Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 7/2020

01-07-2020 | Kidney Cancer | Original Article

Comprehensive landscape of immune-checkpoints uncovered in clear cell renal cell carcinoma reveals new and emerging therapeutic targets

Authors: Diana Tronik-Le Roux, Mathilde Sautreuil, Mahmoud Bentriou, Jérôme Vérine, Maria Belén Palma, Marina Daouya, Fatiha Bouhidel, Sarah Lemler, Joel LeMaoult, François Desgrandchamps, Paul-Henry Cournède, Edgardo D. Carosella

Published in: Cancer Immunology, Immunotherapy | Issue 7/2020

Login to get access

Abstract

Clear cell renal cell carcinoma (ccRCC) constitutes the most common renal cell carcinoma subtype and has long been recognized as an immunogenic cancer. As such, significant attention has been directed toward optimizing immune-checkpoints (IC)-based therapies. Despite proven benefits, a substantial number of patients remain unresponsive to treatment, suggesting that yet unreported, immunosuppressive mechanisms coexist within tumors and their microenvironment. Here, we comprehensively analyzed and ranked forty-four immune-checkpoints expressed in ccRCC on the basis of in‐depth analysis of RNAseq data collected from the TCGA database and advanced statistical methods designed to obtain the group of checkpoints that best discriminates tumor from healthy tissues. Immunohistochemistry and flow cytometry confirmed and enlarged the bioinformatics results. In particular, by using the recursive feature elimination method, we show that HLA-G, B7H3, PDL-1 and ILT2 are the most relevant genes that characterize ccRCC. Notably, ILT2 expression was detected for the first time on tumor cells. The levels of other ligand-receptor pairs such as CD70:CD27; 4-1BB:4-1BBL; CD40:CD40L; CD86:CTLA4; MHC-II:Lag3; CD200:CD200R; CD244:CD48 were also found highly expressed in tumors compared to adjacent non-tumor tissues. Collectively, our approach provides a comprehensible classification of forty-four IC expressed in ccRCC, some of which were never reported before to be co-expressed in ccRCC. In addition, the algorithms used allowed identifying the most relevant group that best discriminates tumor from healthy tissues. The data can potentially assist on the choice of valuable immune-therapy targets which hold potential for the development of more effective anti-tumor treatments.
Appendix
Available only for authorised users
Literature
1.
go back to reference Znaor A, Lortet-Tieulent J, Laversanne M, Jemal A, Bray F (2015) International variations and trends in renal cell carcinoma incidence and mortality. Eur Urol 67:519–530PubMedCrossRef Znaor A, Lortet-Tieulent J, Laversanne M, Jemal A, Bray F (2015) International variations and trends in renal cell carcinoma incidence and mortality. Eur Urol 67:519–530PubMedCrossRef
3.
go back to reference Hsieh JJ, Le VH, Oyama T, Ricketts CJ, Ho TH, Cheng EH (2018) Chromosome 3p loss-orchestrated VHL, HIF, and epigenetic deregulation in clear cell renal cell carcinoma. J Clin Oncol 36:JCO2018792549 Hsieh JJ, Le VH, Oyama T, Ricketts CJ, Ho TH, Cheng EH (2018) Chromosome 3p loss-orchestrated VHL, HIF, and epigenetic deregulation in clear cell renal cell carcinoma. J Clin Oncol 36:JCO2018792549
4.
go back to reference Levi-Schaffer F, Mandelboim O (2018) Inhibitory and coactivating receptors recognising the same ligand: immune homeostasis exploited by pathogens and tumours. Trends Immunol 39:112–122PubMedCrossRef Levi-Schaffer F, Mandelboim O (2018) Inhibitory and coactivating receptors recognising the same ligand: immune homeostasis exploited by pathogens and tumours. Trends Immunol 39:112–122PubMedCrossRef
5.
6.
go back to reference Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S et al (2019) Advances in cancer immunotherapy 2019—latest trends. J Exp Clin Cancer Res 38:268–278PubMedPubMedCentralCrossRef Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S et al (2019) Advances in cancer immunotherapy 2019—latest trends. J Exp Clin Cancer Res 38:268–278PubMedPubMedCentralCrossRef
7.
go back to reference Rotte A (2019) Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res 1(381):255CrossRef Rotte A (2019) Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res 1(381):255CrossRef
8.
go back to reference Lalani AA, McGregor BA, Albiges L, Choueiri TK, Motzer R, Powles T et al (2019) Systemic treatment of metastatic clear cell renal cell carcinoma in 2018: current paradigms, use of immunotherapy, and future directions. Eur Urol 1:100–110CrossRef Lalani AA, McGregor BA, Albiges L, Choueiri TK, Motzer R, Powles T et al (2019) Systemic treatment of metastatic clear cell renal cell carcinoma in 2018: current paradigms, use of immunotherapy, and future directions. Eur Urol 1:100–110CrossRef
9.
go back to reference George S, Rini BI, Hammers HJ (2019) Emerging role of combination immunotherapy in the first-line treatment of advanced renal cell carcinoma: a review. JAMA Oncol 5:411–421PubMedCrossRef George S, Rini BI, Hammers HJ (2019) Emerging role of combination immunotherapy in the first-line treatment of advanced renal cell carcinoma: a review. JAMA Oncol 5:411–421PubMedCrossRef
10.
11.
12.
go back to reference Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21:1350–1356PubMedPubMedCentralCrossRef Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21:1350–1356PubMedPubMedCentralCrossRef
13.
go back to reference Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH et al (2018) The immune landscape of cancer. Immunity 48(812–30):e14 Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH et al (2018) The immune landscape of cancer. Immunity 48(812–30):e14
14.
go back to reference Rover LK, Gevensleben H, Dietrich J, Bootz F, Landsberg J, Goltz D et al (2018) PD-1 (PDCD1) promoter methylation is a prognostic factor in patients with diffuse lower-grade gliomas harboring isocitrate dehydrogenase (IDH) mutations. EBioMedicine 28:97–104PubMedPubMedCentralCrossRef Rover LK, Gevensleben H, Dietrich J, Bootz F, Landsberg J, Goltz D et al (2018) PD-1 (PDCD1) promoter methylation is a prognostic factor in patients with diffuse lower-grade gliomas harboring isocitrate dehydrogenase (IDH) mutations. EBioMedicine 28:97–104PubMedPubMedCentralCrossRef
15.
go back to reference Lopez JI, Angulo JC (2018) Pathological bases and clinical impact of intratumor heterogeneity in clear cell renal cell carcinoma. Curr Urol Rep 19:3PubMedCrossRef Lopez JI, Angulo JC (2018) Pathological bases and clinical impact of intratumor heterogeneity in clear cell renal cell carcinoma. Curr Urol Rep 19:3PubMedCrossRef
19.
go back to reference Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19:368–375PubMedCrossRef Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19:368–375PubMedCrossRef
20.
go back to reference Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1):389–422CrossRef Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1):389–422CrossRef
21.
go back to reference Claeskens G, Croux C, Van Kerckhoven J (2008) An information criterion for variable selection in support vector machines. J Mach Learn Res 9:541–558 Claeskens G, Croux C, Van Kerckhoven J (2008) An information criterion for variable selection in support vector machines. J Mach Learn Res 9:541–558
22.
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830
23.
go back to reference Statnikov A, Wang L, Aliferis CF (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9:319PubMedPubMedCentralCrossRef Statnikov A, Wang L, Aliferis CF (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9:319PubMedPubMedCentralCrossRef
24.
go back to reference Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97(457):77–87CrossRef Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97(457):77–87CrossRef
25.
go back to reference Dupuy A, Simon RM (2007) Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99:147–157PubMedCrossRef Dupuy A, Simon RM (2007) Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99:147–157PubMedCrossRef
26.
go back to reference Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM (2016) The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours. Eur Urol 70:93–105PubMedCrossRef Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM (2016) The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours. Eur Urol 70:93–105PubMedCrossRef
28.
go back to reference Desgrandchamps F, LeMaoult J, Goujon A, Riviere A, Rivero-Juarez A, Djouadou M et al (2018) Prediction of non-muscle-invasive bladder cancer recurrence by measurement of checkpoint HLAG's receptor ILT2 on peripheral CD8(+) T cells. Oncotarget 9:33160–33169PubMedPubMedCentralCrossRef Desgrandchamps F, LeMaoult J, Goujon A, Riviere A, Rivero-Juarez A, Djouadou M et al (2018) Prediction of non-muscle-invasive bladder cancer recurrence by measurement of checkpoint HLAG's receptor ILT2 on peripheral CD8(+) T cells. Oncotarget 9:33160–33169PubMedPubMedCentralCrossRef
29.
go back to reference Junker K, Hindermann W, von Eggeling F, Diegmann J, Haessler K, Schubert J (2005) CD70: a new tumor specific biomarker for renal cell carcinoma. The Journal of urology 173:2150–2153PubMedCrossRef Junker K, Hindermann W, von Eggeling F, Diegmann J, Haessler K, Schubert J (2005) CD70: a new tumor specific biomarker for renal cell carcinoma. The Journal of urology 173:2150–2153PubMedCrossRef
30.
go back to reference Hassan SB, Sorensen JF, Olsen BN, Pedersen AE (2014) Anti-CD40-mediated cancer immunotherapy: an update of recent and ongoing clinical trials. Immunopharmacol Immunotoxicol 36:96–104PubMedCrossRef Hassan SB, Sorensen JF, Olsen BN, Pedersen AE (2014) Anti-CD40-mediated cancer immunotherapy: an update of recent and ongoing clinical trials. Immunopharmacol Immunotoxicol 36:96–104PubMedCrossRef
31.
go back to reference Vinay DS, Kwon BS (2012) Immunotherapy of cancer with 4-1BB. Mol Cancer Therapeutics 11:1062–1070CrossRef Vinay DS, Kwon BS (2012) Immunotherapy of cancer with 4-1BB. Mol Cancer Therapeutics 11:1062–1070CrossRef
32.
go back to reference Chester C, Sanmamed MF, Wang J, Melero I (2018) Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 131:49–57PubMedCrossRef Chester C, Sanmamed MF, Wang J, Melero I (2018) Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 131:49–57PubMedCrossRef
34.
go back to reference Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP (2014) Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med 211:715–725PubMedPubMedCentralCrossRef Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP (2014) Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med 211:715–725PubMedPubMedCentralCrossRef
35.
go back to reference Chen YP, Zhang J, Wang YQ, Liu N, He QM, Yang XJ et al (2017) The immune molecular landscape of the B7 and TNFR immunoregulatory ligand-receptor families in head and neck cancer: a comprehensive overview and the immunotherapeutic implications. Oncoimmunology 6:e1288329PubMedPubMedCentralCrossRef Chen YP, Zhang J, Wang YQ, Liu N, He QM, Yang XJ et al (2017) The immune molecular landscape of the B7 and TNFR immunoregulatory ligand-receptor families in head and neck cancer: a comprehensive overview and the immunotherapeutic implications. Oncoimmunology 6:e1288329PubMedPubMedCentralCrossRef
38.
go back to reference Castellanos JR, Purvis IJ, Labak CM, Guda MR, Tsung AJ, Velpula KK et al (2017) B7-H3 role in the immune landscape of cancer. Am J Clin Exp Immunol 6:66–75PubMedPubMedCentral Castellanos JR, Purvis IJ, Labak CM, Guda MR, Tsung AJ, Velpula KK et al (2017) B7-H3 role in the immune landscape of cancer. Am J Clin Exp Immunol 6:66–75PubMedPubMedCentral
39.
go back to reference Seaman S, Zhu Z, Saha S, Zhang XM, Yang MY, Hilton MB et al (2017) Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell 31:501–515PubMedPubMedCentralCrossRef Seaman S, Zhu Z, Saha S, Zhang XM, Yang MY, Hilton MB et al (2017) Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell 31:501–515PubMedPubMedCentralCrossRef
40.
go back to reference Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O'Connell S et al (2014) VISTA is an immune checkpoint molecule for human T cells. Cancer research 74:1924–1932PubMedPubMedCentralCrossRef Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O'Connell S et al (2014) VISTA is an immune checkpoint molecule for human T cells. Cancer research 74:1924–1932PubMedPubMedCentralCrossRef
41.
go back to reference Rouas-Freiss N, LeMaoult J, Verine J, Tronik-Le Roux D, Culine S, Hennequin C et al (2017) Intratumor heterogeneity of immune checkpoints in primary renal cell cancer: Focus on HLA-G/ILT2/ILT4. Oncoimmunology 6:e1342023PubMedPubMedCentralCrossRef Rouas-Freiss N, LeMaoult J, Verine J, Tronik-Le Roux D, Culine S, Hennequin C et al (2017) Intratumor heterogeneity of immune checkpoints in primary renal cell cancer: Focus on HLA-G/ILT2/ILT4. Oncoimmunology 6:e1342023PubMedPubMedCentralCrossRef
42.
go back to reference Tronik-Le Roux D, Renard J, Verine J, Renault V, Tubacher E, LeMaoult J et al (2017) Novel landscape of HLA-G isoforms expressed in clear cell renal cell carcinoma patients. Mol Oncol 11:1561–1578PubMedPubMedCentralCrossRef Tronik-Le Roux D, Renard J, Verine J, Renault V, Tubacher E, LeMaoult J et al (2017) Novel landscape of HLA-G isoforms expressed in clear cell renal cell carcinoma patients. Mol Oncol 11:1561–1578PubMedPubMedCentralCrossRef
43.
go back to reference Agaugue S, Carosella ED, Rouas-Freiss N (2011) Role of HLA-G in tumor escape through expansion of myeloid-derived suppressor cells and cytokinic balance in favor of Th2 versus Th1/Th17. Blood 117:7021–7031PubMedCrossRef Agaugue S, Carosella ED, Rouas-Freiss N (2011) Role of HLA-G in tumor escape through expansion of myeloid-derived suppressor cells and cytokinic balance in favor of Th2 versus Th1/Th17. Blood 117:7021–7031PubMedCrossRef
44.
go back to reference Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P, LeMaoult J (2015) HLA-G: an immune checkpoint molecule. Adv Immunol 127:33–144PubMedCrossRef Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P, LeMaoult J (2015) HLA-G: an immune checkpoint molecule. Adv Immunol 127:33–144PubMedCrossRef
45.
go back to reference Zhang P, Guo X, Li J, Yu S, Wang L, Jiang G et al (2015) Immunoglobulin-like transcript 4 promotes tumor progression and metastasis and up-regulates VEGF-C expression via ERK signaling pathway in non-small cell lung cancer. Oncotarget 6:13550–13563PubMedPubMedCentralCrossRef Zhang P, Guo X, Li J, Yu S, Wang L, Jiang G et al (2015) Immunoglobulin-like transcript 4 promotes tumor progression and metastasis and up-regulates VEGF-C expression via ERK signaling pathway in non-small cell lung cancer. Oncotarget 6:13550–13563PubMedPubMedCentralCrossRef
Metadata
Title
Comprehensive landscape of immune-checkpoints uncovered in clear cell renal cell carcinoma reveals new and emerging therapeutic targets
Authors
Diana Tronik-Le Roux
Mathilde Sautreuil
Mahmoud Bentriou
Jérôme Vérine
Maria Belén Palma
Marina Daouya
Fatiha Bouhidel
Sarah Lemler
Joel LeMaoult
François Desgrandchamps
Paul-Henry Cournède
Edgardo D. Carosella
Publication date
01-07-2020
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 7/2020
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-020-02530-x

Other articles of this Issue 7/2020

Cancer Immunology, Immunotherapy 7/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine