Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 6/2011

01-06-2011 | Review

Clinical evaluation of cellular immunotherapy in acute myeloid leukaemia

Authors: Evelien L. J. Smits, Cindy Lee, Nicola Hardwick, Suzanne Brooks, Viggo F. I. Van Tendeloo, Kim Orchard, Barbara-ann Guinn

Published in: Cancer Immunology, Immunotherapy | Issue 6/2011

Login to get access

Abstract

Immunotherapy is currently under active investigation as an adjuvant therapy to improve the overall survival of patients with acute myeloid leukaemia (AML) by eliminating residual leukaemic cells following standard therapy. The graft-versus-leukaemia effect observed following allogeneic haematopoietic stem cell transplantation has already demonstrated the significant role of immune cells in controlling AML, paving the way to further exploitation of this effect in optimized immunotherapy protocols. In this review, we discuss the current state of cellular immunotherapy as adjuvant therapy for AML, with a particular focus on new strategies and recently published results of preclinical and clinical studies. Therapeutic vaccines that are being tested in AML include whole tumour cells as an autologous source of multiple leukaemia-associated antigens (LAA) and autologous dendritic cells loaded with LAA as effective antigen-presenting cells. Furthermore, adoptive transfer of cytotoxic T cells or natural killer cells is under active investigation. Results from phase I and II trials are promising and support further investigation into the potential of cellular immunotherapeutic strategies to prevent or fight relapse in AML patients.
Literature
1.
go back to reference Rubnitz JE, Gibson B, Smith FO (2010) Acute myeloid leukemia. Hematol Oncol Clin North Am 24:35–63PubMedCrossRef Rubnitz JE, Gibson B, Smith FO (2010) Acute myeloid leukemia. Hematol Oncol Clin North Am 24:35–63PubMedCrossRef
2.
go back to reference Stone RM, O’Donnell MR, Sekeres MA (2004) Acute myeloid leukemia. Hematol Am Soc Hematol Educ Program 98–117 Stone RM, O’Donnell MR, Sekeres MA (2004) Acute myeloid leukemia. Hematol Am Soc Hematol Educ Program 98–117
3.
go back to reference O’Donnell MR, Abboud CN, Altman J et al (2010) Acute myeloid leukemia. J Natl Compr Canc Netw 9:280–317 O’Donnell MR, Abboud CN, Altman J et al (2010) Acute myeloid leukemia. J Natl Compr Canc Netw 9:280–317
4.
go back to reference Hamadani M, Awan FT, Elder P et al (2008) Allogeneic hematopoietic stem cell transplantation for peripheral T cell lymphomas; evidence of graft-versus-T cell lymphoma effect. Biol Blood Marrow Transplant 14:480–483PubMedCrossRef Hamadani M, Awan FT, Elder P et al (2008) Allogeneic hematopoietic stem cell transplantation for peripheral T cell lymphomas; evidence of graft-versus-T cell lymphoma effect. Biol Blood Marrow Transplant 14:480–483PubMedCrossRef
5.
go back to reference Soiffer RJ (2008) Donor lymphocyte infusions for acute myeloid leukaemia. Best Pract Res Clin Haematol 21:455–466PubMedCrossRef Soiffer RJ (2008) Donor lymphocyte infusions for acute myeloid leukaemia. Best Pract Res Clin Haematol 21:455–466PubMedCrossRef
6.
go back to reference Hamadani M, Awan FT, Copelan EA (2008) Hematopoietic stem cell transplantation in adults with acute myeloid leukemia. Biol Blood Marrow Transplant 14:556–567PubMedCrossRef Hamadani M, Awan FT, Copelan EA (2008) Hematopoietic stem cell transplantation in adults with acute myeloid leukemia. Biol Blood Marrow Transplant 14:556–567PubMedCrossRef
7.
go back to reference Lodewyck T, Cornelissen JJ (2008) Allogeneic stem cell transplantation in acute myeloid leukemia: a risk-adapted approach. Blood Rev 22:293–302PubMedCrossRef Lodewyck T, Cornelissen JJ (2008) Allogeneic stem cell transplantation in acute myeloid leukemia: a risk-adapted approach. Blood Rev 22:293–302PubMedCrossRef
8.
go back to reference Storb R (2009) Reduced-intensity conditioning transplantation in myeloid malignancies. Curr Opin Oncol 21:S3–S5PubMedCrossRef Storb R (2009) Reduced-intensity conditioning transplantation in myeloid malignancies. Curr Opin Oncol 21:S3–S5PubMedCrossRef
9.
go back to reference Marmont AM, Horowitz MM, Gale RP et al (1991) T-cell depletion of HLA-identical transplants in leukemia. Blood 78:2120–2130PubMed Marmont AM, Horowitz MM, Gale RP et al (1991) T-cell depletion of HLA-identical transplants in leukemia. Blood 78:2120–2130PubMed
10.
go back to reference O’Donnell PV, Luznik L, Jones RJ et al (2002) Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 8:377–386PubMedCrossRef O’Donnell PV, Luznik L, Jones RJ et al (2002) Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 8:377–386PubMedCrossRef
11.
go back to reference Luznik L, Bolanos-Meade J, Zahurak M et al (2010) High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood 115:3224–3230PubMedCrossRef Luznik L, Bolanos-Meade J, Zahurak M et al (2010) High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood 115:3224–3230PubMedCrossRef
12.
go back to reference Luznik L, O’Donnell PV, Symons HJ et al (2008) HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 14:641–650PubMedCrossRef Luznik L, O’Donnell PV, Symons HJ et al (2008) HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 14:641–650PubMedCrossRef
13.
go back to reference Rezvani K, Barrett AJ (2008) Characterizing and optimizing immune responses to leukaemia antigens after allogeneic stem cell transplantation. Best Pract Res Clin Haematol 21:437–453PubMedCrossRef Rezvani K, Barrett AJ (2008) Characterizing and optimizing immune responses to leukaemia antigens after allogeneic stem cell transplantation. Best Pract Res Clin Haematol 21:437–453PubMedCrossRef
14.
go back to reference Smits EL, Berneman ZN, Van Tendeloo VF (2009) Immunotherapy of acute myeloid leukemia: current approaches. Oncologist 14:240–252PubMedCrossRef Smits EL, Berneman ZN, Van Tendeloo VF (2009) Immunotherapy of acute myeloid leukemia: current approaches. Oncologist 14:240–252PubMedCrossRef
15.
go back to reference Schmitt M, Casalegno-Garduno R, Xu X et al (2009) Peptide vaccines for patients with acute myeloid leukemia. Expert Rev Vaccines 8:1415–1425PubMedCrossRef Schmitt M, Casalegno-Garduno R, Xu X et al (2009) Peptide vaccines for patients with acute myeloid leukemia. Expert Rev Vaccines 8:1415–1425PubMedCrossRef
16.
go back to reference Barrett AJ, Le Blanc K (2010) Immunotherapy prospects for acute myeloid leukaemia. Clin Exp Immunol 161:223–232PubMed Barrett AJ, Le Blanc K (2010) Immunotherapy prospects for acute myeloid leukaemia. Clin Exp Immunol 161:223–232PubMed
17.
go back to reference Liseth K, Ersvaer E, Hervig T et al (2010) Combination of intensive chemotherapy and anticancer vaccines in the treatment of human malignancies: the hematological experience. J Biomed Biotechnol 2010:692097PubMedCrossRef Liseth K, Ersvaer E, Hervig T et al (2010) Combination of intensive chemotherapy and anticancer vaccines in the treatment of human malignancies: the hematological experience. J Biomed Biotechnol 2010:692097PubMedCrossRef
18.
go back to reference Thoren FB, Romero AI, Brune M et al (2009) Histamine dihydrochloride and low-dose interleukin-2 as post-consolidation immunotherapy in acute myeloid leukemia. Expert Opin Biol Ther 9:1217–1223PubMedCrossRef Thoren FB, Romero AI, Brune M et al (2009) Histamine dihydrochloride and low-dose interleukin-2 as post-consolidation immunotherapy in acute myeloid leukemia. Expert Opin Biol Ther 9:1217–1223PubMedCrossRef
19.
go back to reference Pegram HJ, Andrews DM, Smyth MJ et al (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89:216–224PubMedCrossRef Pegram HJ, Andrews DM, Smyth MJ et al (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89:216–224PubMedCrossRef
20.
go back to reference Cheever MA, Allison JP, Ferris AS et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337PubMedCrossRef Cheever MA, Allison JP, Ferris AS et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337PubMedCrossRef
21.
go back to reference Chan L, Hardwick NR, Guinn BA et al (2006) An immune edited tumour versus a tumour edited immune system: Prospects for immune therapy of acute myeloid leukaemia. Cancer Immunol Immunother 55:1017–1024PubMedCrossRef Chan L, Hardwick NR, Guinn BA et al (2006) An immune edited tumour versus a tumour edited immune system: Prospects for immune therapy of acute myeloid leukaemia. Cancer Immunol Immunother 55:1017–1024PubMedCrossRef
22.
go back to reference Bruserud O, Ulvestad E, Berentsen S et al (1998) T-lymphocyte functions in acute leukaemia patients with severe chemotherapy-induced cytopenia: characterization of clonogenic T-cell proliferation. Scand J Immunol 47:54–62PubMedCrossRef Bruserud O, Ulvestad E, Berentsen S et al (1998) T-lymphocyte functions in acute leukaemia patients with severe chemotherapy-induced cytopenia: characterization of clonogenic T-cell proliferation. Scand J Immunol 47:54–62PubMedCrossRef
23.
