Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 6/2011

01-06-2011 | Original article

Impaired tumor antigen processing by immunoproteasome-expressing CD40-activated B cells and dendritic cells

Authors: Karen S. Anderson, Wanyong Zeng, Tetsuro Sasada, Jaewon Choi, Angelika B. Riemer, Mei Su, Donna Drakoulakos, Yoon-Joong Kang, Vladimir Brusic, Catherine Wu, Ellis L. Reinherz

Published in: Cancer Immunology, Immunotherapy | Issue 6/2011

Login to get access

Abstract

Professional APCs, such as dendritic cells, are routinely used in vitro for the generation of cytotoxic T lymphocytes specific for tumor antigens. In addition to dendritic cells, CD40-activated B cells and variant K562 leukemic cells can be readily transfected with nucleic acids for in vitro and in vivo antigen presentation. However, the expression of immunoproteasome components in dendritic cells may preclude display of tumor antigens such as Mart1/MelanA. Here, we use three target epitopes, two derived from tumor antigens [Mart126–34 (M26) and Cyp1B1239–247 (Cyp239)] and one derived from the influenza A viral antigen [FluM158–66 (FluM58)], to demonstrate that CD40-activated B cells, like dendritic cells, have a limited capability to process certain tumor antigens. In contrast, the K562 HLA-A*0201 transfectant efficiently processes and presents M26 and Cyp239 as well as the influenza FluM58 epitopes to T cells. These results demonstrate that the choice of target APC for gene transfer of tumor antigens may be limited by the relative efficacy of proteasome components to process certain tumor epitopes. Importantly, K562 can be exploited as an artificial APC, efficient in processing both M26 and Cyp239 epitopes and presumably, by extension, other relevant tumor antigens.
Appendix
Available only for authorised users
Literature
1.
go back to reference Van den Eynde BJ, Morel S (2001) Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol 13(2):147–153PubMedCrossRef Van den Eynde BJ, Morel S (2001) Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol 13(2):147–153PubMedCrossRef
2.
go back to reference Dannull J, Lesher DT, Holzknecht R, Qi W, Hanna G, Seigler H et al (2007) Immunoproteasome down-modulation enhances the ability of dendritic cells to stimulate antitumor immunity. Blood 110(13):4341–4350PubMedCrossRef Dannull J, Lesher DT, Holzknecht R, Qi W, Hanna G, Seigler H et al (2007) Immunoproteasome down-modulation enhances the ability of dendritic cells to stimulate antitumor immunity. Blood 110(13):4341–4350PubMedCrossRef
3.
go back to reference Meidenbauer N, Zippelius A, Pittet MJ, Laumer M, Vogl S, Heymann J et al (2004) High frequency of functionally active Melan-a-specific T cells in a patient with progressive immunoproteasome-deficient melanoma. Cancer Res 64(17):6319–6326PubMedCrossRef Meidenbauer N, Zippelius A, Pittet MJ, Laumer M, Vogl S, Heymann J et al (2004) High frequency of functionally active Melan-a-specific T cells in a patient with progressive immunoproteasome-deficient melanoma. Cancer Res 64(17):6319–6326PubMedCrossRef
4.
go back to reference Heink S, Fricke B, Ludwig D, Kloetzel PM, Kruger E (2006) Tumor cell lines expressing the proteasome subunit isoform LMP7E1 exhibit immunoproteasome deficiency. Cancer Res 66(2):649–652PubMedCrossRef Heink S, Fricke B, Ludwig D, Kloetzel PM, Kruger E (2006) Tumor cell lines expressing the proteasome subunit isoform LMP7E1 exhibit immunoproteasome deficiency. Cancer Res 66(2):649–652PubMedCrossRef
5.
go back to reference von Bergwelt-Baildon MS, Vonderheide RH, Maecker B, Hirano N, Anderson KS, Butler MO et al (2002) Human primary and memory cytotoxic T lymphocyte responses are efficiently induced by means of CD40-activated B cells as antigen-presenting cells: potential for clinical application. Blood 99(9):3319–3325CrossRef von Bergwelt-Baildon MS, Vonderheide RH, Maecker B, Hirano N, Anderson KS, Butler MO et al (2002) Human primary and memory cytotoxic T lymphocyte responses are efficiently induced by means of CD40-activated B cells as antigen-presenting cells: potential for clinical application. Blood 99(9):3319–3325CrossRef
6.
go back to reference Schultze JL, Grabbe S, von Bergwelt-Baildon MS (2004) DCs and CD40-activated B cells: current and future avenues to cellular cancer immunotherapy. Trends Immunol 25(12):659–664PubMedCrossRef Schultze JL, Grabbe S, von Bergwelt-Baildon MS (2004) DCs and CD40-activated B cells: current and future avenues to cellular cancer immunotherapy. Trends Immunol 25(12):659–664PubMedCrossRef
7.
go back to reference Kondo E, Topp MS, Kiem HP, Obata Y, Morishima Y, Kuzushima K et al (2002) Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J Immunol 169(4):2164–2171PubMed Kondo E, Topp MS, Kiem HP, Obata Y, Morishima Y, Kuzushima K et al (2002) Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J Immunol 169(4):2164–2171PubMed
8.
go back to reference Coughlin CM, Vance BA, Grupp SA, Vonderheide RH (2004) RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood 103(6):2046–2054PubMedCrossRef Coughlin CM, Vance BA, Grupp SA, Vonderheide RH (2004) RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood 103(6):2046–2054PubMedCrossRef
9.
go back to reference Lapointe R, Bellemare-Pelletier A, Housseau F, Thibodeau J, Hwu P (2003) CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells. Cancer Res 63(11):2836–2843PubMed Lapointe R, Bellemare-Pelletier A, Housseau F, Thibodeau J, Hwu P (2003) CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells. Cancer Res 63(11):2836–2843PubMed
10.
go back to reference von Bergwelt-Baildon M, Maecker B, Schultze J, Gribben JG (2004) CD40 activation: potential for specific immunotherapy in B-CLL. Ann Oncol 15(6):853–857CrossRef von Bergwelt-Baildon M, Maecker B, Schultze J, Gribben JG (2004) CD40 activation: potential for specific immunotherapy in B-CLL. Ann Oncol 15(6):853–857CrossRef
11.
go back to reference von Bergwelt-Baildon M, Schultze JL, Maecker B, Menezes I, Nadler LM (2003) Correspondence re R. Lapointe et al., CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells. Cancer Res 63:2836–2843. Cancer Res 2004 64(11):4055–4056; author reply 6–7 von Bergwelt-Baildon M, Schultze JL, Maecker B, Menezes I, Nadler LM (2003) Correspondence re R. Lapointe et al., CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells. Cancer Res 63:2836–2843. Cancer Res 2004 64(11):4055–4056; author reply 6–7
12.
go back to reference Suhoski MM, Golovina TN, Aqui NA, Tai VC, Varela-Rohena A, Milone MC et al (2007) Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Mol Ther 15(5):981–988PubMedCrossRef Suhoski MM, Golovina TN, Aqui NA, Tai VC, Varela-Rohena A, Milone MC et al (2007) Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Mol Ther 15(5):981–988PubMedCrossRef
13.
go back to reference Butler MO, Lee JS, Ansen S, Neuberg D, Hodi FS, Murray AP et al (2007) Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res 13(6):1857–1867PubMedCrossRef Butler MO, Lee JS, Ansen S, Neuberg D, Hodi FS, Murray AP et al (2007) Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res 13(6):1857–1867PubMedCrossRef
14.
go back to reference Hirano N, Butler MO, Xia Z, Ansen S, von Bergwelt-Baildon MS, Neuberg D et al (2006) Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood 107(4):1528–1536PubMedCrossRef Hirano N, Butler MO, Xia Z, Ansen S, von Bergwelt-Baildon MS, Neuberg D et al (2006) Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood 107(4):1528–1536PubMedCrossRef
15.
go back to reference Hirano N, Butler MO, Xia Z, Berezovskaya A, Murray AP, Ansen S et al (2006) Efficient presentation of naturally processed HLA class I peptides by artificial antigen-presenting cells for the generation of effective antitumor responses. Clin Cancer Res 12(10):2967–2975PubMedCrossRef Hirano N, Butler MO, Xia Z, Berezovskaya A, Murray AP, Ansen S et al (2006) Efficient presentation of naturally processed HLA class I peptides by artificial antigen-presenting cells for the generation of effective antitumor responses. Clin Cancer Res 12(10):2967–2975PubMedCrossRef
16.
go back to reference Maecker B, Sherr DH, Vonderheide RH, von Bergwelt-Baildon MS, Hirano N, Anderson KS et al (2003) The shared tumor-associated antigen cytochrome P450 1B1 is recognized by specific cytotoxic T cells. Blood 102(9):3287–3294PubMedCrossRef Maecker B, Sherr DH, Vonderheide RH, von Bergwelt-Baildon MS, Hirano N, Anderson KS et al (2003) The shared tumor-associated antigen cytochrome P450 1B1 is recognized by specific cytotoxic T cells. Blood 102(9):3287–3294PubMedCrossRef
17.
go back to reference Gribben JG, Ryan DP, Boyajian R, Urban RG, Hedley ML, Beach K et al (2005) Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin Cancer Res 11(12):4430–4436PubMedCrossRef Gribben JG, Ryan DP, Boyajian R, Urban RG, Hedley ML, Beach K et al (2005) Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin Cancer Res 11(12):4430–4436PubMedCrossRef
18.
go back to reference Gileadi U, Moins-Teisserenc HT, Correa I, Booth BL Jr, Dunbar PR, Sewell AK et al (1999) Generation of an immunodominant CTL epitope is affected by proteasome subunit composition and stability of the antigenic protein. J Immunol 163(11):6045–6052PubMed Gileadi U, Moins-Teisserenc HT, Correa I, Booth BL Jr, Dunbar PR, Sewell AK et al (1999) Generation of an immunodominant CTL epitope is affected by proteasome subunit composition and stability of the antigenic protein. J Immunol 163(11):6045–6052PubMed
19.
go back to reference Yang XF, Wu CJ, McLaughlin S, Chillemi A, Wang KS, Canning C et al (2001) CML66, a broadly immunogenic tumor antigen, elicits a humoral immune response associated with remission of chronic myelogenous leukemia. Proc Natl Acad Sci USA 98(13):7492–7497PubMedCrossRef Yang XF, Wu CJ, McLaughlin S, Chillemi A, Wang KS, Canning C et al (2001) CML66, a broadly immunogenic tumor antigen, elicits a humoral immune response associated with remission of chronic myelogenous leukemia. Proc Natl Acad Sci USA 98(13):7492–7497PubMedCrossRef
20.
go back to reference Blomberg K, Granberg C, Hemmila I, Lovgren T (1986) Europium-labelled target cells in an assay of natural killer cell activity. II. A novel non-radioactive method based on time-resolved fluorescence. significance and specificity of the method. J Immunol Methods 92(1):117–123PubMedCrossRef Blomberg K, Granberg C, Hemmila I, Lovgren T (1986) Europium-labelled target cells in an assay of natural killer cell activity. II. A novel non-radioactive method based on time-resolved fluorescence. significance and specificity of the method. J Immunol Methods 92(1):117–123PubMedCrossRef
21.
go back to reference Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI et al (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274(5284):94–96PubMedCrossRef Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI et al (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274(5284):94–96PubMedCrossRef
22.
go back to reference Nielsen M, Lundegaard C, Lund O, Kesmir C (2005) The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57(1–2):33–41PubMedCrossRef Nielsen M, Lundegaard C, Lund O, Kesmir C (2005) The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57(1–2):33–41PubMedCrossRef
23.
go back to reference Schuler MM, Nastke MD, Stevanovikc S (2007) SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol 409:75–93PubMedCrossRef Schuler MM, Nastke MD, Stevanovikc S (2007) SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol 409:75–93PubMedCrossRef
25.
go back to reference Morel S, Levy F, Burlet-Schiltz O, Brasseur F, Probst-Kepper M, Peitrequin AL et al (2000) Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 12(1):107–117PubMedCrossRef Morel S, Levy F, Burlet-Schiltz O, Brasseur F, Probst-Kepper M, Peitrequin AL et al (2000) Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 12(1):107–117PubMedCrossRef
26.
go back to reference De Maziere AM, Muehlethaler K, van Donselaar E, Salvi S, Davoust J, Cerottini JC et al (2002) The melanocytic protein Melan-A/MART-1 has a subcellular localization distinct from typical melanosomal proteins. Traffic 3(9):678–693PubMedCrossRef De Maziere AM, Muehlethaler K, van Donselaar E, Salvi S, Davoust J, Cerottini JC et al (2002) The melanocytic protein Melan-A/MART-1 has a subcellular localization distinct from typical melanosomal proteins. Traffic 3(9):678–693PubMedCrossRef
27.
go back to reference Anderson KS, Alexander J, Wei M, Cresswell P (1993) Intracellular transport of class I MHC molecules in antigen processing mutant cell lines. J Immunol 151(7):3407–3419PubMed Anderson KS, Alexander J, Wei M, Cresswell P (1993) Intracellular transport of class I MHC molecules in antigen processing mutant cell lines. J Immunol 151(7):3407–3419PubMed
28.
go back to reference Peaper DR, Wearsch PA, Cresswell P (2005) Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO J 24(20):3613–3623PubMedCrossRef Peaper DR, Wearsch PA, Cresswell P (2005) Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO J 24(20):3613–3623PubMedCrossRef
29.
go back to reference Ossendorp F, Fu N, Camps M, Granucci F, Gobin SJ, van den Elsen PJ et al (2005) Differential expression regulation of the alpha and beta subunits of the PA28 proteasome activator in mature dendritic cells. J Immunol 174(12):7815–7822PubMed Ossendorp F, Fu N, Camps M, Granucci F, Gobin SJ, van den Elsen PJ et al (2005) Differential expression regulation of the alpha and beta subunits of the PA28 proteasome activator in mature dendritic cells. J Immunol 174(12):7815–7822PubMed
30.
go back to reference Niedermann G, King G, Butz S, Birsner U, Grimm R, Shabanowitz J et al (1996) The proteolytic fragments generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class I binding peptides. Proc Natl Acad Sci USA 93(16):8572–8577PubMedCrossRef Niedermann G, King G, Butz S, Birsner U, Grimm R, Shabanowitz J et al (1996) The proteolytic fragments generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class I binding peptides. Proc Natl Acad Sci USA 93(16):8572–8577PubMedCrossRef
31.
go back to reference Craiu A, Akopian T, Goldberg A, Rock KL (1997) Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc Natl Acad Sci USA 94(20):10850–10855PubMedCrossRef Craiu A, Akopian T, Goldberg A, Rock KL (1997) Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc Natl Acad Sci USA 94(20):10850–10855PubMedCrossRef
32.
go back to reference Toes RE, Nussbaum AK, Degermann S, Schirle M, Emmerich NP, Kraft M et al (2001) Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J Exp Med 194(1):1–12PubMedCrossRef Toes RE, Nussbaum AK, Degermann S, Schirle M, Emmerich NP, Kraft M et al (2001) Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J Exp Med 194(1):1–12PubMedCrossRef
33.
go back to reference Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915PubMedCrossRef Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915PubMedCrossRef
34.
go back to reference Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5(4):296–306PubMedCrossRef Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5(4):296–306PubMedCrossRef
35.
go back to reference Chapatte L, Ayyoub M, Morel S, Peitrequin AL, Levy N, Servis C et al (2006) Processing of tumor-associated antigen by the proteasomes of dendritic cells controls in vivo T-cell responses. Cancer Res 66(10):5461–5468PubMedCrossRef Chapatte L, Ayyoub M, Morel S, Peitrequin AL, Levy N, Servis C et al (2006) Processing of tumor-associated antigen by the proteasomes of dendritic cells controls in vivo T-cell responses. Cancer Res 66(10):5461–5468PubMedCrossRef
36.
go back to reference Chapiro J, Claverol S, Piette F, Ma W, Stroobant V, Guillaume B et al (2006) Destructive cleavage of antigenic peptides either by the immunoproteasome or by the standard proteasome results in differential antigen presentation. J Immunol 176(2):1053–1061PubMed Chapiro J, Claverol S, Piette F, Ma W, Stroobant V, Guillaume B et al (2006) Destructive cleavage of antigenic peptides either by the immunoproteasome or by the standard proteasome results in differential antigen presentation. J Immunol 176(2):1053–1061PubMed
37.
go back to reference Basler M, Moebius J, Elenich L, Groettrup M, Monaco JJ (2006) An altered T cell repertoire in MECL-1-deficient mice. J Immunol 176(11):6665–6672PubMed Basler M, Moebius J, Elenich L, Groettrup M, Monaco JJ (2006) An altered T cell repertoire in MECL-1-deficient mice. J Immunol 176(11):6665–6672PubMed
38.
go back to reference Peters B (2003) Modeling the MHC-I pathway. Humboldt University, Berlin, Germany Peters B (2003) Modeling the MHC-I pathway. Humboldt University, Berlin, Germany
39.
go back to reference Lin HH, Ray S, Tongchusak S, Reinherz EL, Brusic V (2008) Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol 9:8PubMedCrossRef Lin HH, Ray S, Tongchusak S, Reinherz EL, Brusic V (2008) Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol 9:8PubMedCrossRef
40.
go back to reference Maziarz RT, Mentzer SJ, Burakoff SJ, Faller DV (1990) Distinct effects of interferon-gamma and MHC class I surface antigen levels on resistance of the K562 tumor cell line to natural killer-mediated lysis. Cell Immunol 130(2):329–338PubMedCrossRef Maziarz RT, Mentzer SJ, Burakoff SJ, Faller DV (1990) Distinct effects of interferon-gamma and MHC class I surface antigen levels on resistance of the K562 tumor cell line to natural killer-mediated lysis. Cell Immunol 130(2):329–338PubMedCrossRef
Metadata
Title
Impaired tumor antigen processing by immunoproteasome-expressing CD40-activated B cells and dendritic cells
Authors
Karen S. Anderson
Wanyong Zeng
Tetsuro Sasada
Jaewon Choi
Angelika B. Riemer
Mei Su
Donna Drakoulakos
Yoon-Joong Kang
Vladimir Brusic
Catherine Wu
Ellis L. Reinherz
Publication date
01-06-2011
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 6/2011
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-011-0995-5

Other articles of this Issue 6/2011

Cancer Immunology, Immunotherapy 6/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine