Skip to main content
Top
Published in: International Orthopaedics 11/2011

01-11-2011 | Review Article

The role of stem cells in fracture healing and nonunion

Authors: Hangama C. Fayaz, Peter V. Giannoudis, Mark S. Vrahas, Raymond Malcolm Smith, Christopher Moran, Hans Christoph Pape, Christian Krettek, Jesse B. Jupiter

Published in: International Orthopaedics | Issue 11/2011

Login to get access

Abstract

Nonunion and large bone defects present a therapeutic challenge to the surgeon and are often associated with significant morbidity. These defects are expensive to both the health care system and society. However, several surgical procedures have been developed to maximise patient satisfaction and minimise health-care-associated and socioeconomic costs. Integrating recent evidence into the diamond concept leads to one simple conclusion that not only provides us with answers to the “open questions” but also simplifies our entire understanding of bone healing. It has been shown that a combination of neo-osteogenesis and neovascularisation will restore tissue deficits, and that the optimal approach includes a biomaterial scaffold, cell biology techniques, a growth factor and optimisation of the mechanical environment. Further prospective, controlled, randomised clinical studies will determine the effectiveness and economic benefits of treatment with mesenchymal stem cells, not in comparison to other conventional surgical approaches but in direct conjunction with them.
Literature
1.
go back to reference Bajada S, Harrison PE, Ashton BA, Cassar-Pullicino VN, Ashammakhi N, Richardson JB (2007) Successful treatment of refractory tibial nonunion using calcium sulphate and bone marrow stromal cell implantation. J Bone Joint Surg Br 89(10):1382–1386PubMedCrossRef Bajada S, Harrison PE, Ashton BA, Cassar-Pullicino VN, Ashammakhi N, Richardson JB (2007) Successful treatment of refractory tibial nonunion using calcium sulphate and bone marrow stromal cell implantation. J Bone Joint Surg Br 89(10):1382–1386PubMedCrossRef
2.
go back to reference Bosse MJ, MacKenzie EJ, Kellam JF (2001) A prospective evaluation of the clinical utility of the lower-extremity injury-severity scores. J Bone Joint Surg Am 83-A(1):3–14PubMed Bosse MJ, MacKenzie EJ, Kellam JF (2001) A prospective evaluation of the clinical utility of the lower-extremity injury-severity scores. J Bone Joint Surg Am 83-A(1):3–14PubMed
3.
go back to reference Brandi ML, Collin-Osdoby P (2005) Vascular biology and the skeleton. J Bone Miner Res 21(2):183–192PubMedCrossRef Brandi ML, Collin-Osdoby P (2005) Vascular biology and the skeleton. J Bone Miner Res 21(2):183–192PubMedCrossRef
4.
go back to reference Chamberlain G, Fox J, Ashton B, Middleton J (2007) Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749PubMedCrossRef Chamberlain G, Fox J, Ashton B, Middleton J (2007) Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749PubMedCrossRef
6.
go back to reference Connolly JF (1998) Clinical use of marrow osteoprogenitor cells to stimulate osteogenesis. Clin Orthop Relat Res 355:S257–S266PubMedCrossRef Connolly JF (1998) Clinical use of marrow osteoprogenitor cells to stimulate osteogenesis. Clin Orthop Relat Res 355:S257–S266PubMedCrossRef
7.
go back to reference Connolly JF, Shindell R (1986) Percutaneous marrow injection for an ununited tibia. The Nebraska Medical Journal 71(4):105–107PubMed Connolly JF, Shindell R (1986) Percutaneous marrow injection for an ununited tibia. The Nebraska Medical Journal 71(4):105–107PubMed
8.
go back to reference Cuomo AV, Virk M, Petrigliano F, Morgan EF, Lieberman JR (2009) Mesenchymal stem cell concentration and bone repair: potential pitfalls from bench to bedside. J Bone Joint Surg Am 91(5):1073–1083PubMedCrossRef Cuomo AV, Virk M, Petrigliano F, Morgan EF, Lieberman JR (2009) Mesenchymal stem cell concentration and bone repair: potential pitfalls from bench to bedside. J Bone Joint Surg Am 91(5):1073–1083PubMedCrossRef
9.
go back to reference Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Dj P, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317PubMedCrossRef Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Dj P, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317PubMedCrossRef
10.
go back to reference Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S (2005) Circulating Osteoblast lineage cells in humans. N England J Med 12;352(19):1959–1966 Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S (2005) Circulating Osteoblast lineage cells in humans. N England J Med 12;352(19):1959–1966
11.
go back to reference Eriksen EF, Eghbali-Fatourechi GZ, Khosla S (2007) Remodeling and vascular spaces in bone. J Bone Miner Res 22:1–6PubMedCrossRef Eriksen EF, Eghbali-Fatourechi GZ, Khosla S (2007) Remodeling and vascular spaces in bone. J Bone Miner Res 22:1–6PubMedCrossRef
12.
go back to reference Fayaz HC, Yaremchuk M, Jupiter J (2010) Reconstruction of a traumatic transmetatarsal amputation with use of a latissimus dorsi free tissue transfer and the Ilizarov technique: a case report. J Bone Joint Surg Am 92(2):459–464PubMedCrossRef Fayaz HC, Yaremchuk M, Jupiter J (2010) Reconstruction of a traumatic transmetatarsal amputation with use of a latissimus dorsi free tissue transfer and the Ilizarov technique: a case report. J Bone Joint Surg Am 92(2):459–464PubMedCrossRef
13.
go back to reference Funk JF, Matziolis G, Krocker D, Perka C (2007) Promotion of bone healing through clinical application of autologous periosteum derived stem cells in a case of atrophic non-union. Z Orthop Unfall 145(6):790–794PubMedCrossRef Funk JF, Matziolis G, Krocker D, Perka C (2007) Promotion of bone healing through clinical application of autologous periosteum derived stem cells in a case of atrophic non-union. Z Orthop Unfall 145(6):790–794PubMedCrossRef
14.
go back to reference Garg NK, Gaur S, Sharma S (1993) Percutaneous autogenous bone marrow grafting in 20 cases of ununited fracture. Acta Orthopaedica Scandinavica 64(6):671–672PubMedCrossRef Garg NK, Gaur S, Sharma S (1993) Percutaneous autogenous bone marrow grafting in 20 cases of ununited fracture. Acta Orthopaedica Scandinavica 64(6):671–672PubMedCrossRef
15.
go back to reference Giannoudis PV, Tzioupis C, Green J (2009) Surgical techniques: how I do it? The Reamer/Irrigator/Aspirator (RIA) system. Injury 40(11):1231–1236PubMedCrossRef Giannoudis PV, Tzioupis C, Green J (2009) Surgical techniques: how I do it? The Reamer/Irrigator/Aspirator (RIA) system. Injury 40(11):1231–1236PubMedCrossRef
16.
go back to reference Giannoudis PV, Einhorn TA, Marsh D (2007) Injury, Int J Care Injured 38S4:S3–S6 Giannoudis PV, Einhorn TA, Marsh D (2007) Injury, Int J Care Injured 38S4:S3–S6
17.
go back to reference Giotakis N, Narayan B, Nayagam S (2007) Distraction osteogenesis and nonunion of the docking site: is there an ideal treatment option? Injury 38:S100e7CrossRef Giotakis N, Narayan B, Nayagam S (2007) Distraction osteogenesis and nonunion of the docking site: is there an ideal treatment option? Injury 38:S100e7CrossRef
18.
go back to reference Goel A, Sangwan SS, Siwach RC, Ali AM (2005) Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 36(1):203–206PubMedCrossRef Goel A, Sangwan SS, Siwach RC, Ali AM (2005) Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 36(1):203–206PubMedCrossRef
19.
go back to reference Gugala Z, Gogolewski S (1999) Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study. J Orthop Trauma 13:187–195PubMedCrossRef Gugala Z, Gogolewski S (1999) Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study. J Orthop Trauma 13:187–195PubMedCrossRef
20.
go back to reference Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F (2001) Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16:1575–1582PubMedCrossRef Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F (2001) Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16:1575–1582PubMedCrossRef
21.
go back to reference Healey JH, Zimmerman PA, McDonnell JM, Lane JM (1990) Percutaneous bone marrow grafting of delayed union and nonunion in cancer patients. Clin Orthop Relat Res 256:280–285PubMed Healey JH, Zimmerman PA, McDonnell JM, Lane JM (1990) Percutaneous bone marrow grafting of delayed union and nonunion in cancer patients. Clin Orthop Relat Res 256:280–285PubMed
22.
go back to reference Hernigou PH, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions: influence of the number and concentration of progenitor cells, Journal of Bone and Joint Surgery A 87(7):1430–1437CrossRef Hernigou PH, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions: influence of the number and concentration of progenitor cells, Journal of Bone and Joint Surgery A 87(7):1430–1437CrossRef
23.
go back to reference Honczarenko M, Le Y, Swierkowski M et al (2006) Human bone morrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24(4):1030–1041PubMedCrossRef Honczarenko M, Le Y, Swierkowski M et al (2006) Human bone morrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24(4):1030–1041PubMedCrossRef
24.
go back to reference Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1995) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313CrossRef Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1995) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313CrossRef
25.
go back to reference Ivkovic A, Marijanovic I, Hudetz D, Porter RM, Pecina M, Evans CH (2011) Regenerative medicine and tissue engineering in orthopaedic surgery. Front Biosci (Elite ed)1;3:923–944 Ivkovic A, Marijanovic I, Hudetz D, Porter RM, Pecina M, Evans CH (2011) Regenerative medicine and tissue engineering in orthopaedic surgery. Front Biosci (Elite ed)1;3:923–944
26.
go back to reference Iwakura T, Miwa M, Sakai Y, Niikura T, Lee SY, Oe K, Hasegawa T, Kuroda R, Fujioka H, Doita M, Kurosaka M (2009) Human hypertrophic nonunion tissue contains mesenchymal progenitor cells with multilineage capacity in vitro. J Orthop Res 27(2):208–215PubMedCrossRef Iwakura T, Miwa M, Sakai Y, Niikura T, Lee SY, Oe K, Hasegawa T, Kuroda R, Fujioka H, Doita M, Kurosaka M (2009) Human hypertrophic nonunion tissue contains mesenchymal progenitor cells with multilineage capacity in vitro. J Orthop Res 27(2):208–215PubMedCrossRef
27.
go back to reference Keating JF, Simpson AH, Robinson CM (2005) The management of fractures with bone loss. J Bone Joint Surg Br 87:142–150PubMedCrossRef Keating JF, Simpson AH, Robinson CM (2005) The management of fractures with bone loss. J Bone Joint Surg Br 87:142–150PubMedCrossRef
28.
go back to reference Kim SJ, Shin YW, Yang KH et al (2009) A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast (Ossron) injection to treat fractures. BMC Musculoskeletal Disorders article 20 Kim SJ, Shin YW, Yang KH et al (2009) A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast (Ossron) injection to treat fractures. BMC Musculoskeletal Disorders article 20
29.
go back to reference Kitoh H, Kawasumi M, Kaneko H, Ishiguro N (2009) Differential Effects of Culture-expanded Bone Marrow Cells on the Regeneration of Bone Between the Femoral and the Tibial Lengthenings. J Pediatr Orthop 29:643–649PubMedCrossRef Kitoh H, Kawasumi M, Kaneko H, Ishiguro N (2009) Differential Effects of Culture-expanded Bone Marrow Cells on the Regeneration of Bone Between the Femoral and the Tibial Lengthenings. J Pediatr Orthop 29:643–649PubMedCrossRef
30.
go back to reference Lin CH, Wei FC, Chen HC, Chuang DC (1999) Outcome comparison in traumatic lower-extremity reconstruction by using various composite vascularized bone transplantation. Plast Reconstr Surg 104:984–992PubMedCrossRef Lin CH, Wei FC, Chen HC, Chuang DC (1999) Outcome comparison in traumatic lower-extremity reconstruction by using various composite vascularized bone transplantation. Plast Reconstr Surg 104:984–992PubMedCrossRef
31.
go back to reference Lindsey RW, Gugala Z, Milne E, Sun M, Gannon FH, Latta LL (2006) The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect. J Orthop Res 24(7):1438–1453PubMedCrossRef Lindsey RW, Gugala Z, Milne E, Sun M, Gannon FH, Latta LL (2006) The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect. J Orthop Res 24(7):1438–1453PubMedCrossRef
32.
go back to reference Liu ZJ, Zhuge Y, Velazquez OC (2009) Trafficking and differentiation of mesenchymal stem cells. JCell Bochem 106(6):984–991CrossRef Liu ZJ, Zhuge Y, Velazquez OC (2009) Trafficking and differentiation of mesenchymal stem cells. JCell Bochem 106(6):984–991CrossRef
33.
go back to reference Maes C, Kobayashi T, Selig MK et al (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19:329–344PubMedCrossRef Maes C, Kobayashi T, Selig MK et al (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19:329–344PubMedCrossRef
34.
go back to reference Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5):947–955PubMedCrossRef Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5):947–955PubMedCrossRef
35.
go back to reference Masquelet AC, Fitoussi F, Begue T, Muller GP (2000) Reconstruction of the long bones by the induced membrane and spongy autograft [in French]. Ann Chir Plast Esthet 45:346–353PubMed Masquelet AC, Fitoussi F, Begue T, Muller GP (2000) Reconstruction of the long bones by the induced membrane and spongy autograft [in French]. Ann Chir Plast Esthet 45:346–353PubMed
36.
go back to reference Masquelet AC (2003) Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction. Langenbecks Arch Surg 388:344–346PubMedCrossRef Masquelet AC (2003) Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction. Langenbecks Arch Surg 388:344–346PubMedCrossRef
37.
go back to reference Megas P (2005) Classification of non-union. Injury 36(SuppI4):S30–S37PubMed Megas P (2005) Classification of non-union. Injury 36(SuppI4):S30–S37PubMed
38.
go back to reference Miller MA, Ivkovic A, Porter R, Harris MB, Estok DM, Smith RM, Evans CH, Vrahas MS (2011) Autologous bone grafting on steroids: preliminary clinical results. A novel treatment for nonunions and segmental bone defects. Int Orthop Apr 35(4):599–605CrossRef Miller MA, Ivkovic A, Porter R, Harris MB, Estok DM, Smith RM, Evans CH, Vrahas MS (2011) Autologous bone grafting on steroids: preliminary clinical results. A novel treatment for nonunions and segmental bone defects. Int Orthop Apr 35(4):599–605CrossRef
39.
go back to reference Mödder UI, Khosla S (2008) Skeletal stem/osteoprogenitor cells: current concepts, alternate hypotheses, and relationship to the bone remodeling compartment. J Cell Biochem 1 103(2):393–400 Mödder UI, Khosla S (2008) Skeletal stem/osteoprogenitor cells: current concepts, alternate hypotheses, and relationship to the bone remodeling compartment. J Cell Biochem 1 103(2):393–400
40.
go back to reference Novicoff WM, Manaswi A, Hogan MV, Brubaker SM, Mihalko WM, Saleh KJ (2008) Critical analysis of the evidence for current technologies in bone-healing and repair. Journal of Bone and Joint Surgery A 90(1):85–91CrossRef Novicoff WM, Manaswi A, Hogan MV, Brubaker SM, Mihalko WM, Saleh KJ (2008) Critical analysis of the evidence for current technologies in bone-healing and repair. Journal of Bone and Joint Surgery A 90(1):85–91CrossRef
41.
go back to reference Pecina M, Vukicevic S (2007) Biological aspects of bone, cartilage and tendon regeneration. Int Orthop 31(6):719–720PubMedCrossRef Pecina M, Vukicevic S (2007) Biological aspects of bone, cartilage and tendon regeneration. Int Orthop 31(6):719–720PubMedCrossRef
42.
go back to reference Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J (2004) Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res 22(1):73–79PubMedCrossRef Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J (2004) Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res 22(1):73–79PubMedCrossRef
43.
44.
go back to reference Ripamonti U (1992) Calvarial reconstruction in baboons with porous hydroxyapatite. J Craniofac Surg 3(3):149–159PubMedCrossRef Ripamonti U (1992) Calvarial reconstruction in baboons with porous hydroxyapatite. J Craniofac Surg 3(3):149–159PubMedCrossRef
45.
go back to reference Ripamonti U (1993) Delivery systems for bone morphogenetic proteins. A summary of experimental studies in primate models. Ann Chir Gynaecol Suppl 207:13–24PubMed Ripamonti U (1993) Delivery systems for bone morphogenetic proteins. A summary of experimental studies in primate models. Ann Chir Gynaecol Suppl 207:13–24PubMed
46.
go back to reference Russell AT, Taylor CJ, Lavelle DG (1991) Fractures of tibia and fibula. In: Bucholz RW, Heckman JD, Court-Brown CM (eds) Fractures in Adults, Rockwood and Green, vol 3. pp 1915–1982 Russell AT, Taylor CJ, Lavelle DG (1991) Fractures of tibia and fibula. In: Bucholz RW, Heckman JD, Court-Brown CM (eds) Fractures in Adults, Rockwood and Green, vol 3. pp 1915–1982
47.
go back to reference Sambrook PN, Chen CJS, March LM et al (2006) High bone turnover is an independent predictor of mortality in the frail elderly. J Bone Miner Res 21:549–555PubMedCrossRef Sambrook PN, Chen CJS, March LM et al (2006) High bone turnover is an independent predictor of mortality in the frail elderly. J Bone Miner Res 21:549–555PubMedCrossRef
48.
go back to reference Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Rel Res 205:299–308 Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Rel Res 205:299–308
49.
go back to reference Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 1; 344(5):385–386 Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 1; 344(5):385–386
50.
go back to reference Taylor CJ (1992) Delayed union and nonunion of fractures. In: Crenshaw AH (ed) Campbell’s Operative Orthopaedics, vol 28. Mosby, pp 1287—1345 Taylor CJ (1992) Delayed union and nonunion of fractures. In: Crenshaw AH (ed) Campbell’s Operative Orthopaedics, vol 28. Mosby, pp 1287—1345
51.
go back to reference Towler DA (2008) The osteogenic-angiogenic interface: novel insights into the biology of bone formation and fracture repair. Curr Osteoporos Rep 6(2):67–71PubMedCrossRef Towler DA (2008) The osteogenic-angiogenic interface: novel insights into the biology of bone formation and fracture repair. Curr Osteoporos Rep 6(2):67–71PubMedCrossRef
52.
go back to reference Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger (2001) Replacement of an avulsed phalanx with tissue engineered bone. N England J Med 344(20) Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger (2001) Replacement of an avulsed phalanx with tissue engineered bone. N England J Med 344(20)
53.
go back to reference Yefang Z, Hutmacher DW, Varawan SL, Meng LT (2007) Comparison of human alveolar osteoblasts cultured on polymer-ceramic composite scaffolds and tissue culture plates. Int J Oral Maxillofac Surg 36:137–145PubMedCrossRef Yefang Z, Hutmacher DW, Varawan SL, Meng LT (2007) Comparison of human alveolar osteoblasts cultured on polymer-ceramic composite scaffolds and tissue culture plates. Int J Oral Maxillofac Surg 36:137–145PubMedCrossRef
Metadata
Title
The role of stem cells in fracture healing and nonunion
Authors
Hangama C. Fayaz
Peter V. Giannoudis
Mark S. Vrahas
Raymond Malcolm Smith
Christopher Moran
Hans Christoph Pape
Christian Krettek
Jesse B. Jupiter
Publication date
01-11-2011
Publisher
Springer-Verlag
Published in
International Orthopaedics / Issue 11/2011
Print ISSN: 0341-2695
Electronic ISSN: 1432-5195
DOI
https://doi.org/10.1007/s00264-011-1338-z

Other articles of this Issue 11/2011

International Orthopaedics 11/2011 Go to the issue