go back to reference Behl D, Porrata LF, Markovic SN et al (2006) Absolute lymphocyte count recovery after induction chemotherapy predicts superior survival in acute myelogenous leukemia. Leukemia 20:29–34PubMedCrossRef Behl D, Porrata LF, Markovic SN et al (2006) Absolute lymphocyte count recovery after induction chemotherapy predicts superior survival in acute myelogenous leukemia. Leukemia 20:29–34PubMedCrossRef
24.
go back to reference Barrett AJ, Savani BN (2009) Does chemotherapy modify the immune surveillance of hematological malignancies? Leukemia 23:53–58PubMedCrossRef Barrett AJ, Savani BN (2009) Does chemotherapy modify the immune surveillance of hematological malignancies? Leukemia 23:53–58PubMedCrossRef
25.
go back to reference Scheibenbogen C, Letsch A, Thiel E et al (2002) CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 100:2132–2137PubMedCrossRef Scheibenbogen C, Letsch A, Thiel E et al (2002) CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 100:2132–2137PubMedCrossRef
26.
go back to reference Greiner J, Li L, Ringhoffer M, Barth TF et al (2005) Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood 106:938–945PubMedCrossRef Greiner J, Li L, Ringhoffer M, Barth TF et al (2005) Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood 106:938–945PubMedCrossRef
27.
go back to reference Rezvani K, Brenchley JM, Price DA et al (2005) T-cell responses directed against multiple HLA-A*0201-restricted epitopes derived from Wilms’ tumor 1 protein in patients with leukemia and healthy donors: identification, quantification, and characterization. Clin Cancer Res 11:8799–8807PubMedCrossRef Rezvani K, Brenchley JM, Price DA et al (2005) T-cell responses directed against multiple HLA-A*0201-restricted epitopes derived from Wilms’ tumor 1 protein in patients with leukemia and healthy donors: identification, quantification, and characterization. Clin Cancer Res 11:8799–8807PubMedCrossRef
28.
go back to reference Oka Y, Elisseeva OA, Tsuboi A et al (2000) Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms’ tumor gene (WT1) product. Immunogenetics 51:99–107PubMedCrossRef Oka Y, Elisseeva OA, Tsuboi A et al (2000) Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms’ tumor gene (WT1) product. Immunogenetics 51:99–107PubMedCrossRef
29.
go back to reference Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95:286–293PubMed Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95:286–293PubMed
30.
31.
go back to reference Greiner J, Schmitt M, Li L et al (2006) Expression of tumor-associated antigens in acute myeloid leukemia: Implications for specific immunotherapeutic approaches. Blood 108:4109–4117PubMedCrossRef Greiner J, Schmitt M, Li L et al (2006) Expression of tumor-associated antigens in acute myeloid leukemia: Implications for specific immunotherapeutic approaches. Blood 108:4109–4117PubMedCrossRef
32.
go back to reference Greiner J, Dohner H, Schmitt M (2006) Cancer vaccines for patients with acute myeloid leukemia–definition of leukemia-associated antigens and current clinical protocols targeting these antigens. Haematologica 91:1653–1661PubMed Greiner J, Dohner H, Schmitt M (2006) Cancer vaccines for patients with acute myeloid leukemia–definition of leukemia-associated antigens and current clinical protocols targeting these antigens. Haematologica 91:1653–1661PubMed
33.
go back to reference Guinn BA, Tobal K, Mills KI (2007) Comparison of the survival implications of tumour-associated versus cancer-testis antigen expression in acute myeloid leukaemia. Br J Haematol 136:510–512PubMedCrossRef Guinn BA, Tobal K, Mills KI (2007) Comparison of the survival implications of tumour-associated versus cancer-testis antigen expression in acute myeloid leukaemia. Br J Haematol 136:510–512PubMedCrossRef
34.
go back to reference Guinn BA, Mohamedali A, Mills KI et al (2007) Leukemia associated antigens: their dual role as biomarkers and immunotherapeutic targets for acute myeloid leukemia. Biomark Insights 2:69–79PubMed Guinn BA, Mohamedali A, Mills KI et al (2007) Leukemia associated antigens: their dual role as biomarkers and immunotherapeutic targets for acute myeloid leukemia. Biomark Insights 2:69–79PubMed
35.
go back to reference Greiner J, Bullinger L, Guinn BA et al (2008) Leukemia-associated antigens are critical for the proliferation of acute myeloid leukemia cells. Clin Cancer Res 14:7161–7166PubMedCrossRef Greiner J, Bullinger L, Guinn BA et al (2008) Leukemia-associated antigens are critical for the proliferation of acute myeloid leukemia cells. Clin Cancer Res 14:7161–7166PubMedCrossRef
36.
go back to reference Greiner J, Schmitt M (2008) Leukemia-associated antigens as target structures for a specific immunotherapy in chronic myeloid leukemia. Eur J Haematol 80:461–468PubMedCrossRef Greiner J, Schmitt M (2008) Leukemia-associated antigens as target structures for a specific immunotherapy in chronic myeloid leukemia. Eur J Haematol 80:461–468PubMedCrossRef
37.
go back to reference Guinn BA, Bullinger L, Thomas NS et al (2008) SSX2IP expression in acute myeloid leukaemia: an association with mitotic spindle failure in t(8;21), and cell cycle in t(15;17) patients. Br J Haematol 140:250–251PubMed Guinn BA, Bullinger L, Thomas NS et al (2008) SSX2IP expression in acute myeloid leukaemia: an association with mitotic spindle failure in t(8;21), and cell cycle in t(15;17) patients. Br J Haematol 140:250–251PubMed
38.
go back to reference Yee C, Thompson JA, Roche P et al (2000) Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo. J Exp Med 192:1637–1644PubMedCrossRef Yee C, Thompson JA, Roche P et al (2000) Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo. J Exp Med 192:1637–1644PubMedCrossRef
39.
go back to reference Oka Y, Tsuboi A, Taguchi T et al (2004) Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 101:13885–13890PubMedCrossRef Oka Y, Tsuboi A, Taguchi T et al (2004) Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 101:13885–13890PubMedCrossRef
40.
go back to reference Oka Y, Sugiyama H (2010) WT1 peptide vaccine, one of the most promising cancer vaccines: its present status and the future prospects. Immunotherapy 2:591–594PubMedCrossRef Oka Y, Sugiyama H (2010) WT1 peptide vaccine, one of the most promising cancer vaccines: its present status and the future prospects. Immunotherapy 2:591–594PubMedCrossRef
41.
go back to reference Bruserud O, Ulvestad E (2000) Acute myelogenous leukemia blasts as accessory cells during in vitro T lymphocyte activation. Cell Immunol 206:36–50PubMedCrossRef Bruserud O, Ulvestad E (2000) Acute myelogenous leukemia blasts as accessory cells during in vitro T lymphocyte activation. Cell Immunol 206:36–50PubMedCrossRef
42.
go back to reference Bruserud O (1999) Acute myelogenous leukemia blasts as accessory cells during T lymphocyte activation: possible implications for future therapeutic strategies. Leukemia 13:1175–1187PubMedCrossRef Bruserud O (1999) Acute myelogenous leukemia blasts as accessory cells during T lymphocyte activation: possible implications for future therapeutic strategies. Leukemia 13:1175–1187PubMedCrossRef
43.
go back to reference Olsnes AM, Motorin D, Ryningen A et al (2006) T lymphocyte chemotactic chemokines in acute myelogenous leukemia (AML): local release by native human AML blasts and systemic levels of CXCL10 (IP-10), CCL5 (RANTES) and CCL17 (TARC). Cancer Immunol Immunother 55:830–840PubMedCrossRef Olsnes AM, Motorin D, Ryningen A et al (2006) T lymphocyte chemotactic chemokines in acute myelogenous leukemia (AML): local release by native human AML blasts and systemic levels of CXCL10 (IP-10), CCL5 (RANTES) and CCL17 (TARC). Cancer Immunol Immunother 55:830–840PubMedCrossRef
44.
go back to reference Bruserud O, Ryningen A, Olsnes AM et al (2007) Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells. Haematologica 92:332–341PubMedCrossRef Bruserud O, Ryningen A, Olsnes AM et al (2007) Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells. Haematologica 92:332–341PubMedCrossRef
45.
go back to reference Bruserud O, Frostad S, Foss B (1999) In vitro culture of acute myelogenous leukemia blasts: a comparison of four different culture media. J Hematother 8:63–73PubMedCrossRef Bruserud O, Frostad S, Foss B (1999) In vitro culture of acute myelogenous leukemia blasts: a comparison of four different culture media. J Hematother 8:63–73PubMedCrossRef
46.
go back to reference Bruserud O, Gjertsen BT, von Volkman HL (2000) In vitro culture of human acute myelogenous leukemia (AML) cells in serum-free media: studies of native AML blasts and AML cell lines. J Hematother Stem Cell Res 9:923–932PubMedCrossRef Bruserud O, Gjertsen BT, von Volkman HL (2000) In vitro culture of human acute myelogenous leukemia (AML) cells in serum-free media: studies of native AML blasts and AML cell lines. J Hematother Stem Cell Res 9:923–932PubMedCrossRef
47.
go back to reference Bruserud O, Ulvestad E (1999) Effects of gamma-irradiation on acute myelogenous leukemia blasts: in vitro studies of proliferation, constitutive cytokine secretion, and accessory cell function during T cell activation. J Hematother Stem Cell Res 8:431–441PubMedCrossRef Bruserud O, Ulvestad E (1999) Effects of gamma-irradiation on acute myelogenous leukemia blasts: in vitro studies of proliferation, constitutive cytokine secretion, and accessory cell function during T cell activation. J Hematother Stem Cell Res 8:431–441PubMedCrossRef
48.
go back to reference Powles RL, Balchin LA, Fairley GH et al (1971) Recognition of leukaemia cells as foreign before and after autoimmunization. Br Med J 1:486–489PubMedCrossRef Powles RL, Balchin LA, Fairley GH et al (1971) Recognition of leukaemia cells as foreign before and after autoimmunization. Br Med J 1:486–489PubMedCrossRef
49.
go back to reference Powles RL, Russell J, Lister TA et al (1977) Immunotherapy for acute myelogenous leukaemia: a controlled clinical study 2 1/2 years after entry of the last patient. Br J Cancer 35:265–272PubMedCrossRef Powles RL, Russell J, Lister TA et al (1977) Immunotherapy for acute myelogenous leukaemia: a controlled clinical study 2 1/2 years after entry of the last patient. Br J Cancer 35:265–272PubMedCrossRef
50.
go back to reference Zhang WG, Liu SH, Cao XM et al (2005) A phase-I clinical trial of active immunotherapy for acute leukemia using inactivated autologous leukemia cells mixed with IL-2, GM-CSF, and IL-6. Leuk Res 29:3–9PubMedCrossRef Zhang WG, Liu SH, Cao XM et al (2005) A phase-I clinical trial of active immunotherapy for acute leukemia using inactivated autologous leukemia cells mixed with IL-2, GM-CSF, and IL-6. Leuk Res 29:3–9PubMedCrossRef
51.
go back to reference Van Tendeloo VF, Van Broeckhoven C, Berneman ZN (2001) Gene-based cancer vaccines: an ex vivo approach. Leukemia 15:545–558PubMedCrossRef Van Tendeloo VF, Van Broeckhoven C, Berneman ZN (2001) Gene-based cancer vaccines: an ex vivo approach. Leukemia 15:545–558PubMedCrossRef
52.
go back to reference Cignetti A, Guarini A, Carbone A et al (1994) Transduction of the IL2 gene into human acute leukemia cells: induction of tumor rejection without modifying cell proliferation and IL2 receptor expression. J Natl Cancer Inst 86:785–791PubMedCrossRef Cignetti A, Guarini A, Carbone A et al (1994) Transduction of the IL2 gene into human acute leukemia cells: induction of tumor rejection without modifying cell proliferation and IL2 receptor expression. J Natl Cancer Inst 86:785–791PubMedCrossRef
53.
go back to reference Matulonis U, Dosiou C, Freeman G et al (1996) B7–1 is superior to B7–2 costimulation in the induction and maintenance of T cell-mediated antileukemia immunity. Further evidence that B7–1 and B7–2 are functionally distinct. J Immunol 156:1126–1131PubMed Matulonis U, Dosiou C, Freeman G et al (1996) B7–1 is superior to B7–2 costimulation in the induction and maintenance of T cell-mediated antileukemia immunity. Further evidence that B7–1 and B7–2 are functionally distinct. J Immunol 156:1126–1131PubMed
54.
go back to reference Nakazaki Y, Tani K, Lin ZT et al (1998) Vaccine effect of granulocyte-macrophage colony-stimulating factor or CD80 gene-transduced murine hematopoietic tumor cells and their cooperative enhancement of antitumor immunity. Gene Ther 5:1355–1362PubMedCrossRef Nakazaki Y, Tani K, Lin ZT et al (1998) Vaccine effect of granulocyte-macrophage colony-stimulating factor or CD80 gene-transduced murine hematopoietic tumor cells and their cooperative enhancement of antitumor immunity. Gene Ther 5:1355–1362PubMedCrossRef
55.
go back to reference Dunussi-Joannopoulos K, Dranoff G, Weinstein HJ et al (1998) Gene immunotherapy in murine acute myeloid leukemia: granulocyte-macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines. Blood 91:222–230PubMed Dunussi-Joannopoulos K, Dranoff G, Weinstein HJ et al (1998) Gene immunotherapy in murine acute myeloid leukemia: granulocyte-macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines. Blood 91:222–230PubMed
56.
go back to reference Dunussi-Joannopoulos K, Weinstein HJ, Nickerson PW et al (1996) Irradiated B7–1 transduced primary acute myelogenous leukemia (AML) cells can be used as therapeutic vaccines in murine AML. Blood 87:2938–2946PubMed Dunussi-Joannopoulos K, Weinstein HJ, Nickerson PW et al (1996) Irradiated B7–1 transduced primary acute myelogenous leukemia (AML) cells can be used as therapeutic vaccines in murine AML. Blood 87:2938–2946PubMed
57.
go back to reference Mutis T, Schrama E, Melief CJ et al (1998) CD80-Transfected acute myeloid leukemia cells induce primary allogeneic T-cell responses directed at patient specific minor histocompatibility antigens and leukemia-associated antigens. Blood 92:1677–1684PubMed Mutis T, Schrama E, Melief CJ et al (1998) CD80-Transfected acute myeloid leukemia cells induce primary allogeneic T-cell responses directed at patient specific minor histocompatibility antigens and leukemia-associated antigens. Blood 92:1677–1684PubMed
58.
go back to reference Schakowski F, Buttgereit P, Mazur M et al (2004) Novel non-viral method for transfection of primary leukemia cells and cell lines. Genet Vaccines Ther 2:1PubMedCrossRef Schakowski F, Buttgereit P, Mazur M et al (2004) Novel non-viral method for transfection of primary leukemia cells and cell lines. Genet Vaccines Ther 2:1PubMedCrossRef
59.
go back to reference Hirst WJ, Buggins A, Darling D et al (1997) Enhanced immune costimulatory activity of primary acute myeloid leukaemia blasts after retrovirus-mediated gene transfer of B7.1. Gene Ther 4:691–699PubMedCrossRef Hirst WJ, Buggins A, Darling D et al (1997) Enhanced immune costimulatory activity of primary acute myeloid leukaemia blasts after retrovirus-mediated gene transfer of B7.1. Gene Ther 4:691–699PubMedCrossRef
60.
go back to reference Roddie PH, Paterson T, Turner ML (2000) Gene transfer to primary acute myeloid leukaemia blasts and myeloid leukaemia cell lines. Cytokines Cell Mol Ther 6:127–134PubMed Roddie PH, Paterson T, Turner ML (2000) Gene transfer to primary acute myeloid leukaemia blasts and myeloid leukaemia cell lines. Cytokines Cell Mol Ther 6:127–134PubMed
61.
go back to reference Wattel E, Vanrumbeke M, Abina MA et al (1996) Differential efficacy of adenoviral mediated gene transfer into cells from hematological cell lines and fresh hematological malignancies. Leukemia 10:171–174PubMed Wattel E, Vanrumbeke M, Abina MA et al (1996) Differential efficacy of adenoviral mediated gene transfer into cells from hematological cell lines and fresh hematological malignancies. Leukemia 10:171–174PubMed
62.
go back to reference Howard DS, Rizzierri DA, Grimes B et al (1999) Genetic manipulation of primitive leukemic and normal hematopoietic cells using a novel method of adenovirus-mediated gene transfer. Leukemia 13:1608–1616PubMedCrossRef Howard DS, Rizzierri DA, Grimes B et al (1999) Genetic manipulation of primitive leukemic and normal hematopoietic cells using a novel method of adenovirus-mediated gene transfer. Leukemia 13:1608–1616PubMedCrossRef
63.
go back to reference Saudemont A, Corm S, Wickham T et al (2005) Induction of leukemia-specific CD8+ cytotoxic T cells with autologous myeloid leukemic cells maturated with a fiber-modified adenovirus encoding TNF-alpha. Mol Ther 11:950–959PubMedCrossRef Saudemont A, Corm S, Wickham T et al (2005) Induction of leukemia-specific CD8+ cytotoxic T cells with autologous myeloid leukemic cells maturated with a fiber-modified adenovirus encoding TNF-alpha. Mol Ther 11:950–959PubMedCrossRef
64.
go back to reference Dilloo D, Rill D, Entwistle C et al (1997) A novel herpes vector for the high-efficiency transduction of normal and malignant human hematopoietic cells. Blood 89:119–127PubMed Dilloo D, Rill D, Entwistle C et al (1997) A novel herpes vector for the high-efficiency transduction of normal and malignant human hematopoietic cells. Blood 89:119–127PubMed
65.
go back to reference Anderson R, Macdonald I, Corbett T et al (1997) Construction and biological characterization of an interleukin-12 fusion protein (Flexi-12): delivery to acute myeloid leukemic blasts using adeno-associated virus. Hum Gene Ther 8:1125–1135PubMedCrossRef Anderson R, Macdonald I, Corbett T et al (1997) Construction and biological characterization of an interleukin-12 fusion protein (Flexi-12): delivery to acute myeloid leukemic blasts using adeno-associated virus. Hum Gene Ther 8:1125–1135PubMedCrossRef
66.
go back to reference Gonzalez R, Vereecque R, Wickham TJ et al (1999) Increased gene transfer in acute myeloid leukemic cells by an adenovirus vector containing a modified fiber protein. Gene Ther 6:314–320PubMedCrossRef Gonzalez R, Vereecque R, Wickham TJ et al (1999) Increased gene transfer in acute myeloid leukemic cells by an adenovirus vector containing a modified fiber protein. Gene Ther 6:314–320PubMedCrossRef
67.
go back to reference Stripecke R, Cardoso AA, Pepper KA et al (2000) Lentiviral vectors for efficient delivery of CD80 and granulocyte-macrophage- colony-stimulating factor in human acute lymphoblastic leukemia and acute myeloid leukemia cells to induce antileukemic immune responses. Blood 96:1317–1326PubMed Stripecke R, Cardoso AA, Pepper KA et al (2000) Lentiviral vectors for efficient delivery of CD80 and granulocyte-macrophage- colony-stimulating factor in human acute lymphoblastic leukemia and acute myeloid leukemia cells to induce antileukemic immune responses. Blood 96:1317–1326PubMed
68.
go back to reference Biagi E, Bambacioni F, Gaipa G et al (2001) Efficient lentiviral transduction of primary human acute myelogenous and lymphoblastic leukemia cells. Haematologica 86:13–16PubMed Biagi E, Bambacioni F, Gaipa G et al (2001) Efficient lentiviral transduction of primary human acute myelogenous and lymphoblastic leukemia cells. Haematologica 86:13–16PubMed
69.
go back to reference Koya RC, Kasahara N, Pullarkat V et al (2002) Transduction of acute myeloid leukemia cells with third generation self-inactivating lentiviral vectors expressing CD80 and GM-CSF: effects on proliferation, differentiation, and stimulation of allogeneic and autologous anti-leukemia immune responses. Leukemia 16:1645–1654PubMedCrossRef Koya RC, Kasahara N, Pullarkat V et al (2002) Transduction of acute myeloid leukemia cells with third generation self-inactivating lentiviral vectors expressing CD80 and GM-CSF: effects on proliferation, differentiation, and stimulation of allogeneic and autologous anti-leukemia immune responses. Leukemia 16:1645–1654PubMedCrossRef
70.
go back to reference Heinzinger NK, Bukinsky MI, Haggerty SA et al (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 91:7311–7315PubMedCrossRef Heinzinger NK, Bukinsky MI, Haggerty SA et al (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 91:7311–7315PubMedCrossRef
71.
go back to reference Koya RC, Weber JS, Kasahara N et al (2004) Making dendritic cells from the inside out: lentiviral vector-mediated gene delivery of granulocyte-macrophage colony-stimulating factor and interleukin 4 into CD14+ monocytes generates dendritic cells in vitro. Hum Gene Ther 15:733–748PubMedCrossRef Koya RC, Weber JS, Kasahara N et al (2004) Making dendritic cells from the inside out: lentiviral vector-mediated gene delivery of granulocyte-macrophage colony-stimulating factor and interleukin 4 into CD14+ monocytes generates dendritic cells in vitro. Hum Gene Ther 15:733–748PubMedCrossRef
72.
go back to reference Gaken J, Jiang J, Daniel K et al (2000) Fusagene vectors: a novel strategy for the expression of multiple genes from a single cistron. Gene Ther 7:1979–1985PubMedCrossRef Gaken J, Jiang J, Daniel K et al (2000) Fusagene vectors: a novel strategy for the expression of multiple genes from a single cistron. Gene Ther 7:1979–1985PubMedCrossRef
73.
go back to reference Chan L, Hardwick N, Darling D et al (2005) IL-2/B7.1 (CD80) fusagene transduction of AML blasts by a self-inactivating lentiviral vector stimulates T cell responses in vitro: a strategy to generate whole cell vaccines for AML. Mol Ther 11:120–131PubMedCrossRef Chan L, Hardwick N, Darling D et al (2005) IL-2/B7.1 (CD80) fusagene transduction of AML blasts by a self-inactivating lentiviral vector stimulates T cell responses in vitro: a strategy to generate whole cell vaccines for AML. Mol Ther 11:120–131PubMedCrossRef
74.
go back to reference Ingram W, Chan L, Guven H et al (2009) Human CD80/IL2 lentivirus-transduced acute myeloid leukaemia (AML) cells promote natural killer (NK) cell activation and cytolytic activity: implications for a phase I clinical study. Br J Haematol 145:749–760PubMedCrossRef Ingram W, Chan L, Guven H et al (2009) Human CD80/IL2 lentivirus-transduced acute myeloid leukaemia (AML) cells promote natural killer (NK) cell activation and cytolytic activity: implications for a phase I clinical study. Br J Haematol 145:749–760PubMedCrossRef
75.
go back to reference Hardwick N, Chan L, Ingram W et al (2010) Lytic activity against primary AML cells is stimulated in vitro by an autologous whole cell vaccine expressing IL-2 and CD80. Cancer Immunol Immunother 59:379–388PubMedCrossRef Hardwick N, Chan L, Ingram W et al (2010) Lytic activity against primary AML cells is stimulated in vitro by an autologous whole cell vaccine expressing IL-2 and CD80. Cancer Immunol Immunother 59:379–388PubMedCrossRef
76.
go back to reference Borrello IM, Levitsky HI, Stock W et al (2009) Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting cellular immunotherapy in combination with autologous stem cell transplantation (ASCT) as postremission therapy for acute myeloid leukemia (AML). Blood 114:1736–1745PubMedCrossRef Borrello IM, Levitsky HI, Stock W et al (2009) Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting cellular immunotherapy in combination with autologous stem cell transplantation (ASCT) as postremission therapy for acute myeloid leukemia (AML). Blood 114:1736–1745PubMedCrossRef
77.
go back to reference Koos D, Josephs SF, Alexandrescu DT et al (2010) Tumor vaccines in 2010: need for integration. Cell Immunol 263:138–147PubMedCrossRef Koos D, Josephs SF, Alexandrescu DT et al (2010) Tumor vaccines in 2010: need for integration. Cell Immunol 263:138–147PubMedCrossRef
78.
go back to reference Smits EL, Ponsaerts P, Van de Velde AL et al (2007) Proinflammatory response of human leukemic cells to dsRNA transfection linked to activation of dendritic cells. Leukemia 21:1691–1699PubMedCrossRef Smits EL, Ponsaerts P, Van de Velde AL et al (2007) Proinflammatory response of human leukemic cells to dsRNA transfection linked to activation of dendritic cells. Leukemia 21:1691–1699PubMedCrossRef
79.
go back to reference Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384PubMedCrossRef Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384PubMedCrossRef
80.
go back to reference Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848PubMedCrossRef Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848PubMedCrossRef
81.
go back to reference Ferrantini M, Capone I, Belardelli F (2007) Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie 89:884–893PubMedCrossRef Ferrantini M, Capone I, Belardelli F (2007) Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie 89:884–893PubMedCrossRef
82.
go back to reference Lion E, Smits EL, Berneman ZN et al (2009) Acute myeloid leukemic cell lines loaded with synthetic dsRNA trigger IFN-gamma secretion by human NK cells. Leuk Res 33:539–546PubMedCrossRef Lion E, Smits EL, Berneman ZN et al (2009) Acute myeloid leukemic cell lines loaded with synthetic dsRNA trigger IFN-gamma secretion by human NK cells. Leuk Res 33:539–546PubMedCrossRef
83.
go back to reference Lion E, Smits EL, Berneman ZN et al (2009) Quantification of IFN-gamma produced by human purified NK cells following tumor cell stimulation: comparison of three IFN-gamma assays. J Immunol Methods 350:89–96PubMedCrossRef Lion E, Smits EL, Berneman ZN et al (2009) Quantification of IFN-gamma produced by human purified NK cells following tumor cell stimulation: comparison of three IFN-gamma assays. J Immunol Methods 350:89–96PubMedCrossRef
84.
go back to reference Smits EL, Cools N, Lion E et al (2010) The Toll-like receptor 7/8 agonist resiquimod greatly increases the immunostimulatory capacity of human acute myeloid leukemia cells. Cancer Immunol Immunother 59:35–46PubMedCrossRef Smits EL, Cools N, Lion E et al (2010) The Toll-like receptor 7/8 agonist resiquimod greatly increases the immunostimulatory capacity of human acute myeloid leukemia cells. Cancer Immunol Immunother 59:35–46PubMedCrossRef
85.
go back to reference Olsnes AM, Hatfield KJ, Bruserud O (2009) The chemokine system and its contribution to leukemogenesis and treatment responsiveness in patients with acute myeloid leukemia. J BUON 14:S131–S140PubMed Olsnes AM, Hatfield KJ, Bruserud O (2009) The chemokine system and its contribution to leukemogenesis and treatment responsiveness in patients with acute myeloid leukemia. J BUON 14:S131–S140PubMed
86.
go back to reference Olsnes AM, Ryningen A, Ersvaer E et al (2008) In vitro induction of a dendritic cell phenotype in primary human acute myelogenous leukemia (AML) blasts alters the chemokine release profile and increases the levels of T cell chemotactic CCL17 and CCL22. J Interferon Cytokine Res 28:297–310PubMedCrossRef Olsnes AM, Ryningen A, Ersvaer E et al (2008) In vitro induction of a dendritic cell phenotype in primary human acute myelogenous leukemia (AML) blasts alters the chemokine release profile and increases the levels of T cell chemotactic CCL17 and CCL22. J Interferon Cytokine Res 28:297–310PubMedCrossRef
87.
go back to reference Le Dieu R, Taussig DC, Ramsay AG et al (2009) Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood 114(18):3909–3916PubMedCrossRef Le Dieu R, Taussig DC, Ramsay AG et al (2009) Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood 114(18):3909–3916PubMedCrossRef
88.
go back to reference Szczepanski MJ, Szajnik M, Czystowska M et al (2009) Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res 15(10):3325–3332PubMedCrossRef Szczepanski MJ, Szajnik M, Czystowska M et al (2009) Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res 15(10):3325–3332PubMedCrossRef
89.
go back to reference Cools N, Ponsaerts P, Van Tendeloo VF et al (2007) Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol 82:1365–1374PubMedCrossRef Cools N, Ponsaerts P, Van Tendeloo VF et al (2007) Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol 82:1365–1374PubMedCrossRef
90.
go back to reference Robson NC, Hoves S, Maraskovsky E et al (2010) Presentation of tumour antigens by dendritic cells and challenges faced. Curr Opin Immunol 22:137–144PubMedCrossRef Robson NC, Hoves S, Maraskovsky E et al (2010) Presentation of tumour antigens by dendritic cells and challenges faced. Curr Opin Immunol 22:137–144PubMedCrossRef
91.
go back to reference Smits EL, Anguille S, Cools N et al (2009) Dendritic cell-based cancer gene therapy. Hum Gene Ther 20:1106–1118PubMedCrossRef Smits EL, Anguille S, Cools N et al (2009) Dendritic cell-based cancer gene therapy. Hum Gene Ther 20:1106–1118PubMedCrossRef
92.
go back to reference Romani N, Gruner S, Brang D et al (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180:83–93PubMedCrossRef Romani N, Gruner S, Brang D et al (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180:83–93PubMedCrossRef
93.
94.
go back to reference Anguille S, Smits EL, Cools N et al (2009) Short-term cultured, interleukin-15 differentiated dendritic cells have potent immunostimulatory properties. J Transl Med 7:109PubMedCrossRef Anguille S, Smits EL, Cools N et al (2009) Short-term cultured, interleukin-15 differentiated dendritic cells have potent immunostimulatory properties. J Transl Med 7:109PubMedCrossRef
95.
go back to reference Brouwer RE, van der Hoorn M, Kluin-Nelemans HC et al (2000) The generation of dendritic-like cells with increased allostimulatory function from acute myeloid leukemia cells of various FAB subclasses. Hum Immunol 61:565–574PubMedCrossRef Brouwer RE, van der Hoorn M, Kluin-Nelemans HC et al (2000) The generation of dendritic-like cells with increased allostimulatory function from acute myeloid leukemia cells of various FAB subclasses. Hum Immunol 61:565–574PubMedCrossRef
96.
go back to reference Li L, Reinhardt P, Schmitt A et al (2005) Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol Immunother 54:685–693PubMedCrossRef Li L, Reinhardt P, Schmitt A et al (2005) Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol Immunother 54:685–693PubMedCrossRef
97.
go back to reference Hicks C, Cheung C, Lindeman R (2003) Restimulation of tumour-specific immunity in a patient with AML following injection with B7-1 positive autologous blasts. Leuk Res 27:1051–1061PubMedCrossRef Hicks C, Cheung C, Lindeman R (2003) Restimulation of tumour-specific immunity in a patient with AML following injection with B7-1 positive autologous blasts. Leuk Res 27:1051–1061PubMedCrossRef
98.
go back to reference Houtenbos I, Westers TM, Ossenkoppele GJ et al (2006) Feasibility of clinical dendritic cell vaccination in acute myeloid leukemia. Immunobiology 211:677–685PubMedCrossRef Houtenbos I, Westers TM, Ossenkoppele GJ et al (2006) Feasibility of clinical dendritic cell vaccination in acute myeloid leukemia. Immunobiology 211:677–685PubMedCrossRef
99.
go back to reference Li L, Giannopoulos K, Reinhardt P et al (2006) Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int J Oncol 28:855–861PubMed Li L, Giannopoulos K, Reinhardt P et al (2006) Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int J Oncol 28:855–861PubMed
100.
go back to reference Roddie H, Klammer M, Thomas C et al (2006) Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br J Haematol 133:152–157PubMedCrossRef Roddie H, Klammer M, Thomas C et al (2006) Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br J Haematol 133:152–157PubMedCrossRef
101.
go back to reference Houtenbos I, Westers TM, Ossenkoppele GJ et al (2006) Leukaemic dendritic cell vaccination for patients with acute myeloid leukaemia. Br J Haematol 134:445–446PubMedCrossRef Houtenbos I, Westers TM, Ossenkoppele GJ et al (2006) Leukaemic dendritic cell vaccination for patients with acute myeloid leukaemia. Br J Haematol 134:445–446PubMedCrossRef
102.
go back to reference Kremser A, Dressig J, Grabrucker C et al (2010) Dendritic cells (DCs) can be successfully generated from leukemic blasts in individual patients with AML or MDS: an evaluation of different methods. J Immunother 33:185–199PubMedCrossRef Kremser A, Dressig J, Grabrucker C et al (2010) Dendritic cells (DCs) can be successfully generated from leukemic blasts in individual patients with AML or MDS: an evaluation of different methods. J Immunother 33:185–199PubMedCrossRef
103.
go back to reference Grabrucker C, Liepert A, Dreyig J et al (2010) The quality and quantity of leukemia-derived dendritic cells from patients with acute myeloid leukemia and myelodysplastic syndrome are a predictive factor for the lytic potential of dendritic cells-primed leukemia-specific T cells. J Immunother 33:523–537PubMedCrossRef Grabrucker C, Liepert A, Dreyig J et al (2010) The quality and quantity of leukemia-derived dendritic cells from patients with acute myeloid leukemia and myelodysplastic syndrome are a predictive factor for the lytic potential of dendritic cells-primed leukemia-specific T cells. J Immunother 33:523–537PubMedCrossRef
104.
go back to reference Liepert A, Grabrucker C, Kremser A (2010) Quality of T-cells after stimulation with leukemia-derived dendritic cells (DC) from patients with acute myeloid leukemia (AML) or myeloid dysplastic syndrome (MDS) is predictive for their leukemia cytotoxic potential. Cell Immunol 265:23–30PubMedCrossRef Liepert A, Grabrucker C, Kremser A (2010) Quality of T-cells after stimulation with leukemia-derived dendritic cells (DC) from patients with acute myeloid leukemia (AML) or myeloid dysplastic syndrome (MDS) is predictive for their leukemia cytotoxic potential. Cell Immunol 265:23–30PubMedCrossRef
105.
go back to reference Osman Y, Takahashi M, Zheng Z et al (1999) Dendritic cells stimulate the expansion of PML-RAR alpha specific cytotoxic T-lymphocytes: its applicability for antileukemia immunotherapy. J Exp Clin Cancer Res 18:485–492PubMed Osman Y, Takahashi M, Zheng Z et al (1999) Dendritic cells stimulate the expansion of PML-RAR alpha specific cytotoxic T-lymphocytes: its applicability for antileukemia immunotherapy. J Exp Clin Cancer Res 18:485–492PubMed
106.
go back to reference Zeis M, Siegel S, Wagner A et al (2003) Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol 170:5391–5397PubMed Zeis M, Siegel S, Wagner A et al (2003) Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol 170:5391–5397PubMed
107.
go back to reference Van Tendeloo VF, Van de Velde A, Van Driessche A et al (2010) Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci USA 107:13824–13829PubMedCrossRef Van Tendeloo VF, Van de Velde A, Van Driessche A et al (2010) Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci USA 107:13824–13829PubMedCrossRef
108.
go back to reference Fujii S, Fujimoto K, Shimizu K et al (1999) Presentation of tumor antigens by phagocytic dendritic cell clusters generated from human CD34+ hematopoietic progenitor cells: induction of autologous cytotoxic T lymphocytes against leukemic cells in acute myelogenous leukemia patients. Cancer Res 59:2150–2158PubMed Fujii S, Fujimoto K, Shimizu K et al (1999) Presentation of tumor antigens by phagocytic dendritic cell clusters generated from human CD34+ hematopoietic progenitor cells: induction of autologous cytotoxic T lymphocytes against leukemic cells in acute myelogenous leukemia patients. Cancer Res 59:2150–2158PubMed
109.
go back to reference Galea-Lauri J, Darling D, Mufti G et al (2002) Eliciting cytotoxic T lymphocytes against acute myeloid leukemia-derived antigens: evaluation of dendritic cell-leukemia cell hybrids and other antigen-loading strategies for dendritic cell-based vaccination. Cancer Immunol Immunother 51:299–310PubMedCrossRef Galea-Lauri J, Darling D, Mufti G et al (2002) Eliciting cytotoxic T lymphocytes against acute myeloid leukemia-derived antigens: evaluation of dendritic cell-leukemia cell hybrids and other antigen-loading strategies for dendritic cell-based vaccination. Cancer Immunol Immunother 51:299–310PubMedCrossRef
110.
go back to reference Spisek R, Chevallier P, Morineau N et al (2002) Induction of leukemia-specific cytotoxic response by cross-presentation of late-apoptotic leukemic blasts by autologous dendritic cells of nonleukemic origin. Cancer Res 62:2861–2868PubMed Spisek R, Chevallier P, Morineau N et al (2002) Induction of leukemia-specific cytotoxic response by cross-presentation of late-apoptotic leukemic blasts by autologous dendritic cells of nonleukemic origin. Cancer Res 62:2861–2868PubMed
111.
go back to reference Banat GA, Usluoglu N, Hoeck M et al (2004) Dendritic cells fused with core binding factor-beta positive acute myeloid leukaemia blast cells induce activation of cytotoxic lymphocytes. Br J Haematol 126:593–601PubMedCrossRef Banat GA, Usluoglu N, Hoeck M et al (2004) Dendritic cells fused with core binding factor-beta positive acute myeloid leukaemia blast cells induce activation of cytotoxic lymphocytes. Br J Haematol 126:593–601PubMedCrossRef
112.
go back to reference Lee JJ, Kook H, Park MS et al (2004) Immunotherapy using autologous monocyte-derived dendritic cells pulsed with leukemic cell lysates for acute myeloid leukemia relapse after autologous peripheral blood stem cell transplantation. J Clin Apher 19:66–70PubMedCrossRef Lee JJ, Kook H, Park MS et al (2004) Immunotherapy using autologous monocyte-derived dendritic cells pulsed with leukemic cell lysates for acute myeloid leukemia relapse after autologous peripheral blood stem cell transplantation. J Clin Apher 19:66–70PubMedCrossRef
113.
go back to reference Klammer M, Waterfall M, Samuel K et al (2005) Fusion hybrids of dendritic cells and autologous myeloid blasts as a potential cellular vaccine for acute myeloid leukaemia. Br J Haematol 129:340–349PubMedCrossRef Klammer M, Waterfall M, Samuel K et al (2005) Fusion hybrids of dendritic cells and autologous myeloid blasts as a potential cellular vaccine for acute myeloid leukaemia. Br J Haematol 129:340–349PubMedCrossRef
114.
go back to reference Lee JJ, Park MS, Park JS et al (2006) Induction of leukemic-cell-specific cytotoxic T lymphocytes by autologous monocyte-derived dendritic cells presenting leukemic cell antigens. J Clin Apher 21:188–194PubMedCrossRef Lee JJ, Park MS, Park JS et al (2006) Induction of leukemic-cell-specific cytotoxic T lymphocytes by autologous monocyte-derived dendritic cells presenting leukemic cell antigens. J Clin Apher 21:188–194PubMedCrossRef
115.
go back to reference Van Driessche A, Van de Velde AL, Nijs G et al (2009) Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy 11:653–668PubMedCrossRef Van Driessche A, Van de Velde AL, Nijs G et al (2009) Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy 11:653–668PubMedCrossRef
116.
go back to reference Cavdar AO, Babacan E, Gozdasoglu S et al (1993) T-lymphocyte sub-populations in orbito-ocular granulocytic sarcoma (OOGS) and acute myelocytic leukemia (AML): a preliminary study. Med Oncol Tumor Pharmacother 10:113–115PubMed Cavdar AO, Babacan E, Gozdasoglu S et al (1993) T-lymphocyte sub-populations in orbito-ocular granulocytic sarcoma (OOGS) and acute myelocytic leukemia (AML): a preliminary study. Med Oncol Tumor Pharmacother 10:113–115PubMed
117.
go back to reference Bruserud O (2000) Effects of imipenem and cilastatin on human T-lymphocytes derived from acute leukemia patients with chemotherapy-induced leucopenia: studies of T-lymphocyte responses in the presence of acute myelogenous leukemia (AML) blast accessory cells. Int J Immunopharmacol 22:69–81PubMedCrossRef Bruserud O (2000) Effects of imipenem and cilastatin on human T-lymphocytes derived from acute leukemia patients with chemotherapy-induced leucopenia: studies of T-lymphocyte responses in the presence of acute myelogenous leukemia (AML) blast accessory cells. Int J Immunopharmacol 22:69–81PubMedCrossRef
118.
go back to reference Costello RT, Sivori S, Marcenaro E et al (2002) Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99:3661–3667PubMedCrossRef Costello RT, Sivori S, Marcenaro E et al (2002) Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99:3661–3667PubMedCrossRef
119.
go back to reference Fauriat C, Moretta A, Olive D et al (2005) Defective killing of dendritic cells by autologous natural killer cells from acute myeloid leukemia patients. Blood 106:2186–2188PubMedCrossRef Fauriat C, Moretta A, Olive D et al (2005) Defective killing of dendritic cells by autologous natural killer cells from acute myeloid leukemia patients. Blood 106:2186–2188PubMedCrossRef
120.
go back to reference Nowbakht P, Ionescu MC, Rohner A et al (2005) Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 105:3615–3622PubMedCrossRef Nowbakht P, Ionescu MC, Rohner A et al (2005) Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 105:3615–3622PubMedCrossRef
121.
go back to reference Fauriat C, Just-Landi S, Mallet F et al (2007) Deficient expression of NCR in NK cells from acute myeloid leukemia: Evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 109:323–330PubMedCrossRef Fauriat C, Just-Landi S, Mallet F et al (2007) Deficient expression of NCR in NK cells from acute myeloid leukemia: Evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 109:323–330PubMedCrossRef
122.
123.
go back to reference Heslop HE, Stevenson FK, Molldrem JJ (2003) Immunotherapy of hematologic malignancy. Hematology Am Soc Hematol Educ Program 331–349 Heslop HE, Stevenson FK, Molldrem JJ (2003) Immunotherapy of hematologic malignancy. Hematology Am Soc Hematol Educ Program 331–349
124.
go back to reference Schmid C, Labopin M, Nagler A et al (2007) Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party. J Clin Oncol 25:4938–4945 Schmid C, Labopin M, Nagler A et al (2007) Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party. J Clin Oncol 25:4938–4945
125.
go back to reference Yegin ZA, Ozkurt ZN, Aki SZ et al (2010) Donor lymphocyte infusion for leukemia relapse after hematopoietic stem cell transplantation. Transfus Apher Sci 42:239–245PubMedCrossRef Yegin ZA, Ozkurt ZN, Aki SZ et al (2010) Donor lymphocyte infusion for leukemia relapse after hematopoietic stem cell transplantation. Transfus Apher Sci 42:239–245PubMedCrossRef
126.
go back to reference Gesundheit B, Shapira MY, Resnick IB et al (2009) Successful cell-mediated cytokine-activated immunotherapy for relapsed acute myeloid leukemia after hematopoietic stem cell transplantation. Am J Hematol 84:188–190PubMedCrossRef Gesundheit B, Shapira MY, Resnick IB et al (2009) Successful cell-mediated cytokine-activated immunotherapy for relapsed acute myeloid leukemia after hematopoietic stem cell transplantation. Am J Hematol 84:188–190PubMedCrossRef
127.
go back to reference Gribben JG, Guinan EC, Boussiotis VA et al (1996) Complete blockade of B7 family-mediated costimulation is necessary to induce human alloantigen-specific anergy: a method to ameliorate graft-versus-host disease and extend the donor pool. Blood 87:4887–4893PubMed Gribben JG, Guinan EC, Boussiotis VA et al (1996) Complete blockade of B7 family-mediated costimulation is necessary to induce human alloantigen-specific anergy: a method to ameliorate graft-versus-host disease and extend the donor pool. Blood 87:4887–4893PubMed
128.
go back to reference Larsen CP, Elwood ET, Alexander DZ et al (1996) Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381:434–438PubMedCrossRef Larsen CP, Elwood ET, Alexander DZ et al (1996) Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381:434–438PubMedCrossRef
129.
go back to reference Blazar BR, Taylor PA, Panoskaltsis-Mortari A et al (1997) Blockade of CD40 ligand-CD40 interaction impairs CD4+ T cell-mediated alloreactivity by inhibiting mature donor T cell expansion and function after bone marrow transplantation. J Immunol 158:29–39PubMed Blazar BR, Taylor PA, Panoskaltsis-Mortari A et al (1997) Blockade of CD40 ligand-CD40 interaction impairs CD4+ T cell-mediated alloreactivity by inhibiting mature donor T cell expansion and function after bone marrow transplantation. J Immunol 158:29–39PubMed
130.
go back to reference Guinan EC, Boussiotis VA, Neuberg D et al (1999) Transplantation of anergic histoincompatible bone marrow allografts. N Engl J Med 340:1704–1714PubMedCrossRef Guinan EC, Boussiotis VA, Neuberg D et al (1999) Transplantation of anergic histoincompatible bone marrow allografts. N Engl J Med 340:1704–1714PubMedCrossRef
131.
go back to reference Cavazzana-Calvo M, Fromont C, Le Deist F et al (1990) Specific elimination of alloreactive T cells by an anti-interleukin-2 receptor B chain-specific immunotoxin. Transplantation 50:1–7PubMedCrossRef Cavazzana-Calvo M, Fromont C, Le Deist F et al (1990) Specific elimination of alloreactive T cells by an anti-interleukin-2 receptor B chain-specific immunotoxin. Transplantation 50:1–7PubMedCrossRef
132.
go back to reference Valteau-Couanet D, Cavazzana-Calvo M, Le Deist F et al (1993) Functional study of residual T lymphocytes after specific elimination of alloreactive T cells by a specific anti-interleukin-2 receptor Bk chain immunotoxin. Transplantation 56:1574–1576PubMed Valteau-Couanet D, Cavazzana-Calvo M, Le Deist F et al (1993) Functional study of residual T lymphocytes after specific elimination of alloreactive T cells by a specific anti-interleukin-2 receptor Bk chain immunotoxin. Transplantation 56:1574–1576PubMed
133.
go back to reference Harris DT, Sakiestewa D, Lyons C et al (1999) Prevention of graft-versus-host disease (GVHD) by elimination of recipient-reactive donor T cells with recombinant toxins that target the interleukin 2 (IL-2) receptor. Bone Marrow Transplant 23:137–144PubMedCrossRef Harris DT, Sakiestewa D, Lyons C et al (1999) Prevention of graft-versus-host disease (GVHD) by elimination of recipient-reactive donor T cells with recombinant toxins that target the interleukin 2 (IL-2) receptor. Bone Marrow Transplant 23:137–144PubMedCrossRef
134.
go back to reference Montagna D, Yvon E, Calcaterra V et al (1999) Depletion of alloreactive T cells by a specific anti-interleukin-2 receptor p55 chain immunotoxin does not impair in vitro antileukemia and antiviral activity. Blood 93:3550–3557PubMed Montagna D, Yvon E, Calcaterra V et al (1999) Depletion of alloreactive T cells by a specific anti-interleukin-2 receptor p55 chain immunotoxin does not impair in vitro antileukemia and antiviral activity. Blood 93:3550–3557PubMed
135.
go back to reference van Dijk AM, Kessler FL, Stadhouders-Keet SA et al (1999) Selective depletion of major and minor histocompatibility antigen reactive T cells: towards prevention of acute graft-versus-host disease. Br J Haematol 107:169–175PubMedCrossRef van Dijk AM, Kessler FL, Stadhouders-Keet SA et al (1999) Selective depletion of major and minor histocompatibility antigen reactive T cells: towards prevention of acute graft-versus-host disease. Br J Haematol 107:169–175PubMedCrossRef
136.
go back to reference Andre-Schmutz I, Le Deist F, Hacein-Bey-Abina S et al (2002) Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet 360:130–137PubMedCrossRef Andre-Schmutz I, Le Deist F, Hacein-Bey-Abina S et al (2002) Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet 360:130–137PubMedCrossRef
137.
go back to reference Koh MB, Prentice HG, Corbo M et al (2002) Alloantigen-specific T-cell depletion in a major histocompatibility complex fully mismatched murine model provides effective graft-versus-host disease prophylaxis in the presence of lymphoid engraftment. Br J Haematol 118:108–116PubMedCrossRef Koh MB, Prentice HG, Corbo M et al (2002) Alloantigen-specific T-cell depletion in a major histocompatibility complex fully mismatched murine model provides effective graft-versus-host disease prophylaxis in the presence of lymphoid engraftment. Br J Haematol 118:108–116PubMedCrossRef
138.
go back to reference Solomon SR, Mielke S, Savani BN et al (2005) Selective depletion of alloreactive donor lymphocytes: a novel method to reduce the severity of graft-versus-host disease in older patients undergoing matched sibling donor stem cell transplantation. Blood 106:1123–1129PubMedCrossRef Solomon SR, Mielke S, Savani BN et al (2005) Selective depletion of alloreactive donor lymphocytes: a novel method to reduce the severity of graft-versus-host disease in older patients undergoing matched sibling donor stem cell transplantation. Blood 106:1123–1129PubMedCrossRef
139.
go back to reference Wehler TC, Nonn M, Brandt B et al (2007) Targeting the activation-induced antigen CD137 can selectively deplete alloreactive T cells from antileukemic and antitumor donor T-cell lines. Blood 109:365–373PubMedCrossRef Wehler TC, Nonn M, Brandt B et al (2007) Targeting the activation-induced antigen CD137 can selectively deplete alloreactive T cells from antileukemic and antitumor donor T-cell lines. Blood 109:365–373PubMedCrossRef
140.
go back to reference Ge X, Brown J, Sykes M et al (2008) CD134-allodepletion allows selective elimination of alloreactive human T cells without loss of virus-specific and leukemia-specific effectors. Biol Blood Marrow Transplant 14:518–530PubMedCrossRef Ge X, Brown J, Sykes M et al (2008) CD134-allodepletion allows selective elimination of alloreactive human T cells without loss of virus-specific and leukemia-specific effectors. Biol Blood Marrow Transplant 14:518–530PubMedCrossRef
141.
go back to reference Hartwig UF, Nonn M, Khan S et al (2008) Depletion of alloreactive donor T lymphocytes by CD95-mediated activation-induced cell death retains antileukemic, antiviral, and immunoregulatory T cell immunity. Biol Blood Marrow Transplant 14:99–109PubMedCrossRef Hartwig UF, Nonn M, Khan S et al (2008) Depletion of alloreactive donor T lymphocytes by CD95-mediated activation-induced cell death retains antileukemic, antiviral, and immunoregulatory T cell immunity. Biol Blood Marrow Transplant 14:99–109PubMedCrossRef
142.
go back to reference Nonn M, Herr W, Khan S et al (2008) Selective depletion of alloreactive T lymphocytes using patient-derived nonhematopoietic stimulator cells in allograft engineering. Transplantation 86:1427–1435PubMedCrossRef Nonn M, Herr W, Khan S et al (2008) Selective depletion of alloreactive T lymphocytes using patient-derived nonhematopoietic stimulator cells in allograft engineering. Transplantation 86:1427–1435PubMedCrossRef
143.
go back to reference Marijt E, Wafelman A, van der Hoorn M et al (2007) Phase I/II feasibility study evaluating the generation of leukemia-reactive cytotoxic T lymphocyte lines for treatment of patients with relapsed leukemia after allogeneic stem cell transplantation. Haematologica 92:72–80PubMedCrossRef Marijt E, Wafelman A, van der Hoorn M et al (2007) Phase I/II feasibility study evaluating the generation of leukemia-reactive cytotoxic T lymphocyte lines for treatment of patients with relapsed leukemia after allogeneic stem cell transplantation. Haematologica 92:72–80PubMedCrossRef
144.
go back to reference Colvin GA, Berz D, Ramanathan M et al (2009) Nonengraftment haploidentical cellular immunotherapy for refractory malignancies: tumor responses without chimerism. Biol Blood Marrow Transplant 15:421–431PubMedCrossRef Colvin GA, Berz D, Ramanathan M et al (2009) Nonengraftment haploidentical cellular immunotherapy for refractory malignancies: tumor responses without chimerism. Biol Blood Marrow Transplant 15:421–431PubMedCrossRef
145.
go back to reference Eljaafari A, Farre A, Duperrier K et al (2001) Generation of helper and cytotoxic CD4+T cell clones specific for the minor histocompatibility antigen H-Y, after in vitro priming of human T cells by HLA-identical monocyte-derived dendritic cells. Transplantation 71:1449–1455PubMedCrossRef Eljaafari A, Farre A, Duperrier K et al (2001) Generation of helper and cytotoxic CD4+T cell clones specific for the minor histocompatibility antigen H-Y, after in vitro priming of human T cells by HLA-identical monocyte-derived dendritic cells. Transplantation 71:1449–1455PubMedCrossRef
146.
go back to reference Azuma T, Makita M, Ninomiya K et al (2002) Identification of a novel WT1-derived peptide which induces human leucocyte antigen-A24-restricted anti-leukaemia cytotoxic T lymphocytes. Br J Haematol 116:601–603PubMedCrossRef Azuma T, Makita M, Ninomiya K et al (2002) Identification of a novel WT1-derived peptide which induces human leucocyte antigen-A24-restricted anti-leukaemia cytotoxic T lymphocytes. Br J Haematol 116:601–603PubMedCrossRef
147.
go back to reference Falkenburg JH, Marijt WA, Heemskerk MH et al (2002) Minor histocompatibility antigens as targets of graft-versus-leukemia reactions. Curr Opin Hematol 9:497–502PubMedCrossRef Falkenburg JH, Marijt WA, Heemskerk MH et al (2002) Minor histocompatibility antigens as targets of graft-versus-leukemia reactions. Curr Opin Hematol 9:497–502PubMedCrossRef
148.
go back to reference Sadovnikova E, Parovichnikova EN, Savchenko VG et al (2002) The CD68 protein as a potential target for leukaemia-reactive CTL. Leukemia 16:2019–2026PubMedCrossRef Sadovnikova E, Parovichnikova EN, Savchenko VG et al (2002) The CD68 protein as a potential target for leukaemia-reactive CTL. Leukemia 16:2019–2026PubMedCrossRef
149.
go back to reference Amrolia PJ, Reid SD, Gao L et al (2003) Allorestricted cytotoxic T cells specific for human CD45 show potent antileukemic activity. Blood 101:1007–1014PubMedCrossRef Amrolia PJ, Reid SD, Gao L et al (2003) Allorestricted cytotoxic T cells specific for human CD45 show potent antileukemic activity. Blood 101:1007–1014PubMedCrossRef
150.
go back to reference Mutis T (2003) Targeting alloreactive donor T-cells to hematopoietic system-restricted minor histocompatibility antigens to dissect graft-versus-leukemia effects from graft-versus-host disease after allogeneic stem cell transplantation. Int J Hematol 78:208–212PubMedCrossRef Mutis T (2003) Targeting alloreactive donor T-cells to hematopoietic system-restricted minor histocompatibility antigens to dissect graft-versus-leukemia effects from graft-versus-host disease after allogeneic stem cell transplantation. Int J Hematol 78:208–212PubMedCrossRef
151.
go back to reference Fujiwara H, El Ouriaghli F, Grube M et al (2004) Identification and in vitro expansion of CD4+ and CD8+ T cells specific for human neutrophil elastase. Blood 103:3076–3083PubMedCrossRef Fujiwara H, El Ouriaghli F, Grube M et al (2004) Identification and in vitro expansion of CD4+ and CD8+ T cells specific for human neutrophil elastase. Blood 103:3076–3083PubMedCrossRef
152.
go back to reference Guo Y, Niiya H, Azuma T et al (2005) Direct recognition and lysis of leukemia cells by WT1-specific CD4+ T lymphocytes in an HLA class II-restricted manner. Blood 106:1415–1418PubMedCrossRef Guo Y, Niiya H, Azuma T et al (2005) Direct recognition and lysis of leukemia cells by WT1-specific CD4+ T lymphocytes in an HLA class II-restricted manner. Blood 106:1415–1418PubMedCrossRef
153.
go back to reference Tsuji T, Yasukawa M, Matsuzaki J et al (2005) Generation of tumor-specific, HLA class I-restricted human Th1 and Tc1 cells by cell engineering with tumor peptide-specific T-cell receptor genes. Blood 106:470–476PubMedCrossRef Tsuji T, Yasukawa M, Matsuzaki J et al (2005) Generation of tumor-specific, HLA class I-restricted human Th1 and Tc1 cells by cell engineering with tumor peptide-specific T-cell receptor genes. Blood 106:470–476PubMedCrossRef
154.
go back to reference Xue SA, Gao L, Hart D et al (2005) Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 106:3062–3067PubMedCrossRef Xue SA, Gao L, Hart D et al (2005) Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 106:3062–3067PubMedCrossRef
155.
go back to reference Ho WY, Nguyen HN, Wolfl M et al (2006) In vitro methods for generating CD8+ T-cell clones for immunotherapy from the naive repertoire. J Immunol Methods 310:40–52PubMedCrossRef Ho WY, Nguyen HN, Wolfl M et al (2006) In vitro methods for generating CD8+ T-cell clones for immunotherapy from the naive repertoire. J Immunol Methods 310:40–52PubMedCrossRef
156.
go back to reference Heemskerk MH (2010) T-cell receptor gene transfer for the treatment of leukemia and other tumors. Haematologica 95:15–19PubMedCrossRef Heemskerk MH (2010) T-cell receptor gene transfer for the treatment of leukemia and other tumors. Haematologica 95:15–19PubMedCrossRef
157.
go back to reference Ochi T, Fujiwara H, Yasukawa M (2010) Application of adoptive T-cell therapy using tumor antigen-specific T-cell receptor gene transfer for the treatment of human leukemia. J Biomed Biotechnol 521248 Ochi T, Fujiwara H, Yasukawa M (2010) Application of adoptive T-cell therapy using tumor antigen-specific T-cell receptor gene transfer for the treatment of human leukemia. J Biomed Biotechnol 521248
158.
go back to reference Vera JF, Brenner MK, Dotti G (2009) Immunotherapy of human cancers using gene modified T lymphocytes. Curr Gene Ther 9:396–408PubMedCrossRef Vera JF, Brenner MK, Dotti G (2009) Immunotherapy of human cancers using gene modified T lymphocytes. Curr Gene Ther 9:396–408PubMedCrossRef
159.
go back to reference Xue SA, Gao L, Thomas S (2010) Development of a Wilms’ tumor antigen-specific T-cell receptor for clinical trials: engineered patient’s T cells can eliminate autologous leukemia blasts in NOD/SCID mice. Haematologica 95:126–134PubMedCrossRef Xue SA, Gao L, Thomas S (2010) Development of a Wilms’ tumor antigen-specific T-cell receptor for clinical trials: engineered patient’s T cells can eliminate autologous leukemia blasts in NOD/SCID mice. Haematologica 95:126–134PubMedCrossRef
160.
go back to reference Peinert S, Prince HM, Guru PM et al (2010) Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. Gene Ther 5:678–686CrossRef Peinert S, Prince HM, Guru PM et al (2010) Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. Gene Ther 5:678–686CrossRef
161.
go back to reference Lamers CH, Sleijfer S, Vulto AG et al (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24:e20–e22PubMedCrossRef Lamers CH, Sleijfer S, Vulto AG et al (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24:e20–e22PubMedCrossRef
162.
go back to reference Brentjens R, Yeh R, Bernal Y et al (2010) Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 18:666–668PubMedCrossRef Brentjens R, Yeh R, Bernal Y et al (2010) Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 18:666–668PubMedCrossRef
163.
go back to reference Mohle R, Bautz F, Rafii S et al (1998) The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91:4523–4530PubMed Mohle R, Bautz F, Rafii S et al (1998) The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91:4523–4530PubMed
164.
go back to reference Bleakley M, Riddell SR (2004) Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer 4:371–380PubMedCrossRef Bleakley M, Riddell SR (2004) Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer 4:371–380PubMedCrossRef
165.
go back to reference Ruggeri L, Aversa F, Martelli MF et al (2006) Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunol Rev 214:202–218PubMedCrossRef Ruggeri L, Aversa F, Martelli MF et al (2006) Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunol Rev 214:202–218PubMedCrossRef
166.
167.
go back to reference Farag SS, Fehniger TA, Ruggeri L et al (2002) Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 100:1935–1947PubMedCrossRef Farag SS, Fehniger TA, Ruggeri L et al (2002) Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 100:1935–1947PubMedCrossRef
168.
go back to reference Ruggeri L, Capanni M, Urbani E (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100PubMedCrossRef Ruggeri L, Capanni M, Urbani E (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100PubMedCrossRef
169.
go back to reference Leung W, Iyengar R, Turner V et al (2004) Determinants of antileukemia effects of allogeneic NK cells. J Immunol 172:644–650PubMed Leung W, Iyengar R, Turner V et al (2004) Determinants of antileukemia effects of allogeneic NK cells. J Immunol 172:644–650PubMed
170.
go back to reference Verheyden S, Demanet C (2008) NK cell receptors and their ligands in leukemia. Leukemia 22:249–257PubMedCrossRef Verheyden S, Demanet C (2008) NK cell receptors and their ligands in leukemia. Leukemia 22:249–257PubMedCrossRef
171.
go back to reference Miller JS, Soignier Y, Panoskaltsis-Mortari A et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051–3057PubMedCrossRef Miller JS, Soignier Y, Panoskaltsis-Mortari A et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051–3057PubMedCrossRef
172.
go back to reference Rubnitz JE, Inaba H, Ribeiro RC et al (2010) NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 28:955–959PubMedCrossRef Rubnitz JE, Inaba H, Ribeiro RC et al (2010) NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 28:955–959PubMedCrossRef
173.
go back to reference Cho D, Campana D (2009) Expansion and activation of natural killer cells for cancer immunotherapy. Korean J Lab Med 29:89–96PubMedCrossRef Cho D, Campana D (2009) Expansion and activation of natural killer cells for cancer immunotherapy. Korean J Lab Med 29:89–96PubMedCrossRef
174.
go back to reference Siegler U, Meyer-Monard S, Jorger S et al (2010) Good manufacturing practice-compliant cell sorting and large-scale expansion of single KIR-positive alloreactive human natural killer cells for multiple infusions to leukemia patients. Cytotherapy 12:750–763PubMedCrossRef Siegler U, Meyer-Monard S, Jorger S et al (2010) Good manufacturing practice-compliant cell sorting and large-scale expansion of single KIR-positive alloreactive human natural killer cells for multiple infusions to leukemia patients. Cytotherapy 12:750–763PubMedCrossRef
175.
go back to reference Koehl U, Sorensen J, Esser R et al (2004) IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation. Blood Cells Mol Dis 33:261–266PubMedCrossRef Koehl U, Sorensen J, Esser R et al (2004) IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation. Blood Cells Mol Dis 33:261–266PubMedCrossRef
176.
go back to reference Robertson MJ (2002) Role of chemokines in the biology of natural killer cells. J Leukoc Biol 71:173–183PubMed Robertson MJ (2002) Role of chemokines in the biology of natural killer cells. J Leukoc Biol 71:173–183PubMed
177.
go back to reference Bruserud O, Kittang AO (2010) The chemokine system in experimental and clinical hematology. Curr Top Microbiol Immunol 341:3–12PubMedCrossRef Bruserud O, Kittang AO (2010) The chemokine system in experimental and clinical hematology. Curr Top Microbiol Immunol 341:3–12PubMedCrossRef
178.
go back to reference Maghazachi AA (2010) Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol 341:37–58PubMedCrossRef Maghazachi AA (2010) Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol 341:37–58PubMedCrossRef
179.
go back to reference Muller I, Kordowich S, Holzwarth C et al (2008) Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells Mol Dis 40:25–32PubMedCrossRef Muller I, Kordowich S, Holzwarth C et al (2008) Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells Mol Dis 40:25–32PubMedCrossRef
180.
go back to reference Meuleman N, Tondreau T, Ahmad I et al (2009) Infusion of mesenchymal stromal cells can aid hematopoietic recovery following allogeneic hematopoietic stem cell myeloablative transplant: a pilot study. Stem Cells Dev 18:1247–1252PubMedCrossRef Meuleman N, Tondreau T, Ahmad I et al (2009) Infusion of mesenchymal stromal cells can aid hematopoietic recovery following allogeneic hematopoietic stem cell myeloablative transplant: a pilot study. Stem Cells Dev 18:1247–1252PubMedCrossRef
181.
go back to reference Gotherstrom C, Lundqvist A, Duprez IR et al (2011) Fetal and adult multipotent mesenchymal stromal cells are killed by different pathways. Cytotherapy 13:269–278PubMedCrossRef Gotherstrom C, Lundqvist A, Duprez IR et al (2011) Fetal and adult multipotent mesenchymal stromal cells are killed by different pathways. Cytotherapy 13:269–278PubMedCrossRef
182.
go back to reference Klyuchnikov E, Asenova S, Kern W et al (2010) Post-transplant immune reconstitution after unrelated allogeneic stem cell transplant in patients with acute myeloid leukemia. Leuk Lymphoma 51:1450–1463PubMedCrossRef Klyuchnikov E, Asenova S, Kern W et al (2010) Post-transplant immune reconstitution after unrelated allogeneic stem cell transplant in patients with acute myeloid leukemia. Leuk Lymphoma 51:1450–1463PubMedCrossRef
183.
go back to reference Gross S, Walden P (2010) Immunosuppressive mechanisms in human tumors: why we still cannot cure cancer. Immunol Lett 116:7–14CrossRef Gross S, Walden P (2010) Immunosuppressive mechanisms in human tumors: why we still cannot cure cancer. Immunol Lett 116:7–14CrossRef
184.
go back to reference Rosenberg SA, Restifo NP, Yang JC et al (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299–308PubMedCrossRef Rosenberg SA, Restifo NP, Yang JC et al (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299–308PubMedCrossRef
185.
go back to reference Smits EL, Ponsaerts P, Berneman ZN et al (2008) The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 13:859–875PubMedCrossRef Smits EL, Ponsaerts P, Berneman ZN et al (2008) The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 13:859–875PubMedCrossRef
186.
go back to reference Weber J (2007) Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist 12:864–872PubMedCrossRef Weber J (2007) Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist 12:864–872PubMedCrossRef
Metadata
Title
Clinical evaluation of cellular immunotherapy in acute myeloid leukaemia
Authors
Evelien L. J. Smits
Cindy Lee
Nicola Hardwick
Suzanne Brooks
Viggo F. I. Van Tendeloo
Kim Orchard
Barbara-ann Guinn
Publication date
01-06-2011
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 6/2011
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-011-1022-6

Other articles of this Issue 6/2011

Cancer Immunology, Immunotherapy 6/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine