Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 10/2014

01-10-2014 | Original Article

Immunomodulatory drugs improve the immune environment for dendritic cell-based immunotherapy in multiple myeloma patients after autologous stem cell transplantation

Authors: Brenda De Keersmaecker, Karel Fostier, Jurgen Corthals, Sofie Wilgenhof, Carlo Heirman, Joeri L. Aerts, Kris Thielemans, Rik Schots

Published in: Cancer Immunology, Immunotherapy | Issue 10/2014

Login to get access

Abstract

Multiple myeloma (MM) is characterized by a malignant proliferation of plasma cells in the bone marrow with associated organ damage. Although the prognosis of MM has improved recently, the disease remains incurable for the large majority of patients. The eradication of residual disease in the bone marrow is a main target on the road toward cure. Immune cells play a role in the control of cancer and can be tools to attack residual MM cells. However, the myeloma-associated immune deficiency is a major hurdle to immunotherapy. We evaluated ex vivo the effects of low doses of the immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide on several immune cell types from MM patients after autologous stem cell transplantation and with low tumor burden. We observed that these drugs increased CD4+ and CD8+ T-cell proliferation and cytokine production, enhanced the lytic capacity of cytotoxic T lymphocytes and reduced the suppressive effects of regulatory T cells on CD8+ T-cell responses. In addition, we found that functional dendritic cells (DCs) can be generated from mononuclear cells from MM patients. The presence of IMiDs improved the quality of antigen-specific T cells induced or expanded by these DCs as evidenced by a higher degree of T-cell polyfunctionality. Our results provide a rationale for the design of early phase clinical studies to assess the efficacy of DC-based immunotherapy in combination with posttransplant maintenance treatment with IMiDs in MM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schots R (2011) Recent advances in myeloma treatment. Transfus Apheresis Sci 44:223–229CrossRef Schots R (2011) Recent advances in myeloma treatment. Transfus Apheresis Sci 44:223–229CrossRef
3.
go back to reference Munshi NC, Anderson KC, Bergsagel PL et al (2011) Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2. Blood 117:4696–4700PubMedCrossRefPubMedCentral Munshi NC, Anderson KC, Bergsagel PL et al (2011) Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2. Blood 117:4696–4700PubMedCrossRefPubMedCentral
4.
go back to reference Brenner H, Gondos A, Pulte D (2008) Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood 111:2521–2526PubMedCrossRef Brenner H, Gondos A, Pulte D (2008) Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood 111:2521–2526PubMedCrossRef
5.
go back to reference Reichardt VL, Okada CY, Liso A et al (1999) Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood 93:2411–2419PubMed Reichardt VL, Okada CY, Liso A et al (1999) Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood 93:2411–2419PubMed
6.
go back to reference Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S et al (2000) Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 6:621–627PubMedCrossRef Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S et al (2000) Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 6:621–627PubMedCrossRef
7.
go back to reference Rosenblatt J, Avivi I, Vasir B et al (2013) Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 19:3640–3648PubMedCrossRefPubMedCentral Rosenblatt J, Avivi I, Vasir B et al (2013) Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 19:3640–3648PubMedCrossRefPubMedCentral
8.
go back to reference Hobo W, Strobbe L, Maas F et al (2013) Immunogenicity of dendritic cells pulsed with MAGE3, Survivin and B-cell maturation antigen mRNA for vaccination of multiple myeloma patients. Cancer Immunol Immunother 62:1381–1392PubMedCrossRef Hobo W, Strobbe L, Maas F et al (2013) Immunogenicity of dendritic cells pulsed with MAGE3, Survivin and B-cell maturation antigen mRNA for vaccination of multiple myeloma patients. Cancer Immunol Immunother 62:1381–1392PubMedCrossRef
9.
go back to reference Meehan KR, Wu J, Bengtson E et al (2007) Early recovery of aggressive cytotoxic cells and improved immune resurgence with post-transplant immunotherapy for multiple myeloma. Bone Marrow Transplant 39:695–703PubMedCrossRef Meehan KR, Wu J, Bengtson E et al (2007) Early recovery of aggressive cytotoxic cells and improved immune resurgence with post-transplant immunotherapy for multiple myeloma. Bone Marrow Transplant 39:695–703PubMedCrossRef
10.
go back to reference Rapoport AP, Aqui NA, Stadtmauer EA et al (2011) Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood 117:788–797PubMedCrossRefPubMedCentral Rapoport AP, Aqui NA, Stadtmauer EA et al (2011) Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood 117:788–797PubMedCrossRefPubMedCentral
11.
go back to reference Meehan KR, Talebian L, Tosteson TD et al (2013) Adoptive cellular therapy using cells enriched for NKG2D+ CD3+ CD8+ T cells after autologous transplantation for myeloma. Biol Blood Marrow Transplant 19:129–137PubMedCrossRefPubMedCentral Meehan KR, Talebian L, Tosteson TD et al (2013) Adoptive cellular therapy using cells enriched for NKG2D+ CD3+ CD8+ T cells after autologous transplantation for myeloma. Biol Blood Marrow Transplant 19:129–137PubMedCrossRefPubMedCentral
12.
go back to reference Nair JR, Carlson LM, Koorella C et al (2011) CD28 expressed on malignant plasma cells induces a prosurvival and immunosuppressive microenvironment. J Immunol 187:1243–1253PubMedCrossRefPubMedCentral Nair JR, Carlson LM, Koorella C et al (2011) CD28 expressed on malignant plasma cells induces a prosurvival and immunosuppressive microenvironment. J Immunol 187:1243–1253PubMedCrossRefPubMedCentral
13.
go back to reference Okunishi K, Dohi M, Nakagome K et al (2005) A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. J Immunol 175:4745–4753PubMedCrossRef Okunishi K, Dohi M, Nakagome K et al (2005) A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. J Immunol 175:4745–4753PubMedCrossRef
14.
go back to reference Beyer M, Kochanek M, Giese T et al (2006) In vivo peripheral expansion of naive CD4+ CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107:3940–3949PubMedCrossRef Beyer M, Kochanek M, Giese T et al (2006) In vivo peripheral expansion of naive CD4+ CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107:3940–3949PubMedCrossRef
15.
go back to reference Brimnes MK, Vangsted AJ, Knudsen LM et al (2010) Increased level of both CD4+ FOXP3+ regulatory T cells and CD14+ HLA-DR−/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 72:540–547PubMedCrossRef Brimnes MK, Vangsted AJ, Knudsen LM et al (2010) Increased level of both CD4+ FOXP3+ regulatory T cells and CD14+ HLA-DR/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 72:540–547PubMedCrossRef
16.
go back to reference Feyler S, von Lilienfeld-Toal M, Jarmin S et al (2009) CD4(+)CD25(+)FoxP3(+) regulatory T cells are increased whilst CD3(+)CD4(−)CD8(−)alphabetaTCR(+) double negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. Br J Haematol 144:686–695PubMedCrossRef Feyler S, von Lilienfeld-Toal M, Jarmin S et al (2009) CD4(+)CD25(+)FoxP3(+) regulatory T cells are increased whilst CD3(+)CD4(−)CD8(−)alphabetaTCR(+) double negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. Br J Haematol 144:686–695PubMedCrossRef
17.
go back to reference Van Valckenborgh E, Schouppe E, Movahedi K et al (2012) Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow. Leukemia 26:2424–2428PubMedCrossRef Van Valckenborgh E, Schouppe E, Movahedi K et al (2012) Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow. Leukemia 26:2424–2428PubMedCrossRef
18.
go back to reference Görgün GT, Whitehill G, Anderson JL et al (2013) Tumor promoting immune suppressive myeloid derived suppressor cells in multiple myeloma microenvironment. Blood 121:2975–2987PubMedCrossRefPubMedCentral Görgün GT, Whitehill G, Anderson JL et al (2013) Tumor promoting immune suppressive myeloid derived suppressor cells in multiple myeloma microenvironment. Blood 121:2975–2987PubMedCrossRefPubMedCentral
19.
go back to reference Ramachandran IR, Martner A, Pisklakova A et al (2013) Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol 190:3815–3823PubMedCrossRefPubMedCentral Ramachandran IR, Martner A, Pisklakova A et al (2013) Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol 190:3815–3823PubMedCrossRefPubMedCentral
20.
go back to reference Lu L, Payvandi F, Wu L et al (2009) The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res 77:78–86PubMedCrossRef Lu L, Payvandi F, Wu L et al (2009) The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res 77:78–86PubMedCrossRef
21.
go back to reference Mitsiades N (2002) Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99:4525–4530PubMedCrossRef Mitsiades N (2002) Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99:4525–4530PubMedCrossRef
22.
go back to reference LeBlanc R, Hideshima T, Catley LP et al (2004) Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood 103:1787–1790PubMedCrossRef LeBlanc R, Hideshima T, Catley LP et al (2004) Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood 103:1787–1790PubMedCrossRef
23.
go back to reference Xu Y, Li J, Ferguson GD et al (2009) Immunomodulatory drugs reorganize cytoskeleton by modulating Rho GTPases. Blood 114:338–345PubMedCrossRef Xu Y, Li J, Ferguson GD et al (2009) Immunomodulatory drugs reorganize cytoskeleton by modulating Rho GTPases. Blood 114:338–345PubMedCrossRef
24.
go back to reference Lu G, Middleton RE, Sun H et al (2014) The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343:305–309PubMedCrossRefPubMedCentral Lu G, Middleton RE, Sun H et al (2014) The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343:305–309PubMedCrossRefPubMedCentral
25.
go back to reference Lopez-Girona A, Mendy D, Ito T et al (2012) Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26:2326–2335PubMedCrossRefPubMedCentral Lopez-Girona A, Mendy D, Ito T et al (2012) Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26:2326–2335PubMedCrossRefPubMedCentral
26.
go back to reference Wilgenhof S, Van Nuffel AMT, Corthals J et al (2011) Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 34:448–456PubMedCrossRef Wilgenhof S, Van Nuffel AMT, Corthals J et al (2011) Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 34:448–456PubMedCrossRef
27.
go back to reference Van Nuffel AMT, Benteyn D, Wilgenhof S et al (2012) Intravenous and intradermal TriMix-dendritic cell therapy results in a broad T-cell response and durable tumor response in a chemorefractory stage IV-M1c melanoma patient. Cancer Immunol Immunother 61:1033–1043PubMedCrossRef Van Nuffel AMT, Benteyn D, Wilgenhof S et al (2012) Intravenous and intradermal TriMix-dendritic cell therapy results in a broad T-cell response and durable tumor response in a chemorefractory stage IV-M1c melanoma patient. Cancer Immunol Immunother 61:1033–1043PubMedCrossRef
28.
go back to reference Bonehill A, Van Nuffel AMT, Corthals J et al (2009) Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res 15:3366–3375PubMedCrossRef Bonehill A, Van Nuffel AMT, Corthals J et al (2009) Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res 15:3366–3375PubMedCrossRef
29.
go back to reference Wilgenhof S, Pierret L, Corthals J et al (2011) Restoration of tumor equilibrium after immunotherapy for advanced melanoma: three illustrative cases. Melanoma Res 21:152–159PubMedCrossRef Wilgenhof S, Pierret L, Corthals J et al (2011) Restoration of tumor equilibrium after immunotherapy for advanced melanoma: three illustrative cases. Melanoma Res 21:152–159PubMedCrossRef
30.
go back to reference De Keersmaecker B, Heirman C, Corthals J et al (2011) The combination of 4-1BBL and CD40L strongly enhances the capacity of dendritic cells to stimulate HIV-specific T cell responses. J Leukoc Biol 89:989–999PubMedCrossRef De Keersmaecker B, Heirman C, Corthals J et al (2011) The combination of 4-1BBL and CD40L strongly enhances the capacity of dendritic cells to stimulate HIV-specific T cell responses. J Leukoc Biol 89:989–999PubMedCrossRef
31.
go back to reference Zhang L, Götz M, Hofmann S, Greiner J (2012) Immunogenic targets for specific immunotherapy in multiple myeloma. Clin Dev Immunol 2012:820394PubMedPubMedCentral Zhang L, Götz M, Hofmann S, Greiner J (2012) Immunogenic targets for specific immunotherapy in multiple myeloma. Clin Dev Immunol 2012:820394PubMedPubMedCentral
32.
go back to reference De Keersmaecker B, Allard SD, Lacor P et al (2012) Expansion of polyfunctional HIV-specific T cells upon stimulation with mRNA electroporated dendritic cells in the presence of immunomodulatory drugs. J Virol 86:9351–9360PubMedCrossRefPubMedCentral De Keersmaecker B, Allard SD, Lacor P et al (2012) Expansion of polyfunctional HIV-specific T cells upon stimulation with mRNA electroporated dendritic cells in the presence of immunomodulatory drugs. J Virol 86:9351–9360PubMedCrossRefPubMedCentral
33.
go back to reference Yuan J, Gnjatic S, Li H et al (2008) CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci USA 105:20410–20415PubMedCrossRefPubMedCentral Yuan J, Gnjatic S, Li H et al (2008) CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci USA 105:20410–20415PubMedCrossRefPubMedCentral
34.
go back to reference Aranda F, Llopiz D, Díaz-Valdés N et al (2011) Adjuvant combination and antigen targeting as a strategy to induce polyfunctional and high-avidity T-cell responses against poorly immunogenic tumors. Cancer Res 71:3214–3224PubMedCrossRef Aranda F, Llopiz D, Díaz-Valdés N et al (2011) Adjuvant combination and antigen targeting as a strategy to induce polyfunctional and high-avidity T-cell responses against poorly immunogenic tumors. Cancer Res 71:3214–3224PubMedCrossRef
35.
go back to reference Ding Z-C, Huang L, Blazar BR et al (2012) Polyfunctional CD4+ T cells are essential for eradicating advanced B-cell lymphoma after chemotherapy. Blood 120:2229–2239PubMedCrossRefPubMedCentral Ding Z-C, Huang L, Blazar BR et al (2012) Polyfunctional CD4+ T cells are essential for eradicating advanced B-cell lymphoma after chemotherapy. Blood 120:2229–2239PubMedCrossRefPubMedCentral
36.
go back to reference Galustian C, Meyer B, Labarthe M-C et al (2009) The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 58:1033–1045PubMedCrossRef Galustian C, Meyer B, Labarthe M-C et al (2009) The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 58:1033–1045PubMedCrossRef
37.
go back to reference Vasquez-Dunddel D, Pan F, Zeng Q et al (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 123:1580–1589PubMedCrossRefPubMedCentral Vasquez-Dunddel D, Pan F, Zeng Q et al (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 123:1580–1589PubMedCrossRefPubMedCentral
38.
go back to reference Qin A, Cai W, Pan T et al (2013) Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J Virol 87:1477–1490PubMedCrossRefPubMedCentral Qin A, Cai W, Pan T et al (2013) Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J Virol 87:1477–1490PubMedCrossRefPubMedCentral
39.
go back to reference Mougiakakos D, Jitschin R, von Bahr L et al (2012) Immunosuppressive CD14+ HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation. Leukemia 27:377–388PubMedCrossRef Mougiakakos D, Jitschin R, von Bahr L et al (2012) Immunosuppressive CD14+ HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation. Leukemia 27:377–388PubMedCrossRef
40.
go back to reference Poschke I, Mougiakakos D, Hansson J et al (2010) Immature immunosuppressive CD14+ HLA-DR−/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70:4335–4345PubMedCrossRef Poschke I, Mougiakakos D, Hansson J et al (2010) Immature immunosuppressive CD14+ HLA-DR−/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70:4335–4345PubMedCrossRef
41.
go back to reference Kotsakis A, Harasymczuk M, Schilling B et al (2012) Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J Immunol Methods 381:14–22PubMedCrossRefPubMedCentral Kotsakis A, Harasymczuk M, Schilling B et al (2012) Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J Immunol Methods 381:14–22PubMedCrossRefPubMedCentral
42.
go back to reference Schilling B, Sucker A, Griewank K et al (2013) Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int J Cancer 133:1653–1663PubMedCrossRef Schilling B, Sucker A, Griewank K et al (2013) Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int J Cancer 133:1653–1663PubMedCrossRef
43.
go back to reference Duffy A, Zhao F, Haile L et al (2013) Comparative analysis of monocytic and granulocytic myeloid-derived suppressor cell subsets in patients with gastrointestinal malignancies. Cancer Immunol Immunother 62:299–307PubMedCrossRef Duffy A, Zhao F, Haile L et al (2013) Comparative analysis of monocytic and granulocytic myeloid-derived suppressor cell subsets in patients with gastrointestinal malignancies. Cancer Immunol Immunother 62:299–307PubMedCrossRef
44.
go back to reference Serafini P, Meckel K, Kelso M et al (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203:2691–2702PubMedCrossRefPubMedCentral Serafini P, Meckel K, Kelso M et al (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203:2691–2702PubMedCrossRefPubMedCentral
45.
go back to reference Bonehill A, Tuyaerts S, Van Nuffel AMT et al (2008) Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 16:1170–1180PubMedCrossRef Bonehill A, Tuyaerts S, Van Nuffel AMT et al (2008) Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 16:1170–1180PubMedCrossRef
46.
go back to reference Wilgenhof S, Van Nuffel AMT, Benteyn D et al (2013) A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 24:2686–2693PubMedCrossRef Wilgenhof S, Van Nuffel AMT, Benteyn D et al (2013) A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 24:2686–2693PubMedCrossRef
47.
go back to reference Maecker B, Anderson KS, von Bergwelt-Baildon MS et al (2003) Viral antigen-specific CD8+ T-cell responses are impaired in multiple myeloma. Br J Haematol 121:842–848PubMedCrossRef Maecker B, Anderson KS, von Bergwelt-Baildon MS et al (2003) Viral antigen-specific CD8+ T-cell responses are impaired in multiple myeloma. Br J Haematol 121:842–848PubMedCrossRef
48.
go back to reference Sakamaki I, Kwak LW, Cha S-C et al (2014) Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas. Leukemia 28:329–337PubMedCrossRef Sakamaki I, Kwak LW, Cha S-C et al (2014) Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas. Leukemia 28:329–337PubMedCrossRef
49.
go back to reference Chen N, Lau H, Kong L et al (2007) Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis. J Clin Pharmacol 47:1466–1475PubMedCrossRef Chen N, Lau H, Kong L et al (2007) Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis. J Clin Pharmacol 47:1466–1475PubMedCrossRef
50.
go back to reference Richter J, Neparidze N, Zhang L et al (2013) Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood 121:423–430PubMedCrossRefPubMedCentral Richter J, Neparidze N, Zhang L et al (2013) Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood 121:423–430PubMedCrossRefPubMedCentral
Metadata
Title
Immunomodulatory drugs improve the immune environment for dendritic cell-based immunotherapy in multiple myeloma patients after autologous stem cell transplantation
Authors
Brenda De Keersmaecker
Karel Fostier
Jurgen Corthals
Sofie Wilgenhof
Carlo Heirman
Joeri L. Aerts
Kris Thielemans
Rik Schots
Publication date
01-10-2014
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 10/2014
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-014-1571-6

Other articles of this Issue 10/2014

Cancer Immunology, Immunotherapy 10/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine