Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 6/2017

Open Access 01-06-2017 | Review

Combining talimogene laherparepvec with immunotherapies in melanoma and other solid tumors

Authors: Reinhard Dummer, Christoph Hoeller, Isabella Pezzani Gruter, Olivier Michielin

Published in: Cancer Immunology, Immunotherapy | Issue 6/2017

Login to get access

Abstract

Talimogene laherparepvec is a first-in-class intralesional oncolytic immunotherapy. In a recent Phase III trial (OPTiM), talimogene laherparepvec significantly improved durable response rate compared with subcutaneous granulocyte–macrophage colony-stimulating factor (GM-CSF). Overall response rate was also higher in the talimogene laherparepvec arm, and the greatest efficacy was demonstrated in patients with earlier-stage (IIIB, IIIC, or IVM1a) melanoma. Talimogene laherparepvec was well tolerated, with the majority (89%) of adverse events being grade 1 or 2. Preclinical studies have shown that talimogene laherparepvec exerts antitumor activity by selectively replicating within and destroying cancer cells, and through the release of tumor-associated antigens and expression of GM-CSF, which facilitates a wider antitumor immune response. It is hypothesized that combining talimogene laherparepvec with a systemic immunotherapy may, by bringing together complementary mechanisms of action, further enhance the efficacy of both agents. Indeed, talimogene laherparepvec is currently being assessed in combination with immune checkpoint inhibitors, including ipilimumab and pembrolizumab, in trials for melanoma and other solid tumors. Early results in melanoma indicate that the combination of talimogene laherparepvec with ipilimumab or pembrolizumab has greater efficacy than either therapy alone, without additional safety concerns above those expected for each monotherapy. In this review, we discuss the latest results from trials assessing talimogene laherparepvec in combination with other immunotherapies, provide an overview of ongoing and upcoming combination trials, and suggest future directions for talimogene laherparepvec in combination therapy for solid tumors.
Literature
5.
go back to reference Shen Y, Nemunaitis J (2006) Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther 13:975–992CrossRefPubMed Shen Y, Nemunaitis J (2006) Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther 13:975–992CrossRefPubMed
6.
go back to reference Andtbacka RH, Kaufman HL, Collichio F et al (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33:2780–2788CrossRefPubMed Andtbacka RH, Kaufman HL, Collichio F et al (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33:2780–2788CrossRefPubMed
7.
8.
go back to reference Liu BL, Robinson M, Han ZQ et al (2003) ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10:292–303CrossRefPubMed Liu BL, Robinson M, Han ZQ et al (2003) ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10:292–303CrossRefPubMed
9.
go back to reference Nicola NA (1987) Granulocyte colony-stimulating factor and differentiation-induction in myeloid leukemic cells. Int J Cell Cloning 5:1–15CrossRefPubMed Nicola NA (1987) Granulocyte colony-stimulating factor and differentiation-induction in myeloid leukemic cells. Int J Cell Cloning 5:1–15CrossRefPubMed
10.
go back to reference Bowne WB, Wolchok JD, Hawkins WG et al (1999) Injection of DNA encoding granulocyte-macrophage colony-stimulating factor recruits dendritic cells for immune adjuvant effects. Cytokines Cell Mol Ther 5:217–225PubMed Bowne WB, Wolchok JD, Hawkins WG et al (1999) Injection of DNA encoding granulocyte-macrophage colony-stimulating factor recruits dendritic cells for immune adjuvant effects. Cytokines Cell Mol Ther 5:217–225PubMed
11.
go back to reference Poppers J, Mulvey M, Khoo D et al (2000) Inhibition of PKR activation by the proline-rich RNA binding domain of the herpes simplex virus type 1 Us11 protein. J Virol 74:11215–11221CrossRefPubMedPubMedCentral Poppers J, Mulvey M, Khoo D et al (2000) Inhibition of PKR activation by the proline-rich RNA binding domain of the herpes simplex virus type 1 Us11 protein. J Virol 74:11215–11221CrossRefPubMedPubMedCentral
12.
go back to reference Kohlhapp FJ, Kaufman HL (2016) Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 22:1048–1054CrossRefPubMed Kohlhapp FJ, Kaufman HL (2016) Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 22:1048–1054CrossRefPubMed
14.
go back to reference Bedikian AY, Richards J, Kharkevitch D et al (2010) A phase 2 study of high-dose Allovectin-7 in patients with advanced metastatic melanoma. Melanoma Res 20:218–226PubMed Bedikian AY, Richards J, Kharkevitch D et al (2010) A phase 2 study of high-dose Allovectin-7 in patients with advanced metastatic melanoma. Melanoma Res 20:218–226PubMed
15.
go back to reference Hofbauer GF, Baur T, Bonnet MC et al (2008) Clinical phase I intratumoral administration of two recombinant ALVAC canarypox viruses expressing human granulocyte-macrophage colony-stimulating factor or interleukin-2: the transgene determines the composition of the inflammatory infiltrate. Melanoma Res 18:104–111CrossRefPubMed Hofbauer GF, Baur T, Bonnet MC et al (2008) Clinical phase I intratumoral administration of two recombinant ALVAC canarypox viruses expressing human granulocyte-macrophage colony-stimulating factor or interleukin-2: the transgene determines the composition of the inflammatory infiltrate. Melanoma Res 18:104–111CrossRefPubMed
16.
go back to reference Andtbacka RHI, Curti BD, Kaufman H et al (2015) Final data from CALM: a phase II study of Coxsackievirus A21 (CVA21) oncolytic virus immunotherapy in patients with advanced melanoma. J Clin Oncol 33:(Suppl, abstract 9030) [Abstract] Andtbacka RHI, Curti BD, Kaufman H et al (2015) Final data from CALM: a phase II study of Coxsackievirus A21 (CVA21) oncolytic virus immunotherapy in patients with advanced melanoma. J Clin Oncol 33:(Suppl, abstract 9030) [Abstract]
17.
go back to reference Breitbach C, Bell JC, Hwang TH et al (2015) The emerging therapeutic potential of the oncolytic immunotherapeutic Pexa-Vec (JX-594). Oncolytic Virother 4:25–31CrossRefPubMedPubMedCentral Breitbach C, Bell JC, Hwang TH et al (2015) The emerging therapeutic potential of the oncolytic immunotherapeutic Pexa-Vec (JX-594). Oncolytic Virother 4:25–31CrossRefPubMedPubMedCentral
18.
go back to reference Agarwala SS, Thompson JF, Smithers BM et al. Efficacy of intralesional Rose Bengal in patients receiving injection of all existing melanoma in phase II study PV-10-MM-02. J Clin Oncol 2014;32:(Suppl, abstract 9027) [Abstract] Agarwala SS, Thompson JF, Smithers BM et al. Efficacy of intralesional Rose Bengal in patients receiving injection of all existing melanoma in phase II study PV-10-MM-02. J Clin Oncol 2014;32:(Suppl, abstract 9027) [Abstract]
19.
go back to reference Dummer R, Rochlitz C, Velu T et al (2008) Intralesional adenovirus-mediated interleukin-2 gene transfer for advanced solid cancers and melanoma. Mol Ther 16:985–994CrossRefPubMed Dummer R, Rochlitz C, Velu T et al (2008) Intralesional adenovirus-mediated interleukin-2 gene transfer for advanced solid cancers and melanoma. Mol Ther 16:985–994CrossRefPubMed
20.
go back to reference Heinzerling L, Burg G, Dummer R et al (2005) Intratumoral injection of DNA encoding human interleukin 12 into patients with metastatic melanoma: clinical efficacy. Hum Gene Ther 16:35–48CrossRefPubMed Heinzerling L, Burg G, Dummer R et al (2005) Intratumoral injection of DNA encoding human interleukin 12 into patients with metastatic melanoma: clinical efficacy. Hum Gene Ther 16:35–48CrossRefPubMed
21.
go back to reference Toda M, Martuza RL, Rabkin SD (2000) Tumor growth inhibition by intratumoral inoculation of defective herpes simplex virus vectors expressing granulocyte-macrophage colony-stimulating factor. Mol Ther 2:324–329CrossRefPubMed Toda M, Martuza RL, Rabkin SD (2000) Tumor growth inhibition by intratumoral inoculation of defective herpes simplex virus vectors expressing granulocyte-macrophage colony-stimulating factor. Mol Ther 2:324–329CrossRefPubMed
22.
go back to reference Cooke K, Rottman J, Zhan J et al. Oncovex MGM-CSF –mediated regression of contralateral (non-injected) tumors in the A20 murine lymphoma model does not involve direct viral oncolysis. J Immunother Cancer 2015;3 (Suppl 2, abstract P336) [Abstract] Cooke K, Rottman J, Zhan J et al. Oncovex MGM-CSF –mediated regression of contralateral (non-injected) tumors in the A20 murine lymphoma model does not involve direct viral oncolysis. J Immunother Cancer 2015;3 (Suppl 2, abstract P336) [Abstract]
23.
go back to reference Piasecki J, Rottman J, and Le T, Talimogene laherparepvec activates systemic T-cell-mediated anti-tumor immunity. Cancer Res 2015;75(15 Suppl, abstract 4287) [Abstract] Piasecki J, Rottman J, and Le T, Talimogene laherparepvec activates systemic T-cell-mediated anti-tumor immunity. Cancer Res 2015;75(15 Suppl, abstract 4287) [Abstract]
24.
go back to reference Hu JC, Coffin RS, Davis CJ et al (2006) A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 12:6737–6747CrossRefPubMed Hu JC, Coffin RS, Davis CJ et al (2006) A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 12:6737–6747CrossRefPubMed
25.
go back to reference Senzer NN, Kaufman HL, Amatruda T et al (2009) Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol 27:5763–5771CrossRefPubMed Senzer NN, Kaufman HL, Amatruda T et al (2009) Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol 27:5763–5771CrossRefPubMed
26.
go back to reference Kaufman HL, Kim DW, DeRaffele G et al (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17:718–730CrossRefPubMed Kaufman HL, Kim DW, DeRaffele G et al (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17:718–730CrossRefPubMed
27.
go back to reference Hoeller C, Michielin O, Ascierto PA et al (2016) Systematic review of the use of granulocyte-macrophage colony-stimulating factor in patients with advanced melanoma. Cancer Immunol Immunother 65:1015–1034CrossRefPubMedPubMedCentral Hoeller C, Michielin O, Ascierto PA et al (2016) Systematic review of the use of granulocyte-macrophage colony-stimulating factor in patients with advanced melanoma. Cancer Immunol Immunother 65:1015–1034CrossRefPubMedPubMedCentral
28.
go back to reference Gail M, Simon R (1985) Testing for qualitative interactions between treatment effects and patient subsets. Biometrics 41:361–372CrossRefPubMed Gail M, Simon R (1985) Testing for qualitative interactions between treatment effects and patient subsets. Biometrics 41:361–372CrossRefPubMed
29.
go back to reference Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34CrossRefPubMed Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34CrossRefPubMed
30.
go back to reference Andtbacka RH, Ross M, Puzanov I et al (2016) Patterns of clinical response with Talimogene Laherparepvec (T-VEC) in patients with melanoma treated in the OPTiM phase III clinical trial. Ann Surg Oncol 23:4169–4177CrossRefPubMedPubMedCentral Andtbacka RH, Ross M, Puzanov I et al (2016) Patterns of clinical response with Talimogene Laherparepvec (T-VEC) in patients with melanoma treated in the OPTiM phase III clinical trial. Ann Surg Oncol 23:4169–4177CrossRefPubMedPubMedCentral
31.
go back to reference Grosso JF, Jure-Kunkel MN (2013) CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun 13:5PubMedPubMedCentral Grosso JF, Jure-Kunkel MN (2013) CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun 13:5PubMedPubMedCentral
36.
37.
go back to reference Zamarin D, Holmgaard RB, Subudhi SK et al (2014) Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 6:226ra32CrossRefPubMedPubMedCentral Zamarin D, Holmgaard RB, Subudhi SK et al (2014) Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 6:226ra32CrossRefPubMedPubMedCentral
40.
go back to reference Drake CG, Lipson EJ, Brahmer JR (2014) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 11:24–37CrossRefPubMed Drake CG, Lipson EJ, Brahmer JR (2014) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 11:24–37CrossRefPubMed
41.
go back to reference Romano E, Kusio-Kobialka M, Foukas PG et al (2015) Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci USA 112:6140–6145CrossRefPubMedPubMedCentral Romano E, Kusio-Kobialka M, Foukas PG et al (2015) Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci USA 112:6140–6145CrossRefPubMedPubMedCentral
42.
43.
go back to reference Schadendorf D, Hodi FS, Robert C et al (2015) Pooled analysis of long-term survival data from Phase II and Phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33:1889–1894CrossRefPubMedPubMedCentral Schadendorf D, Hodi FS, Robert C et al (2015) Pooled analysis of long-term survival data from Phase II and Phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33:1889–1894CrossRefPubMedPubMedCentral
44.
go back to reference Puzanov I, Milhem M, Minor D et al (2016) Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol 34:2619–2626CrossRefPubMed Puzanov I, Milhem M, Minor D et al (2016) Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol 34:2619–2626CrossRefPubMed
45.
go back to reference Long GV, Dummer R, Ribas A et al (2016) Efficacy analysis of MASTERKEY-265 phase 1b study of talimogene laherparepvec (T-VEC) and pembrolizumab (pembro) for unresectable stage IIIB-IV melanoma. J Clin Oncol 34:(Suppl, abstract 9568) [Abstract] Long GV, Dummer R, Ribas A et al (2016) Efficacy analysis of MASTERKEY-265 phase 1b study of talimogene laherparepvec (T-VEC) and pembrolizumab (pembro) for unresectable stage IIIB-IV melanoma. J Clin Oncol 34:(Suppl, abstract 9568) [Abstract]
46.
go back to reference Amgen Inc., Data on file. Talimogene laherparepvec: OPTiM (005/05) clinical study report—primary analysis. Report date: 14 April 2014 Amgen Inc., Data on file. Talimogene laherparepvec: OPTiM (005/05) clinical study report—primary analysis. Report date: 14 April 2014
49.
go back to reference Ivashko IN, Kolesar JM (2016) Pembrolizumab and nivolumab: PD-1 inhibitors for advanced melanoma. Am J Health Syst Pharm 73:193–201CrossRefPubMed Ivashko IN, Kolesar JM (2016) Pembrolizumab and nivolumab: PD-1 inhibitors for advanced melanoma. Am J Health Syst Pharm 73:193–201CrossRefPubMed
50.
go back to reference Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532CrossRefPubMed Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532CrossRefPubMed
53.
go back to reference Long GV, Dummer R, Ribas A et al (2016) A Phase 1/3 multicenter trial of talimogene laherparepvec in combination with pembrolizumab for the treatment of unresected, Stage IIIB-IV melanoma (MASTERKEY-265): Phase 3 part. J Clin Oncol 34:(Suppl, abstract TPS9598) [Abstract] Long GV, Dummer R, Ribas A et al (2016) A Phase 1/3 multicenter trial of talimogene laherparepvec in combination with pembrolizumab for the treatment of unresected, Stage IIIB-IV melanoma (MASTERKEY-265): Phase 3 part. J Clin Oncol 34:(Suppl, abstract TPS9598) [Abstract]
54.
go back to reference Chesney J, Collichio F, Andtbacka RH et al (2016) Interim safety and efficacy of a randomized (1:1), open-label phase 2 study of talimogene laherparepvec (T) and ipilimumab (I) vs I alone in unresected, stage IIIB-IV melanoma. Ann Oncol 27 (Suppl 6, abstract 1108PD)[Abstract] Chesney J, Collichio F, Andtbacka RH et al (2016) Interim safety and efficacy of a randomized (1:1), open-label phase 2 study of talimogene laherparepvec (T) and ipilimumab (I) vs I alone in unresected, stage IIIB-IV melanoma. Ann Oncol 27 (Suppl 6, abstract 1108PD)[Abstract]
56.
go back to reference Laoui D, Van Overmeire E, De Baetselier P et al (2014) Functional relationship between tumor-associated macrophages and macrophage colony-stimulating factor as contributors to cancer progression. Front Immunol 5:489CrossRefPubMedPubMedCentral Laoui D, Van Overmeire E, De Baetselier P et al (2014) Functional relationship between tumor-associated macrophages and macrophage colony-stimulating factor as contributors to cancer progression. Front Immunol 5:489CrossRefPubMedPubMedCentral
58.
go back to reference Corrales L, Glickman LH, McWhirter SM et al (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11:1018–1030CrossRefPubMedPubMedCentral Corrales L, Glickman LH, McWhirter SM et al (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11:1018–1030CrossRefPubMedPubMedCentral
59.
go back to reference Schaer DA, Cohen AD, Wolchok JD (2010) Anti-GITR antibodies-potential clinical applications for tumor immunotherapy. Curr Opin Investig Drugs 11:1378–1386PubMed Schaer DA, Cohen AD, Wolchok JD (2010) Anti-GITR antibodies-potential clinical applications for tumor immunotherapy. Curr Opin Investig Drugs 11:1378–1386PubMed
60.
go back to reference Hellmann MD, Friedman CF, Wolchok JD (2016) Combinatorial cancer immunotherapies. Adv Immunol 130:251–277CrossRefPubMed Hellmann MD, Friedman CF, Wolchok JD (2016) Combinatorial cancer immunotherapies. Adv Immunol 130:251–277CrossRefPubMed
61.
go back to reference Simpson GR, Relph K, Harrington K et al (2016) Cancer immunotherapy via combining oncolytic virotherapy with chemotherapy: recent advances. Oncolytic Virother 5:1–13PubMedPubMedCentral Simpson GR, Relph K, Harrington K et al (2016) Cancer immunotherapy via combining oncolytic virotherapy with chemotherapy: recent advances. Oncolytic Virother 5:1–13PubMedPubMedCentral
62.
go back to reference Touchefeu Y, Vassaux G, Harrington KJ (2011) Oncolytic viruses in radiation oncology. Radiother Oncol 99:262–267CrossRefPubMed Touchefeu Y, Vassaux G, Harrington KJ (2011) Oncolytic viruses in radiation oncology. Radiother Oncol 99:262–267CrossRefPubMed
63.
go back to reference Salama AK, Postow MA, Salama JK (2016) Irradiation and immunotherapy: from concept to the clinic. Cancer 122:1659–1671CrossRefPubMed Salama AK, Postow MA, Salama JK (2016) Irradiation and immunotherapy: from concept to the clinic. Cancer 122:1659–1671CrossRefPubMed
64.
go back to reference Nguyen A, Ho L, Wan Y (2014) Chemotherapy and oncolytic virotherapy: advanced tactics in the war against cancer. Front Oncol 4:145PubMedPubMedCentral Nguyen A, Ho L, Wan Y (2014) Chemotherapy and oncolytic virotherapy: advanced tactics in the war against cancer. Front Oncol 4:145PubMedPubMedCentral
65.
go back to reference Rekers NH, Troost EG, Zegers CM et al (2014) Stereotactic ablative body radiotherapy combined with immunotherapy: present status and future perspectives. Cancer Radiother 18:391–395CrossRefPubMed Rekers NH, Troost EG, Zegers CM et al (2014) Stereotactic ablative body radiotherapy combined with immunotherapy: present status and future perspectives. Cancer Radiother 18:391–395CrossRefPubMed
70.
go back to reference Aris M, Barrio MM (2015) Combining immunotherapy with oncogene-targeted therapy: a new road for melanoma treatment. Front Immunol 6:46PubMedPubMedCentral Aris M, Barrio MM (2015) Combining immunotherapy with oncogene-targeted therapy: a new road for melanoma treatment. Front Immunol 6:46PubMedPubMedCentral
Metadata
Title
Combining talimogene laherparepvec with immunotherapies in melanoma and other solid tumors
Authors
Reinhard Dummer
Christoph Hoeller
Isabella Pezzani Gruter
Olivier Michielin
Publication date
01-06-2017
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 6/2017
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-017-1967-1

Other articles of this Issue 6/2017

Cancer Immunology, Immunotherapy 6/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine