Azami M, Moosavifar MJ, Baheiraei N, Moztarzadeh F, Ai J (2012) Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. J Biomed Mater Res A 100(5):1347–1355. doi:10.1002/jbm.a.34074 PubMed Azami M, Moosavifar MJ, Baheiraei N, Moztarzadeh F, Ai J (2012) Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. J Biomed Mater Res A 100(5):1347–1355. doi:10.​1002/​jbm.​a.​34074 PubMed
16.
go back to reference Swat A, Dolado I, Rojas JM, Nebreda AR (2009) Cell density-dependent inhibition of epidermal growth factor receptor signaling by p38alpha mitogen-activated protein kinase via Sprouty2 downregulation. Mol Cell Biol 29(12):3332–3343. doi:10.1128/MCB.01955-08 PubMedCrossRef Swat A, Dolado I, Rojas JM, Nebreda AR (2009) Cell density-dependent inhibition of epidermal growth factor receptor signaling by p38alpha mitogen-activated protein kinase via Sprouty2 downregulation. Mol Cell Biol 29(12):3332–3343. doi:10.​1128/​MCB.​01955-08 PubMedCrossRef
18.
go back to reference Oldershaw RA, Baxter MA, Lowe ET, Bates N, Grady LM, Soncin F, Brison DR, Hardingham TE, Kimber SJ (2010) Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol 28(11):1187–1194. doi:10.1038/nbt.1683 PubMedCrossRef Oldershaw RA, Baxter MA, Lowe ET, Bates N, Grady LM, Soncin F, Brison DR, Hardingham TE, Kimber SJ (2010) Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol 28(11):1187–1194. doi:10.​1038/​nbt.​1683 PubMedCrossRef
19.
go back to reference Lee JW, Kim YH, Kim SH, Han SH, Hahn SB (2004) Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med J 45(Suppl):41–47PubMed Lee JW, Kim YH, Kim SH, Han SH, Hahn SB (2004) Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med J 45(Suppl):41–47PubMed
22.
go back to reference Zhang L, Yuan T, Guo L, Zhang X (2012) An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 100(10):2717–2725. doi:10.1002/jbm.a.34194 PubMed Zhang L, Yuan T, Guo L, Zhang X (2012) An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 100(10):2717–2725. doi:10.​1002/​jbm.​a.​34194 PubMed
25.
go back to reference Gong CY, Wu QJ, Dong PW, Shi S, Fu SZ, Guo G, Hu HZ, Zhao X, Wei YQ, Qian ZY (2009) Acute toxicity evaluation of biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PEG-PCL-PEG hydrogel. J Biomed Mater Res B Appl Biomater 91(1):26–36. doi:10.1002/jbm.b.31370 PubMed Gong CY, Wu QJ, Dong PW, Shi S, Fu SZ, Guo G, Hu HZ, Zhao X, Wei YQ, Qian ZY (2009) Acute toxicity evaluation of biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PEG-PCL-PEG hydrogel. J Biomed Mater Res B Appl Biomater 91(1):26–36. doi:10.​1002/​jbm.​b.​31370 PubMed
Metadata
Title
Enhanced migration of human bone marrow stromal cells in modified collagen hydrogels
Authors
Daniel Guenther
Alexandra Oks
Max Ettinger
Emmanouil Liodakis
Maximilian Petri
Christian Krettek
Michael Jagodzinski
Carl Haasper
Publication date
01-08-2013
Publisher
Springer Berlin Heidelberg
Published in
International Orthopaedics / Issue 8/2013
Print ISSN: 0341-2695
Electronic ISSN: 1432-5195
DOI
https://doi.org/10.1007/s00264-013-1894-5

Other articles of this Issue 8/2013

International Orthopaedics 8/2013 Go to the issue