Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 7/2015

Open Access 01-07-2015 | Focussed Research Review

Orchestrating an immune response against cancer with engineered immune cells expressing αβTCRs, CARs, and innate immune receptors: an immunological and regulatory challenge

Authors: Moniek A. de Witte, Guido J. J. Kierkels, Trudy Straetemans, Cedrik M. Britten, Jürgen Kuball

Published in: Cancer Immunology, Immunotherapy | Issue 7/2015

Login to get access

Abstract

Over half a century ago, the first allogeneic stem cell transplantation (allo-SCT) initiated cellular immunotherapy. For several decades, little progress was made, and toxicity of allo-SCT remained a major challenge. However, recent breakthroughs have opened new avenues to further develop this modality and to provide less toxic and equally efficient interventions for patients suffering from hematological or solid malignancies. Current novel cellular immune interventions include ex vivo expansion and adoptive transfer of tumor-infiltrating immune cells or administration of drugs which antagonize tolerizing mechanisms. Alternatively, transfer of immune cells engineered to express defined T cell receptors (TCRs) and chimeric antigen receptors (CARs) has shown its potential. A valuable addition to ‘engineered’ adaptive immunity has emerged recently through the improved understanding of how innate immune cells can attack cancer cells without substantial side effects. This has enabled the development of transplantation platforms with limited side effects allowing early immune interventions as well as the design of engineered immune cells expressing innate immune receptors. Here, we focus on innate immune interventions and their orchestration with TCR- and CAR-engineered immune cells. In addition, we discuss how the exploitation of the full potential of cellular immune interventions is influenced by regulatory frameworks. Finally, we highlight and discuss substantial differences in the current landscape of clinical trials in Europe as compared to the USA. The aim is to stimulate international efforts to support regulatory authorities and funding agencies, especially in Europe, to create an environment that will endorse the development of engineered immune cells for the benefit of patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Childs R, Chernoff A, Contentin N, Bahceci E, Schrump D, Leitman S et al (2000) Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med 343:750–758PubMedCrossRef Childs R, Chernoff A, Contentin N, Bahceci E, Schrump D, Leitman S et al (2000) Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med 343:750–758PubMedCrossRef
2.
go back to reference Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281PubMedCrossRef Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281PubMedCrossRef
3.
go back to reference Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199PubMedCentralPubMedCrossRef Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199PubMedCentralPubMedCrossRef
4.
go back to reference Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526PubMedCrossRef Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526PubMedCrossRef
5.
go back to reference R. E. Hawkins, D. E. Gilham, R. Debets, Z. Eshhar, N. Taylor, H. Abken, T. N. Schumacher, and ATTACK Consortium (2010) Development of adoptive cell therapy for cancer: a clinical perspective. Hum Gene Ther 21:665–672CrossRef R. E. Hawkins, D. E. Gilham, R. Debets, Z. Eshhar, N. Taylor, H. Abken, T. N. Schumacher, and ATTACK Consortium (2010) Development of adoptive cell therapy for cancer: a clinical perspective. Hum Gene Ther 21:665–672CrossRef
6.
go back to reference de Witte MA, Jorritsma A, Kaiser A, van den Boom MD, Dokter M, Bendle GM et al (2008) Requirements for effective antitumor responses of TCR transduced T cells. J Immunol 181:5128–5136PubMedCrossRef de Witte MA, Jorritsma A, Kaiser A, van den Boom MD, Dokter M, Bendle GM et al (2008) Requirements for effective antitumor responses of TCR transduced T cells. J Immunol 181:5128–5136PubMedCrossRef
7.
go back to reference Gill S, Tasian SK, Ruella M, Shestova O, Li Y, Porter DL et al (2014) Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood 123:2343–2354PubMedCentralPubMedCrossRef Gill S, Tasian SK, Ruella M, Shestova O, Li Y, Porter DL et al (2014) Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood 123:2343–2354PubMedCentralPubMedCrossRef
8.
go back to reference Morgan R, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129PubMedCentralPubMedCrossRef Morgan R, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129PubMedCentralPubMedCrossRef
9.
go back to reference Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733PubMedCentralPubMedCrossRef Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733PubMedCentralPubMedCrossRef
10.
go back to reference Scheper W, Gründer C, Straetemans T, Sebestyen Z, Kuball J (2013) Hunting for clinical translation with innate-like immune cells and their receptors. Leukemia 28:1181–1190PubMedCrossRef Scheper W, Gründer C, Straetemans T, Sebestyen Z, Kuball J (2013) Hunting for clinical translation with innate-like immune cells and their receptors. Leukemia 28:1181–1190PubMedCrossRef
11.
go back to reference Cieri N, Mastaglio S, Oliveira G, Casucci M, Bondanza A, Bonini C (2014) Adoptive immunotherapy with genetically modified lymphocytes in allogeneic stem cell transplantation. Immunol Rev 257:165–180PubMedCrossRef Cieri N, Mastaglio S, Oliveira G, Casucci M, Bondanza A, Bonini C (2014) Adoptive immunotherapy with genetically modified lymphocytes in allogeneic stem cell transplantation. Immunol Rev 257:165–180PubMedCrossRef
12.
go back to reference Baron F, Labopin M, Blaise D, Lopez-Corral L, Vigouroux S, Craddock C et al (2014) Impact of in vivo T-cell depletion on outcome of AML patients in first CR given peripheral blood stem cells and reduced-intensity conditioning allo-SCT from a HLA-identical sibling donor: a report from the Acute Leukemia working party of the European group for blood and bone marrow transplantation. Bone Marrow Transplant 49:389–396PubMedCrossRef Baron F, Labopin M, Blaise D, Lopez-Corral L, Vigouroux S, Craddock C et al (2014) Impact of in vivo T-cell depletion on outcome of AML patients in first CR given peripheral blood stem cells and reduced-intensity conditioning allo-SCT from a HLA-identical sibling donor: a report from the Acute Leukemia working party of the European group for blood and bone marrow transplantation. Bone Marrow Transplant 49:389–396PubMedCrossRef
13.
go back to reference Pasquini MC, Devine S, Mendizabal A, Baden LR, Wingard JR, Lazarus HM et al (2012) Comparative outcomes of donor graft CD34+ selection and immune suppressive therapy as graft-versus-host disease prophylaxis for patients with acute myeloid leukemia in complete remission undergoing HLA-matched sibling allogeneic hematopoietic cell transpl. J Clin Oncol 30:3194–3201PubMedCentralPubMedCrossRef Pasquini MC, Devine S, Mendizabal A, Baden LR, Wingard JR, Lazarus HM et al (2012) Comparative outcomes of donor graft CD34+ selection and immune suppressive therapy as graft-versus-host disease prophylaxis for patients with acute myeloid leukemia in complete remission undergoing HLA-matched sibling allogeneic hematopoietic cell transpl. J Clin Oncol 30:3194–3201PubMedCentralPubMedCrossRef
14.
go back to reference Handgretinger R (2012) Negative depletion of CD3(+) and TcRαβ(+) T cells. Curr Opin Hematol 19:434–439PubMedCrossRef Handgretinger R (2012) Negative depletion of CD3(+) and TcRαβ(+) T cells. Curr Opin Hematol 19:434–439PubMedCrossRef
15.
go back to reference Bertaina A, Merli P, Rutella S, Pagliara D, Bernardo ME, Masetti R et al (2014) HLA-haploidentical stem cell transplantation after removal of ab—T and B cells in children with nonmalignant disorders. Blood 124:822–826PubMedCrossRef Bertaina A, Merli P, Rutella S, Pagliara D, Bernardo ME, Masetti R et al (2014) HLA-haploidentical stem cell transplantation after removal of ab—T and B cells in children with nonmalignant disorders. Blood 124:822–826PubMedCrossRef
17.
go back to reference Nguyen S, Dhedin N, Vernant J-P, Kuentz M, Al Jijakli A, Rouas-Freiss N et al (2005) NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood 105:4135–4142PubMedCrossRef Nguyen S, Dhedin N, Vernant J-P, Kuentz M, Al Jijakli A, Rouas-Freiss N et al (2005) NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood 105:4135–4142PubMedCrossRef
18.
go back to reference Slavin S, Naparstek E, Nagler A, Ackerstein A, Samuel S, Kapelushnik J, Brautbar C, Or R (1996) Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood 87:2195–2204PubMed Slavin S, Naparstek E, Nagler A, Ackerstein A, Samuel S, Kapelushnik J, Brautbar C, Or R (1996) Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood 87:2195–2204PubMed
19.
go back to reference Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W et al (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86:2041–2050PubMed Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W et al (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86:2041–2050PubMed
20.
go back to reference Lokhorst HM, Schattenberg A, Cornelissen JJ, van Oers MH, Fibbe W, Russell I et al (2000) Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. J Clin Oncol 18:3031–3037PubMed Lokhorst HM, Schattenberg A, Cornelissen JJ, van Oers MH, Fibbe W, Russell I et al (2000) Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. J Clin Oncol 18:3031–3037PubMed
21.
go back to reference Eefting M, Halkes CJM, de Wreede LC, van Pelt CM, Kersting S, Marijt EWA et al (2014) Myeloablative T cell-depleted alloSCT with early sequential prophylactic donor lymphocyte infusion is an efficient and safe post-remission treatment for adult ALL. Bone Marrow Transplant 49:287–291PubMedCrossRef Eefting M, Halkes CJM, de Wreede LC, van Pelt CM, Kersting S, Marijt EWA et al (2014) Myeloablative T cell-depleted alloSCT with early sequential prophylactic donor lymphocyte infusion is an efficient and safe post-remission treatment for adult ALL. Bone Marrow Transplant 49:287–291PubMedCrossRef
22.
go back to reference Kessels HW, Wolkers MC, van den Boom MD, van der Valk MA, Schumacher TN (2001) Immunotherapy through TCR gene transfer. Nat Immunol 2:957–961PubMedCrossRef Kessels HW, Wolkers MC, van den Boom MD, van der Valk MA, Schumacher TN (2001) Immunotherapy through TCR gene transfer. Nat Immunol 2:957–961PubMedCrossRef
23.
go back to reference Kunert A, Straetemans T, Govers C, Lamers C, Mathijssen R, Sleijfer S, Debets R (2013) TCR-engineered T cells meet new challenges to treat solid tumors: choice of antigen, T cell fitness, and sensitization of tumor Milieu. Front Immunol 4:363PubMedCentralPubMedCrossRef Kunert A, Straetemans T, Govers C, Lamers C, Mathijssen R, Sleijfer S, Debets R (2013) TCR-engineered T cells meet new challenges to treat solid tumors: choice of antigen, T cell fitness, and sensitization of tumor Milieu. Front Immunol 4:363PubMedCentralPubMedCrossRef
24.
go back to reference Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, Arthur CD et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–404PubMedCrossRef Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, Arthur CD et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–404PubMedCrossRef
25.
go back to reference Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J et al (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19:747–752PubMedCentralPubMedCrossRef Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J et al (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19:747–752PubMedCentralPubMedCrossRef
26.
go back to reference Grupp S, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518PubMedCentralPubMedCrossRef Grupp S, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518PubMedCentralPubMedCrossRef
27.
28.
go back to reference Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640PubMedCrossRef Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640PubMedCrossRef
29.
go back to reference Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729PubMedCrossRef Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729PubMedCrossRef
31.
go back to reference Arnon TI, Markel G, Bar-Ilan A, Hanna J, Fima E, Benchetrit F et al (2008) Harnessing soluble NK cell killer receptors for the generation of novel cancer immune therapy. PLoS ONE 3:e2150PubMedCentralPubMedCrossRef Arnon TI, Markel G, Bar-Ilan A, Hanna J, Fima E, Benchetrit F et al (2008) Harnessing soluble NK cell killer receptors for the generation of novel cancer immune therapy. PLoS ONE 3:e2150PubMedCentralPubMedCrossRef
32.
go back to reference Ciccone E, Pende D, Viale O, Than A, Di Donato C, Orengo AM et al (1992) Involvement of HLA class I alleles in natural killer (NK) cell-specific functions: expression of HLA-Cw3 confers selective protection from lysis by alloreactive NK clones displaying a defined specificity (specificity 2). J Exp Med 176:963–971PubMedCrossRef Ciccone E, Pende D, Viale O, Than A, Di Donato C, Orengo AM et al (1992) Involvement of HLA class I alleles in natural killer (NK) cell-specific functions: expression of HLA-Cw3 confers selective protection from lysis by alloreactive NK clones displaying a defined specificity (specificity 2). J Exp Med 176:963–971PubMedCrossRef
33.
go back to reference Vey N, Bourhis JH, Boissel N, Bordessoule D, Prebet T, Charbonnier A et al (2012) A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood 120:4317–4323PubMedCrossRef Vey N, Bourhis JH, Boissel N, Bordessoule D, Prebet T, Charbonnier A et al (2012) A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood 120:4317–4323PubMedCrossRef
34.
go back to reference Zhang T, Sentman CL (2011) Cancer immunotherapy using a bispecific NK receptor fusion protein that engages both T cells and tumor cells. Cancer Res 71:2066–2076PubMedCentralPubMedCrossRef Zhang T, Sentman CL (2011) Cancer immunotherapy using a bispecific NK receptor fusion protein that engages both T cells and tumor cells. Cancer Res 71:2066–2076PubMedCentralPubMedCrossRef
35.
go back to reference D’Asaro M, La Mendola C, Di Liberto D, Orlando V, Todaro M, Spina M et al (2010) V gamma 9 V delta 2 T lymphocytes efficiently recognize and kill zoledronate-sensitized, imatinib-sensitive, and imatinib-resistant chronic myelogenous leukemia cells. J Immunol 184:3260–3268PubMedCrossRef D’Asaro M, La Mendola C, Di Liberto D, Orlando V, Todaro M, Spina M et al (2010) V gamma 9 V delta 2 T lymphocytes efficiently recognize and kill zoledronate-sensitized, imatinib-sensitive, and imatinib-resistant chronic myelogenous leukemia cells. J Immunol 184:3260–3268PubMedCrossRef
36.
go back to reference Todaro M, D’Asaro M, Caccamo N, Iovino F, Francipane MG, Meraviglia S et al (2009) Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes. J Immunol 182:7287–7296PubMedCrossRef Todaro M, D’Asaro M, Caccamo N, Iovino F, Francipane MG, Meraviglia S et al (2009) Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes. J Immunol 182:7287–7296PubMedCrossRef
37.
go back to reference Xiang Z, Liu Y, Zheng J, Liu M, Lv A, Gao Y et al (2014) Targeted activation of human Vγ9 Vδ2-T cells controls epstein-barr virus-induced B cell lymphoproliferative disease. Cancer Cell 26:565–576PubMedCrossRef Xiang Z, Liu Y, Zheng J, Liu M, Lv A, Gao Y et al (2014) Targeted activation of human Vγ9 Vδ2-T cells controls epstein-barr virus-induced B cell lymphoproliferative disease. Cancer Cell 26:565–576PubMedCrossRef
38.
go back to reference Gründer C, van Dorp S, Hol S, Drent E, Straetemans T, Heijhuurs S et al (2012) γ9 and δ2CDR3 domains regulate functional avidity of T cells harboring γ9δ2TCRs. Blood 120:5153–5162PubMedCrossRef Gründer C, van Dorp S, Hol S, Drent E, Straetemans T, Heijhuurs S et al (2012) γ9 and δ2CDR3 domains regulate functional avidity of T cells harboring γ9δ2TCRs. Blood 120:5153–5162PubMedCrossRef
39.
go back to reference Nedellec S, Bonneville M, Scotet E (2010) Human Vgamma9Vdelta2 T cells: from signals to functions. Semin Immunol 22:199–206PubMedCrossRef Nedellec S, Bonneville M, Scotet E (2010) Human Vgamma9Vdelta2 T cells: from signals to functions. Semin Immunol 22:199–206PubMedCrossRef
40.
go back to reference Jinushi M, Hodi FS, Dranoff G (2006) Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity. Proc Natl Acad Sci USA 103:9190–9195PubMedCentralPubMedCrossRef Jinushi M, Hodi FS, Dranoff G (2006) Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity. Proc Natl Acad Sci USA 103:9190–9195PubMedCentralPubMedCrossRef
41.
go back to reference Marcu-Malina V, Heijhuurs S, van Buuren M, Hartkamp L, Strand S, Sebestyen Z et al (2011) Redirecting αβ T cells against cancer cells by transfer of a broadly tumor-reactive γδT-cell receptor. Blood 118:50–59PubMedCrossRef Marcu-Malina V, Heijhuurs S, van Buuren M, Hartkamp L, Strand S, Sebestyen Z et al (2011) Redirecting αβ T cells against cancer cells by transfer of a broadly tumor-reactive γδT-cell receptor. Blood 118:50–59PubMedCrossRef
43.
44.
go back to reference Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC et al (2013) Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med 5:197CrossRef Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC et al (2013) Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med 5:197CrossRef
45.
go back to reference Bear AS, Morgan RA, Cornetta K, June CH, Binder-Scholl G, Dudley ME et al (2012) Replication-competent retroviruses in gene-modified T cells used in clinical trials: is it time to revise the testing requirements? Mol Ther 20:246–249PubMedCentralPubMedCrossRef Bear AS, Morgan RA, Cornetta K, June CH, Binder-Scholl G, Dudley ME et al (2012) Replication-competent retroviruses in gene-modified T cells used in clinical trials: is it time to revise the testing requirements? Mol Ther 20:246–249PubMedCentralPubMedCrossRef
46.
go back to reference Scholler J, Brady TL, Binder-Scholl G, Hwang W-T, Plesa G, Hege KM et al (2012) Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med 4:132CrossRef Scholler J, Brady TL, Binder-Scholl G, Hwang W-T, Plesa G, Hege KM et al (2012) Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med 4:132CrossRef
47.
go back to reference Britten CM, Singh-Jasuja H, Flamion B, Hoos A, Huber C, Kallen K-J et al (2013) The regulatory landscape for actively personalized cancer immunotherapies. Nat Biotechnol 31:880–882PubMedCrossRef Britten CM, Singh-Jasuja H, Flamion B, Hoos A, Huber C, Kallen K-J et al (2013) The regulatory landscape for actively personalized cancer immunotherapies. Nat Biotechnol 31:880–882PubMedCrossRef
48.
49.
go back to reference Kenter MJH, Cohen AF (2012) Re-engineering the European union clinical trials directive. Lancet 379:1765–1767PubMedCrossRef Kenter MJH, Cohen AF (2012) Re-engineering the European union clinical trials directive. Lancet 379:1765–1767PubMedCrossRef
Metadata
Title
Orchestrating an immune response against cancer with engineered immune cells expressing αβTCRs, CARs, and innate immune receptors: an immunological and regulatory challenge
Authors
Moniek A. de Witte
Guido J. J. Kierkels
Trudy Straetemans
Cedrik M. Britten
Jürgen Kuball
Publication date
01-07-2015
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 7/2015
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-015-1710-8

Other articles of this Issue 7/2015

Cancer Immunology, Immunotherapy 7/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine