Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 3/2020

Open Access 01-03-2020 | Melanoma | Clinical Trial Report

Autologous monocyte-derived DC vaccination combined with cisplatin in stage III and IV melanoma patients: a prospective, randomized phase 2 trial

Authors: Steve Boudewijns, Martine Bloemendal, Nienke de Haas, Harm Westdorp, Kalijn F. Bol, Gerty Schreibelt, Erik H. J. G. Aarntzen, W. Joost Lesterhuis, Mark A. J. Gorris, Alexandra Croockewit, Lieke L. van der Woude, Michelle M. van Rossum, Marieke Welzen, Anna de Goede, Stanleyson V. Hato, Winette T. A. van der Graaf, Cornelis J. A. Punt, Rutger H. T. Koornstra, Winald R. Gerritsen, Carl G. Figdor, I. Jolanda M. de Vries

Published in: Cancer Immunology, Immunotherapy | Issue 3/2020

Login to get access

Abstract

Background

Autologous dendritic cell (DC) vaccines can induce tumor-specific T cells, but their effect can be counteracted by immunosuppressive mechanisms. Cisplatin has shown immunomodulatory effects in vivo which may enhance efficacy of DC vaccination.

Methods

This is a prospective, randomized, open-label phase 2 study (NCT02285413) including stage III and IV melanoma patients receiving 3 biweekly vaccinations of gp100 and tyrosinase mRNA-loaded monocyte-derived DCs with or without cisplatin. Primary objectives were to study immunogenicity and feasibility, and secondary objectives were to assess toxicity and survival.

Results

Twenty-two stage III and 32 stage IV melanoma patients were analyzed. Antigen-specific CD8+ T cells were found in 44% versus 67% and functional T cell responses in 28% versus 19% of skin-test infiltrating lymphocytes in patients receiving DC vaccination with and without cisplatin, respectively. Four patients stopped cisplatin because of toxicity and continued DC monotherapy. No therapy-related grade 3 or 4 adverse events occurred due to DC monotherapy. During combination therapy, one therapy-related grade 3 adverse event, decompensated heart failure due to fluid overload, occurred. The clinical outcome parameters did not clearly suggest significant differences.

Conclusions

Combination of DC vaccination and cisplatin in melanoma patients is feasible and safe, but does not seem to result in more tumor-specific T cell responses or improved clinical outcome, when compared to DC vaccination monotherapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Boudewijns S (2017) Dendritic cell vaccination in the evolving therapeutic landscape of melanoma, departments of Tumor Immunology and Medical Oncology. Radboud University Medical Center, Nijmegen Boudewijns S (2017) Dendritic cell vaccination in the evolving therapeutic landscape of melanoma, departments of Tumor Immunology and Medical Oncology. Radboud University Medical Center, Nijmegen
2.
go back to reference Bloemendal M (2019) Novel strategies in dendritic-cell based immunotherapy—focusing on adjuvant treatment of stage III melanoma, departments of Tumor Immunology and Medical Oncology. Radboud University Medical Center, Nijmegen Bloemendal M (2019) Novel strategies in dendritic-cell based immunotherapy—focusing on adjuvant treatment of stage III melanoma, departments of Tumor Immunology and Medical Oncology. Radboud University Medical Center, Nijmegen
3.
go back to reference Palucka K, Banchereau J (2013) Dendritic-cell-based therapeutic cancer vaccines. Immunity 39(1):38–48CrossRef Palucka K, Banchereau J (2013) Dendritic-cell-based therapeutic cancer vaccines. Immunity 39(1):38–48CrossRef
4.
go back to reference Boudewijns S et al (2016) Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients. Oncoimmunology 5(7):e1191732CrossRef Boudewijns S et al (2016) Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients. Oncoimmunology 5(7):e1191732CrossRef
5.
go back to reference Aarntzen EH et al (2012) Vaccination with mRNA-electroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clin Cancer Res 18(19):5460–5470CrossRef Aarntzen EH et al (2012) Vaccination with mRNA-electroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clin Cancer Res 18(19):5460–5470CrossRef
6.
go back to reference Lesterhuis WJ et al (2011) Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients. Clin Cancer Res 17(17):5725–5735CrossRef Lesterhuis WJ et al (2011) Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients. Clin Cancer Res 17(17):5725–5735CrossRef
7.
go back to reference Wilgenhof S et al (2011) Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 34(5):448–456CrossRef Wilgenhof S et al (2011) Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 34(5):448–456CrossRef
8.
go back to reference Bol KF et al (2016) Favorable overall survival in stage III melanoma patients after adjuvant dendritic cell vaccination. Oncoimmunology 5(1):e1057673CrossRef Bol KF et al (2016) Favorable overall survival in stage III melanoma patients after adjuvant dendritic cell vaccination. Oncoimmunology 5(1):e1057673CrossRef
9.
go back to reference Dilruba S, Kalayda GV (2016) Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol 77(6):1103–1124CrossRef Dilruba S, Kalayda GV (2016) Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol 77(6):1103–1124CrossRef
10.
go back to reference Goodnight JE Jr et al (1979) Cis-dichlorodiammineplatinum(II) alone and combined with DTIC for treatment of disseminated malignant melanoma. Cancer Treat Rep 63(11–12):2005–2007PubMed Goodnight JE Jr et al (1979) Cis-dichlorodiammineplatinum(II) alone and combined with DTIC for treatment of disseminated malignant melanoma. Cancer Treat Rep 63(11–12):2005–2007PubMed
11.
go back to reference Luikart SD, Kennealey GT, Kirkwood JM (1984) Randomized phase III trial of vinblastine, bleomycin, and cis-dichlorodiammine-platinum versus dacarbazine in malignant melanoma. J Clin Oncol 2(3):164–168CrossRef Luikart SD, Kennealey GT, Kirkwood JM (1984) Randomized phase III trial of vinblastine, bleomycin, and cis-dichlorodiammine-platinum versus dacarbazine in malignant melanoma. J Clin Oncol 2(3):164–168CrossRef
12.
go back to reference Keilholz U et al (1997) Interferon alfa-2a and interleukin-2 with or without cisplatin in metastatic melanoma: a randomized trial of the European Organization for Research and Treatment of Cancer Melanoma Cooperative Group. J Clin Oncol 15(7):2579–2588CrossRef Keilholz U et al (1997) Interferon alfa-2a and interleukin-2 with or without cisplatin in metastatic melanoma: a randomized trial of the European Organization for Research and Treatment of Cancer Melanoma Cooperative Group. J Clin Oncol 15(7):2579–2588CrossRef
13.
go back to reference Bhatia S, Tykodi SS, Thompson JA (2009) Treatment of metastatic melanoma: an overview. Oncology (Williston Park) 23(6):488–496 Bhatia S, Tykodi SS, Thompson JA (2009) Treatment of metastatic melanoma: an overview. Oncology (Williston Park) 23(6):488–496
14.
go back to reference de Biasi AR, Villena-Vargas J, Adusumilli PS (2014) Cisplatin-induced antitumor immunomodulation: a review of preclinical and clinical evidence. Clin Cancer Res 20(21):5384–5391CrossRef de Biasi AR, Villena-Vargas J, Adusumilli PS (2014) Cisplatin-induced antitumor immunomodulation: a review of preclinical and clinical evidence. Clin Cancer Res 20(21):5384–5391CrossRef
15.
go back to reference Hato SV et al (2014) Molecular pathways: the immunogenic effects of platinum-based chemotherapeutics. Clin Cancer Res 20(11):2831–2837CrossRef Hato SV et al (2014) Molecular pathways: the immunogenic effects of platinum-based chemotherapeutics. Clin Cancer Res 20(11):2831–2837CrossRef
16.
go back to reference Hato SV et al (2017) Direct inhibition of STAT signaling by platinum drugs contributes to their anti-cancer activity. Oncotarget 8(33):54434–54443CrossRef Hato SV et al (2017) Direct inhibition of STAT signaling by platinum drugs contributes to their anti-cancer activity. Oncotarget 8(33):54434–54443CrossRef
17.
go back to reference Wang T et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10(1):48–54CrossRef Wang T et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10(1):48–54CrossRef
18.
go back to reference Lesterhuis WJ et al (2011) Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J Clin Investig 121(8):3100–3108CrossRef Lesterhuis WJ et al (2011) Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J Clin Investig 121(8):3100–3108CrossRef
19.
go back to reference Huang X, Cui S, Shu Y (2016) Cisplatin selectively downregulated the frequency and immunoinhibitory function of myeloid-derived suppressor cells in a murine B16 melanoma model. Immunol Res 64(1):160–170CrossRef Huang X, Cui S, Shu Y (2016) Cisplatin selectively downregulated the frequency and immunoinhibitory function of myeloid-derived suppressor cells in a murine B16 melanoma model. Immunol Res 64(1):160–170CrossRef
20.
go back to reference Roselli M et al (2013) Effects of conventional therapeutic interventions on the number and function of regulatory T cells. Oncoimmunology 2(10):e27025CrossRef Roselli M et al (2013) Effects of conventional therapeutic interventions on the number and function of regulatory T cells. Oncoimmunology 2(10):e27025CrossRef
21.
go back to reference Di Blasio S et al (2016) Human CD1c(+) DCs are critical cellular mediators of immune responses induced by immunogenic cell death. Oncoimmunology 5(8):e1192739CrossRef Di Blasio S et al (2016) Human CD1c(+) DCs are critical cellular mediators of immune responses induced by immunogenic cell death. Oncoimmunology 5(8):e1192739CrossRef
22.
go back to reference van der Sluis TC et al (2015) Vaccine-induced tumor necrosis factor-producing T cells synergize with cisplatin to promote tumor cell death. Clin Cancer Res 21(4):781–794CrossRef van der Sluis TC et al (2015) Vaccine-induced tumor necrosis factor-producing T cells synergize with cisplatin to promote tumor cell death. Clin Cancer Res 21(4):781–794CrossRef
23.
go back to reference Balch CM et al (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27(36):6199–6206CrossRef Balch CM et al (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27(36):6199–6206CrossRef
24.
go back to reference Finger PT (2009) The 7th edition AJCC staging system for eye cancer: an international language for ophthalmic oncology. Arch Pathol Lab Med 133(8):1197–1198PubMed Finger PT (2009) The 7th edition AJCC staging system for eye cancer: an international language for ophthalmic oncology. Arch Pathol Lab Med 133(8):1197–1198PubMed
25.
go back to reference Berger TG et al (2002) Large-scale generation of mature monocyte-derived dendritic cells for clinical application in cell factories. J Immunol Methods 268(2):131–140CrossRef Berger TG et al (2002) Large-scale generation of mature monocyte-derived dendritic cells for clinical application in cell factories. J Immunol Methods 268(2):131–140CrossRef
26.
go back to reference de Vries IJ et al (2005) Phenotypical and functional characterization of clinical-grade dendritic cells. Methods Mol Med 109:113–126PubMed de Vries IJ et al (2005) Phenotypical and functional characterization of clinical-grade dendritic cells. Methods Mol Med 109:113–126PubMed
27.
go back to reference Schuurhuis DH et al (2009) In situ expression of tumor antigens by messenger RNA-electroporated dendritic cells in lymph nodes of melanoma patients. Cancer Res 69(7):2927–2934CrossRef Schuurhuis DH et al (2009) In situ expression of tumor antigens by messenger RNA-electroporated dendritic cells in lymph nodes of melanoma patients. Cancer Res 69(7):2927–2934CrossRef
28.
go back to reference Figdor CG et al (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10(5):475–480CrossRef Figdor CG et al (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10(5):475–480CrossRef
29.
go back to reference Aarntzen EH et al (2012) Skin-test infiltrating lymphocytes early predict clinical outcome of dendritic cell-based vaccination in metastatic melanoma. Cancer Res 72(23):6102–6110CrossRef Aarntzen EH et al (2012) Skin-test infiltrating lymphocytes early predict clinical outcome of dendritic cell-based vaccination in metastatic melanoma. Cancer Res 72(23):6102–6110CrossRef
30.
go back to reference de Vries IJ et al (2005) Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol 23(24):5779–5787CrossRef de Vries IJ et al (2005) Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol 23(24):5779–5787CrossRef
31.
go back to reference Van Nuffel AM et al (2012) Epitope and HLA-type independent monitoring of antigen-specific T-cells after treatment with dendritic cells presenting full-length tumor antigens. J Immunol Methods 377(1–2):23–36CrossRef Van Nuffel AM et al (2012) Epitope and HLA-type independent monitoring of antigen-specific T-cells after treatment with dendritic cells presenting full-length tumor antigens. J Immunol Methods 377(1–2):23–36CrossRef
32.
go back to reference Cook AM et al (2016) Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology 5(3):e1066062CrossRef Cook AM et al (2016) Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology 5(3):e1066062CrossRef
33.
go back to reference Chen L, Jondal M, Yakimchuk K (2018) Regulatory effects of dexamethasone on NK and T cell immunity. Inflammopharmacology 26(5):1331–1338CrossRef Chen L, Jondal M, Yakimchuk K (2018) Regulatory effects of dexamethasone on NK and T cell immunity. Inflammopharmacology 26(5):1331–1338CrossRef
34.
go back to reference Welters MJ et al (2016) Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Sci Transl Med 8(334):334ra52CrossRef Welters MJ et al (2016) Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Sci Transl Med 8(334):334ra52CrossRef
35.
go back to reference Ribas A et al (2009) Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin Cancer Res 15(19):6267–6276CrossRef Ribas A et al (2009) Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin Cancer Res 15(19):6267–6276CrossRef
36.
go back to reference Tumeh PC et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571CrossRef Tumeh PC et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571CrossRef
37.
go back to reference Morse MA, Lyerly HK (2015) Checkpoint blockade in combination with cancer vaccines. Vaccine 33(51):7377–7385CrossRef Morse MA, Lyerly HK (2015) Checkpoint blockade in combination with cancer vaccines. Vaccine 33(51):7377–7385CrossRef
38.
go back to reference Wilgenhof S et al (2016) Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol 34(12):1330–1338CrossRef Wilgenhof S et al (2016) Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol 34(12):1330–1338CrossRef
39.
go back to reference van Willigen WW et al (2018) Dendritic cell cancer therapy: vaccinating the right patient at the right time. Front Immunol 9:2265CrossRef van Willigen WW et al (2018) Dendritic cell cancer therapy: vaccinating the right patient at the right time. Front Immunol 9:2265CrossRef
Metadata
Title
Autologous monocyte-derived DC vaccination combined with cisplatin in stage III and IV melanoma patients: a prospective, randomized phase 2 trial
Authors
Steve Boudewijns
Martine Bloemendal
Nienke de Haas
Harm Westdorp
Kalijn F. Bol
Gerty Schreibelt
Erik H. J. G. Aarntzen
W. Joost Lesterhuis
Mark A. J. Gorris
Alexandra Croockewit
Lieke L. van der Woude
Michelle M. van Rossum
Marieke Welzen
Anna de Goede
Stanleyson V. Hato
Winette T. A. van der Graaf
Cornelis J. A. Punt
Rutger H. T. Koornstra
Winald R. Gerritsen
Carl G. Figdor
I. Jolanda M. de Vries
Publication date
01-03-2020
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 3/2020
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-019-02466-x

Other articles of this Issue 3/2020

Cancer Immunology, Immunotherapy 3/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine