Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 5/2020

Open Access 01-05-2020 | Melanoma | Original Article

Age-associated changes in the immune system may influence the response to anti-PD1 therapy in metastatic melanoma patients

Authors: Henna Kasanen, Micaela Hernberg, Siru Mäkelä, Oscar Brück, Susanna Juteau, Laura Kohtamäki, Mette Ilander, Satu Mustjoki, Anna Kreutzman

Published in: Cancer Immunology, Immunotherapy | Issue 5/2020

Login to get access

Abstract

Anti-PD1 treatment has improved the survival of metastatic melanoma patients, yet it is unknown which patients benefit from the treatment. In this exploratory study, we aimed to understand the effects of anti-PD1 therapy on the patients’ immune system and discover the characteristics that would result in successful treatment. We collected peripheral blood (PB) samples from 17 immuno-oncology-naïve metastatic melanoma patients before and after 1 and 3 months of anti-PD1 therapy. In addition, matching tumor biopsies at the time of diagnosis were collected for tissue microarray. The complete blood counts, PB immunophenotype, serum cytokine profiles, and tumor-infiltrating lymphocytes were analyzed and correlated with the clinical data. Patients were categorized based on their disease control into responders (complete response, partial response, stable disease > 6 months, N = 11) and non-responders (progressive disease, stable disease ≤ 6 months, N = 6). During therapy, the PB natural killer T (NKT) cell frequency, expression of CD25 and CD45RO on cytotoxic natural killer (NK) cells, and serum CXC chemokine levels were significantly increased in responders. Furthermore, higher age together with age-associated characteristics from PB, lower frequency of PB-naïve CD8+ T cells, and elevated levels of serum MCP-4 and OPG were discovered as baseline predictors of treatment response. We therefore propose that in addition to T cells, anti-PD1 treatment is associated with NK- and NKT-cell population dynamics, and that the age-associated characteristics from PB together with older age may contribute to prolonged PFS in anti-PD1-treated melanoma patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Koury J, Lucero M, Cato C, Chang L, Geiger J, Henry D, Hernandez J, Hung F, Kaur P, Teskey G, Tran A (2018) Immunotherapies: exploiting the immune system for cancer treatment. J Immunol Res 2018:9585614PubMedPubMedCentral Koury J, Lucero M, Cato C, Chang L, Geiger J, Henry D, Hernandez J, Hung F, Kaur P, Teskey G, Tran A (2018) Immunotherapies: exploiting the immune system for cancer treatment. J Immunol Res 2018:9585614PubMedPubMedCentral
2.
go back to reference Ugurel S, Rohmel J, Ascierto PA, Flaherty KT, Grob JJ, Hauschild A, Larkin J, Long GV, Lorigan P, McArthur GA, Ribas A, Robert C, Schadendorf D, Garbe C (2017) Survival of patients with advanced metastatic melanoma: the impact of novel therapies-update 2017. Eur J Cancer 83:247–257PubMed Ugurel S, Rohmel J, Ascierto PA, Flaherty KT, Grob JJ, Hauschild A, Larkin J, Long GV, Lorigan P, McArthur GA, Ribas A, Robert C, Schadendorf D, Garbe C (2017) Survival of patients with advanced metastatic melanoma: the impact of novel therapies-update 2017. Eur J Cancer 83:247–257PubMed
3.
go back to reference Carreau N, Pavlick A (2019) Revolutionizing treatment of advanced melanoma with immunotherapy. Surg Oncol [Epub ahead of print] Carreau N, Pavlick A (2019) Revolutionizing treatment of advanced melanoma with immunotherapy. Surg Oncol [Epub ahead of print]
4.
go back to reference Giuroiu I, Weber J (2017) Novel checkpoints and cosignaling molecules in cancer immunotherapy. Cancer J 23:23–31PubMed Giuroiu I, Weber J (2017) Novel checkpoints and cosignaling molecules in cancer immunotherapy. Cancer J 23:23–31PubMed
6.
go back to reference Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49PubMedPubMedCentral Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49PubMedPubMedCentral
7.
go back to reference Holsken O, Miller M, Cerwenka A (2015) Exploiting natural killer cells for therapy of melanoma. J Dtsch Dermatol Ges 13:23–29PubMed Holsken O, Miller M, Cerwenka A (2015) Exploiting natural killer cells for therapy of melanoma. J Dtsch Dermatol Ges 13:23–29PubMed
8.
go back to reference Taniguchi M, Seino K, Nakayama T (2003) The NKT cell system: bridging innate and acquired immunity. Nat Immunol 4:1164–1165PubMed Taniguchi M, Seino K, Nakayama T (2003) The NKT cell system: bridging innate and acquired immunity. Nat Immunol 4:1164–1165PubMed
9.
go back to reference Taniguchi M, Harada M, Dashtsoodol N, Kojo S (2015) Discovery of NKT cells and development of NKT cell-targeted anti-tumor immunotherapy. Proc Jpn Acad Ser B Phys Biol Sci 91:292–304PubMedPubMedCentral Taniguchi M, Harada M, Dashtsoodol N, Kojo S (2015) Discovery of NKT cells and development of NKT cell-targeted anti-tumor immunotherapy. Proc Jpn Acad Ser B Phys Biol Sci 91:292–304PubMedPubMedCentral
10.
go back to reference Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4:11–22PubMed Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4:11–22PubMed
11.
go back to reference Mollica Poeta V, Massara M, Capucetti A, Bonecchi R (2019) Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front Immunol 10:379PubMedPubMedCentral Mollica Poeta V, Massara M, Capucetti A, Bonecchi R (2019) Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front Immunol 10:379PubMedPubMedCentral
12.
go back to reference Wu Y, Tian Z, Wei H (2017) Developmental and functional control of natural killer cells by cytokines. Front Immunol 8:930PubMedPubMedCentral Wu Y, Tian Z, Wei H (2017) Developmental and functional control of natural killer cells by cytokines. Front Immunol 8:930PubMedPubMedCentral
13.
go back to reference Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbe C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330PubMed Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbe C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330PubMed
14.
go back to reference Weber JS, D'Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD, Linette GP, Thomas L, Lorigan P, Grossmann KF, Hassel JC, Maio M, Sznol M, Ascierto PA, Mohr P, Chmielowski B, Bryce A, Svane IM, Grob JJ, Krackhardt AM, Horak C, Lambert A, Yang AS, Larkin J (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384PubMed Weber JS, D'Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD, Linette GP, Thomas L, Lorigan P, Grossmann KF, Hassel JC, Maio M, Sznol M, Ascierto PA, Mohr P, Chmielowski B, Bryce A, Svane IM, Grob JJ, Krackhardt AM, Horak C, Lambert A, Yang AS, Larkin J (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384PubMed
15.
go back to reference Larkin J, Minor D, D'Angelo S, Neyns B, Smylie M, Miller WH Jr, Gutzmer R, Linette G, Chmielowski B, Lao CD, Lorigan P, Grossmann K, Hassel JC, Sznol M, Daud A, Sosman J, Khushalani N, Schadendorf D, Hoeller C, Walker D, Kong G, Horak C, Weber J (2018) Overall survival in patients with advanced melanoma who received nivolumab versus investigator's choice chemotherapy in CheckMate 037: a randomized, controlled, open-label phase III trial. J Clin Oncol 36:383–390PubMed Larkin J, Minor D, D'Angelo S, Neyns B, Smylie M, Miller WH Jr, Gutzmer R, Linette G, Chmielowski B, Lao CD, Lorigan P, Grossmann K, Hassel JC, Sznol M, Daud A, Sosman J, Khushalani N, Schadendorf D, Hoeller C, Walker D, Kong G, Horak C, Weber J (2018) Overall survival in patients with advanced melanoma who received nivolumab versus investigator's choice chemotherapy in CheckMate 037: a randomized, controlled, open-label phase III trial. J Clin Oncol 36:383–390PubMed
16.
go back to reference Chiossone L, Dumas PY, Vienne M, Vivier E (2018) Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol 18:671–688PubMed Chiossone L, Dumas PY, Vienne M, Vivier E (2018) Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol 18:671–688PubMed
17.
go back to reference Bae EA, Seo H, Kim IK, Jeon I, Kang CY (2019) Roles of NKT cells in cancer immunotherapy. Arch Pharm Res 11:1–6 Bae EA, Seo H, Kim IK, Jeon I, Kang CY (2019) Roles of NKT cells in cancer immunotherapy. Arch Pharm Res 11:1–6
18.
go back to reference Edge SB, Compton CC (2010) The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17:1471–1474PubMed Edge SB, Compton CC (2010) The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17:1471–1474PubMed
19.
go back to reference Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247PubMed Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247PubMed
20.
go back to reference Bruck O, Blom S, Dufva O, Turkki R, Chheda H, Ribeiro A, Kovanen P, Aittokallio T, Koskenvesa P, Kallioniemi O, Porkka K, Pellinen T, Mustjoki S (2018) Immune cell contexture in the bone marrow tumor microenvironment impacts therapy response in CML. Leukemia 32:1643–1656PubMed Bruck O, Blom S, Dufva O, Turkki R, Chheda H, Ribeiro A, Kovanen P, Aittokallio T, Koskenvesa P, Kallioniemi O, Porkka K, Pellinen T, Mustjoki S (2018) Immune cell contexture in the bone marrow tumor microenvironment impacts therapy response in CML. Leukemia 32:1643–1656PubMed
21.
go back to reference Wendel M, Galani IE, Suri-Payer E, Cerwenka A (2008) Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res 68:8437–8445PubMed Wendel M, Galani IE, Suri-Payer E, Cerwenka A (2008) Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res 68:8437–8445PubMed
22.
go back to reference Gorbachev AV, Kobayashi H, Kudo D, Tannenbaum CS, Finke JH, Shu S, Farber JM, Fairchild RL (2007) CXC chemokine ligand 9/monokine induced by IFN-gamma production by tumor cells is critical for T cell-mediated suppression of cutaneous tumors. J Immunol 178:2278–2286PubMed Gorbachev AV, Kobayashi H, Kudo D, Tannenbaum CS, Finke JH, Shu S, Farber JM, Fairchild RL (2007) CXC chemokine ligand 9/monokine induced by IFN-gamma production by tumor cells is critical for T cell-mediated suppression of cutaneous tumors. J Immunol 178:2278–2286PubMed
23.
go back to reference Yang X, Chu Y, Wang Y, Zhang R, Xiong S (2006) Targeted in vivo expression of IFN-gamma-inducible protein 10 induces specific antitumor activity. J Leukoc Biol 80:1434–1444PubMed Yang X, Chu Y, Wang Y, Zhang R, Xiong S (2006) Targeted in vivo expression of IFN-gamma-inducible protein 10 induces specific antitumor activity. J Leukoc Biol 80:1434–1444PubMed
24.
go back to reference Krijgsman D, Hokland M, Kuppen PJK (2018) The role of natural killer T cells in cancer—a phenotypical and functional approach. Front Immunol 9:367PubMedPubMedCentral Krijgsman D, Hokland M, Kuppen PJK (2018) The role of natural killer T cells in cancer—a phenotypical and functional approach. Front Immunol 9:367PubMedPubMedCentral
25.
go back to reference Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L (2019) Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol 16:430–441CrossRefPubMedPubMedCentral Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L (2019) Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol 16:430–441CrossRefPubMedPubMedCentral
26.
go back to reference Della Chiesa M, Pesce S, Muccio L, Carlomagno S, Sivori S, Moretta A, Marcenaro E (2016) Features of memory-like and PD-1(+) human NK cell subsets. Front Immunol 7:351PubMedPubMedCentral Della Chiesa M, Pesce S, Muccio L, Carlomagno S, Sivori S, Moretta A, Marcenaro E (2016) Features of memory-like and PD-1(+) human NK cell subsets. Front Immunol 7:351PubMedPubMedCentral
27.
go back to reference Pesce S, Greppi M, Tabellini G, Rampinelli F, Parolini S, Olive D, Moretta L, Moretta A, Marcenaro E (2017) Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol 139:335–346.e3PubMed Pesce S, Greppi M, Tabellini G, Rampinelli F, Parolini S, Olive D, Moretta L, Moretta A, Marcenaro E (2017) Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol 139:335–346.e3PubMed
28.
go back to reference Beldi-Ferchiou A, Lambert M, Dogniaux S, Vely F, Vivier E, Olive D, Dupuy S, Levasseur F, Zucman D, Lebbe C, Sene D, Hivroz C, Caillat-Zucman S (2016) PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 7:72961–72977PubMedPubMedCentral Beldi-Ferchiou A, Lambert M, Dogniaux S, Vely F, Vivier E, Olive D, Dupuy S, Levasseur F, Zucman D, Lebbe C, Sene D, Hivroz C, Caillat-Zucman S (2016) PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 7:72961–72977PubMedPubMedCentral
29.
go back to reference Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, Azimi CS, Scheer AK, Randolph HE, Thompson TW, Zhang L, Iannello A, Mathur N, Jardine KE, Kirn GA, Bell JC, McBurney MW, Raulet DH, Ardolino M (2018) Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Investig 128:4654–4668PubMedPubMedCentral Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, Azimi CS, Scheer AK, Randolph HE, Thompson TW, Zhang L, Iannello A, Mathur N, Jardine KE, Kirn GA, Bell JC, McBurney MW, Raulet DH, Ardolino M (2018) Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Investig 128:4654–4668PubMedPubMedCentral
30.
go back to reference Parekh VV, Lalani S, Kim S, Halder R, Azuma M, Yagita H, Kumar V, Wu L, Kaer LV (2009) PD-1/PD-L blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated invariant NKT cells. J Immunol 182:2816–2826PubMed Parekh VV, Lalani S, Kim S, Halder R, Azuma M, Yagita H, Kumar V, Wu L, Kaer LV (2009) PD-1/PD-L blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated invariant NKT cells. J Immunol 182:2816–2826PubMed
31.
go back to reference Rudnicka K, Matusiak A, Chmiela M (2015) CD25 (IL-2R) expression correlates with the target cell induced cytotoxic activity and cytokine secretion in human natural killer cells. Acta Biochim Pol 62:885–894PubMed Rudnicka K, Matusiak A, Chmiela M (2015) CD25 (IL-2R) expression correlates with the target cell induced cytotoxic activity and cytokine secretion in human natural killer cells. Acta Biochim Pol 62:885–894PubMed
32.
go back to reference Clausen J, Vergeiner B, Enk M, Petzer AL, Gastl G, Gunsilius E (2003) Functional significance of the activation-associated receptors CD25 and CD69 on human NK-cells and NK-like T-cells. Immunobiology 207:85–93PubMed Clausen J, Vergeiner B, Enk M, Petzer AL, Gastl G, Gunsilius E (2003) Functional significance of the activation-associated receptors CD25 and CD69 on human NK-cells and NK-like T-cells. Immunobiology 207:85–93PubMed
33.
go back to reference Krzywinska E, Cornillon A, Allende-Vega N, Vo DN, Rene C, Lu ZY, Pasero C, Olive D, Fegueux N, Ceballos P, Hicheri Y, Sobecki M, Rossi JF, Cartron G, Villalba M (2016) CD45 isoform profile identifies natural killer (NK) subsets with differential activity. PLoS ONE 11:e0150434PubMedPubMedCentral Krzywinska E, Cornillon A, Allende-Vega N, Vo DN, Rene C, Lu ZY, Pasero C, Olive D, Fegueux N, Ceballos P, Hicheri Y, Sobecki M, Rossi JF, Cartron G, Villalba M (2016) CD45 isoform profile identifies natural killer (NK) subsets with differential activity. PLoS ONE 11:e0150434PubMedPubMedCentral
34.
go back to reference Krzywinska E, Allende-Vega N, Cornillon A, Vo DN, Cayrefourcq L, Panabieres C, Vilches C, Dechanet-Merville J, Hicheri Y, Rossi JF, Cartron G, Villalba M (2015) Identification of anti-tumor cells carrying natural killer (NK) cell antigens in patients with hematological cancers. EBioMedicine 2:1364–1376PubMedPubMedCentral Krzywinska E, Allende-Vega N, Cornillon A, Vo DN, Cayrefourcq L, Panabieres C, Vilches C, Dechanet-Merville J, Hicheri Y, Rossi JF, Cartron G, Villalba M (2015) Identification of anti-tumor cells carrying natural killer (NK) cell antigens in patients with hematological cancers. EBioMedicine 2:1364–1376PubMedPubMedCentral
35.
go back to reference Apoil PA, Puissant-Lubrano B, Congy-Jolivet N, Peres M, Tkaczuk J, Roubinet F, Blancher A (2017) Reference values for T, B and NK human lymphocyte subpopulations in adults. Data Brief 12:400–404PubMedPubMedCentral Apoil PA, Puissant-Lubrano B, Congy-Jolivet N, Peres M, Tkaczuk J, Roubinet F, Blancher A (2017) Reference values for T, B and NK human lymphocyte subpopulations in adults. Data Brief 12:400–404PubMedPubMedCentral
36.
go back to reference Ibarrondo FJ, Yang OO, Chodon T, Avramis E, Lee Y, Sazegar H, Jalil J, Chmielowski B, Koya RC, Schmid I, Gomez-Navarro J, Jamieson BD, Ribas A, Comin-Anduix B (2013) Natural killer T cells in advanced melanoma patients treated with tremelimumab. PLoS ONE 8:e76829PubMedPubMedCentral Ibarrondo FJ, Yang OO, Chodon T, Avramis E, Lee Y, Sazegar H, Jalil J, Chmielowski B, Koya RC, Schmid I, Gomez-Navarro J, Jamieson BD, Ribas A, Comin-Anduix B (2013) Natural killer T cells in advanced melanoma patients treated with tremelimumab. PLoS ONE 8:e76829PubMedPubMedCentral
37.
go back to reference Chow MT, Ozga AJ, Servis RL, Frederick DT, Lo JA, Fisher DE, Freeman GJ, Boland GM, Luster AD (2019) Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50:1498–1512.e5PubMedPubMedCentral Chow MT, Ozga AJ, Servis RL, Frederick DT, Lo JA, Fisher DE, Freeman GJ, Boland GM, Luster AD (2019) Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50:1498–1512.e5PubMedPubMedCentral
38.
go back to reference Czesnikiewicz-Guzik M, Lee WW, Cui D, Hiruma Y, Lamar DL, Yang ZZ, Ouslander JG, Weyand CM, Goronzy JJ (2008) T cell subset-specific susceptibility to aging. Clin Immunol 127:107–118PubMedPubMedCentral Czesnikiewicz-Guzik M, Lee WW, Cui D, Hiruma Y, Lamar DL, Yang ZZ, Ouslander JG, Weyand CM, Goronzy JJ (2008) T cell subset-specific susceptibility to aging. Clin Immunol 127:107–118PubMedPubMedCentral
39.
go back to reference Larsson A, Carlsson L, Gordh T, Lind AL, Thulin M, Kamali-Moghaddam M (2015) The effects of age and gender on plasma levels of 63 cytokines. J Immunol Methods 425:58–61PubMed Larsson A, Carlsson L, Gordh T, Lind AL, Thulin M, Kamali-Moghaddam M (2015) The effects of age and gender on plasma levels of 63 cytokines. J Immunol Methods 425:58–61PubMed
40.
go back to reference Pawelec G (2017) Immunosenescence and cancer. Biogerontology 18:717–721PubMed Pawelec G (2017) Immunosenescence and cancer. Biogerontology 18:717–721PubMed
42.
go back to reference Elias R, Karantanos T, Sira E, Hartshorn KL (2017) Immunotherapy comes of age: immune aging and checkpoint inhibitors. J Geriatr Oncol 8:229–235PubMed Elias R, Karantanos T, Sira E, Hartshorn KL (2017) Immunotherapy comes of age: immune aging and checkpoint inhibitors. J Geriatr Oncol 8:229–235PubMed
43.
go back to reference Bastholt L, Schmidt H, Bjerregaard JK, Herrstedt J, Svane IM (2019) Age favoured overall survival in a large population-based Danish patient cohort treated with anti-PD1 immune checkpoint inhibitor for metastatic melanoma. Eur J Cancer 119:122–131PubMed Bastholt L, Schmidt H, Bjerregaard JK, Herrstedt J, Svane IM (2019) Age favoured overall survival in a large population-based Danish patient cohort treated with anti-PD1 immune checkpoint inhibitor for metastatic melanoma. Eur J Cancer 119:122–131PubMed
44.
go back to reference Perier-Muzet M, Gatt E, Peron J, Falandry C, Amini-Adle M, Thomas L, Dalle S, Boespflug A (2018) Association of immunotherapy with overall survival in elderly patients with melanoma. JAMA Dermatol 154:82–87PubMed Perier-Muzet M, Gatt E, Peron J, Falandry C, Amini-Adle M, Thomas L, Dalle S, Boespflug A (2018) Association of immunotherapy with overall survival in elderly patients with melanoma. JAMA Dermatol 154:82–87PubMed
45.
go back to reference Kugel CH 3rd, Douglass SM, Webster MR, Kaur A, Liu Q, Yin X, Weiss SA, Darvishian F, Al-Rohil RN, Ndoye A, Behera R, Alicea GM, Ecker BL, Fane M, Allegrezza MJ, Svoronos N, Kumar V, Wang DY, Somasundaram R, Hu-Lieskovan S, Ozgun A, Herlyn M, Conejo-Garcia JR, Gabrilovich D, Stone EL, Nowicki TS, Sosman J, Rai R, Carlino MS, Long GV, Marais R, Ribas A, Eroglu Z, Davies MA, Schilling B, Schadendorf D, Xu W, Amaravadi RK, Menzies AM, McQuade JL, Johnson DB, Osman I, Weeraratna AT (2018) Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations. Clin Cancer Res 24:5347–5356PubMedPubMedCentral Kugel CH 3rd, Douglass SM, Webster MR, Kaur A, Liu Q, Yin X, Weiss SA, Darvishian F, Al-Rohil RN, Ndoye A, Behera R, Alicea GM, Ecker BL, Fane M, Allegrezza MJ, Svoronos N, Kumar V, Wang DY, Somasundaram R, Hu-Lieskovan S, Ozgun A, Herlyn M, Conejo-Garcia JR, Gabrilovich D, Stone EL, Nowicki TS, Sosman J, Rai R, Carlino MS, Long GV, Marais R, Ribas A, Eroglu Z, Davies MA, Schilling B, Schadendorf D, Xu W, Amaravadi RK, Menzies AM, McQuade JL, Johnson DB, Osman I, Weeraratna AT (2018) Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations. Clin Cancer Res 24:5347–5356PubMedPubMedCentral
Metadata
Title
Age-associated changes in the immune system may influence the response to anti-PD1 therapy in metastatic melanoma patients
Authors
Henna Kasanen
Micaela Hernberg
Siru Mäkelä
Oscar Brück
Susanna Juteau
Laura Kohtamäki
Mette Ilander
Satu Mustjoki
Anna Kreutzman
Publication date
01-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 5/2020
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-020-02497-9

Other articles of this Issue 5/2020

Cancer Immunology, Immunotherapy 5/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine