Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 6/2011

01-06-2011 | Original article

CD8+ T cells specific for the androgen receptor are common in patients with prostate cancer and are able to lyse prostate tumor cells

Authors: Brian M. Olson, Douglas G. McNeel

Published in: Cancer Immunology, Immunotherapy | Issue 6/2011

Login to get access

Abstract

The androgen receptor (AR) is a hormone receptor that plays a critical role in prostate cancer, and depletion of its ligand has long been the cornerstone of treatment for metastatic disease. Here, we evaluate the AR ligand-binding domain (LBD) as an immunological target, seeking to identify HLA-A2-restricted epitopes recognized by T cells in prostate cancer patients. Ten AR LBD-derived, HLA-A2-binding peptides were identified and ranked with respect to HLA-A2 affinity and were used to culture peptide-specific T cells from HLA-A2+ prostate cancer patients. These T-cell cultures identified peptide-specific T cells specific for all ten peptides in at least one patient, and T cells specific for peptides AR805 and AR811 were detected in over half of patients. Peptide-specific CD8+ T-cell clones were then isolated and characterized for prostate cancer cytotoxicity and cytokine expression, identifying that AR805 and AR811 CD8+ T-cell clones could lyse prostate cancer cells in an HLA-A2-restricted fashion, but only AR811 CTL had polyfunctional cytokine expression. Epitopes were confirmed using immunization studies in HLA-A2 transgenic mice, in which the AR LBD is an autologous antigen with an identical protein sequence, which showed that mice immunized with AR811 developed peptide-specific CTL that lyse HLA-A2+ prostate cancer cells. These data show that AR805 and AR811 are HLA-A2-restricted epitopes for which CTL can be commonly detected in prostate cancer patients. Moreover, CTL responses specific for AR811 can be elicited by direct immunization of A2/DR1 mice. These findings suggest that it may be possible to elicit an anti-prostate tumor immune response by augmenting CTL populations using AR LBD-based vaccines.
Literature
1.
go back to reference Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF (2008) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol 26(2):242–245PubMedCrossRef Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF (2008) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol 26(2):242–245PubMedCrossRef
2.
go back to reference Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Theodore C, James ND, Turesson I, Rosenthal MA, Eisenberger MA (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351(15):1502–1512PubMedCrossRef Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Theodore C, James ND, Turesson I, Rosenthal MA, Eisenberger MA (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351(15):1502–1512PubMedCrossRef
3.
go back to reference Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali DL, Laus R, Schlom J, Dahut WL, Arlen PM, Gulley JL, Godfrey WR (2010) Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28(7):1099–1105PubMedCrossRef Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali DL, Laus R, Schlom J, Dahut WL, Arlen PM, Gulley JL, Godfrey WR (2010) Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28(7):1099–1105PubMedCrossRef
4.
go back to reference Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, Provost N, Frohlich MW (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115(16):3670–3679PubMedCrossRef Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, Provost N, Frohlich MW (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115(16):3670–3679PubMedCrossRef
5.
go back to reference McNeel DG, Dunphy EJ, Davies JG, Frye TP, Johnson LE, Staab MJ, Horvath DL, Straus J, Alberti D, Marnocha R, Liu G, Eickhoff JC, Wilding G (2009) Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J Clin Oncol 27(25):4047–4054PubMedCrossRef McNeel DG, Dunphy EJ, Davies JG, Frye TP, Johnson LE, Staab MJ, Horvath DL, Straus J, Alberti D, Marnocha R, Liu G, Eickhoff JC, Wilding G (2009) Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J Clin Oncol 27(25):4047–4054PubMedCrossRef
6.
go back to reference Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15(17):5323–5337PubMedCrossRef Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15(17):5323–5337PubMedCrossRef
7.
go back to reference Andersen MH, Svane IM, Becker JC, Straten PT (2007) The universal character of the tumor-associated antigen survivin. Clin Cancer Res 13(20):5991–5994PubMedCrossRef Andersen MH, Svane IM, Becker JC, Straten PT (2007) The universal character of the tumor-associated antigen survivin. Clin Cancer Res 13(20):5991–5994PubMedCrossRef
8.
go back to reference Acres B, Limacher JM (2005) MUC1 as a target antigen for cancer immunotherapy. Expert Rev Vaccines 4(4):493–502PubMedCrossRef Acres B, Limacher JM (2005) MUC1 as a target antigen for cancer immunotherapy. Expert Rev Vaccines 4(4):493–502PubMedCrossRef
9.
go back to reference Baxevanis CN, Sotiriadou NN, Gritzapis AD, Sotiropoulou PA, Perez SA, Cacoullos NT, Papamichail M (2006) Immunogenic HER-2/neu peptides as tumor vaccines. Cancer Immunol Immunother 55(1):85–95PubMedCrossRef Baxevanis CN, Sotiriadou NN, Gritzapis AD, Sotiropoulou PA, Perez SA, Cacoullos NT, Papamichail M (2006) Immunogenic HER-2/neu peptides as tumor vaccines. Cancer Immunol Immunother 55(1):85–95PubMedCrossRef
10.
go back to reference Disis ML, Grabstein KH, Sleath PR, Cheever MA (1999) Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res 5(6):1289–1297PubMed Disis ML, Grabstein KH, Sleath PR, Cheever MA (1999) Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res 5(6):1289–1297PubMed
11.
go back to reference Swanton C, Futreal A, Eisen T (2006) Her2-targeted therapies in non-small cell lung cancer. Clin Cancer Res 12(14 Pt 2):4377s–4383sPubMedCrossRef Swanton C, Futreal A, Eisen T (2006) Her2-targeted therapies in non-small cell lung cancer. Clin Cancer Res 12(14 Pt 2):4377s–4383sPubMedCrossRef
12.
go back to reference Scardino A, Gross D, Alves P, Schultze J, Graff-Dubois S, Faure O, Tourdot S, Chouaib S, Nadler L, Lemmonnier F, Bonderheide R, Cardoso A, Kosmatopoulos K (2002) HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J Immunol 168:5900–5906PubMed Scardino A, Gross D, Alves P, Schultze J, Graff-Dubois S, Faure O, Tourdot S, Chouaib S, Nadler L, Lemmonnier F, Bonderheide R, Cardoso A, Kosmatopoulos K (2002) HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J Immunol 168:5900–5906PubMed
13.
go back to reference Beatty GL, Vonderheide RH (2008) Telomerase as a universal tumor antigen for cancer vaccines. Expert Rev Vaccines 7(7):881–887PubMedCrossRef Beatty GL, Vonderheide RH (2008) Telomerase as a universal tumor antigen for cancer vaccines. Expert Rev Vaccines 7(7):881–887PubMedCrossRef
14.
go back to reference Yang Q, Fung KM, Day WV, Kropp BP, Lin HK (2005) Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival. Cancer Cell Int 5(1):8PubMedCrossRef Yang Q, Fung KM, Day WV, Kropp BP, Lin HK (2005) Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival. Cancer Cell Int 5(1):8PubMedCrossRef
15.
go back to reference Edwards J, Krishna NS, Grigor KM, Bartlett JM (2003) Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer 89(3):552–556PubMedCrossRef Edwards J, Krishna NS, Grigor KM, Bartlett JM (2003) Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer 89(3):552–556PubMedCrossRef
16.
go back to reference Gregory CW, Hamil KG, Kim D, Hall SH, Pretlow TG, Mohler JL, French FS (1998) Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res 58(24):5718–5724PubMed Gregory CW, Hamil KG, Kim D, Hall SH, Pretlow TG, Mohler JL, French FS (1998) Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res 58(24):5718–5724PubMed
17.
go back to reference Sharifi N, Farrar WL (2006) Androgen receptor as a therapeutic target for androgen independent prostate cancer. Am J Ther 13(2):166–170PubMedCrossRef Sharifi N, Farrar WL (2006) Androgen receptor as a therapeutic target for androgen independent prostate cancer. Am J Ther 13(2):166–170PubMedCrossRef
18.
go back to reference Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC, Willi N, Mihatsch MJ, Sauter G, Kallioniemi OP (1999) Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 59(4):803–806PubMed Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC, Willi N, Mihatsch MJ, Sauter G, Kallioniemi OP (1999) Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 59(4):803–806PubMed
19.
20.
go back to reference Steinkamp MP, O’Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S, Hofer MD, Kuefer R, Chinnaiyan A, Rubin MA, Pienta KJ, Robins DM (2009) Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res 69(10):4434–4442PubMedCrossRef Steinkamp MP, O’Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S, Hofer MD, Kuefer R, Chinnaiyan A, Rubin MA, Pienta KJ, Robins DM (2009) Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res 69(10):4434–4442PubMedCrossRef
21.
go back to reference Jager E, Ringhoffer M, Altmannsberger M, Arand M, Karback J, Jager D, Oesch F, Knuth A (1997) Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Cancer 71(2):142–147PubMedCrossRef Jager E, Ringhoffer M, Altmannsberger M, Arand M, Karback J, Jager D, Oesch F, Knuth A (1997) Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Cancer 71(2):142–147PubMedCrossRef
22.
go back to reference Ranieri E, Kierstead LS, Zarour H, Kirkwood JM, Lotze MT, Whiteside T, Storkus WJ (2000) Dendritic cell/peptide cancer vaccines: clinical responsiveness and epitope spreading. Immunol Invest 29(2):121–125PubMedCrossRef Ranieri E, Kierstead LS, Zarour H, Kirkwood JM, Lotze MT, Whiteside T, Storkus WJ (2000) Dendritic cell/peptide cancer vaccines: clinical responsiveness and epitope spreading. Immunol Invest 29(2):121–125PubMedCrossRef
23.
go back to reference Wojtowicz-Praga S, Verma UN, Wakefield L, Esteban JM, Hartmann D, Mazumder A (1996) Modulation of B16 melanoma growth and metastasis by anti-transforming growth factor beta antibody and interleukin-2. J Immunother Emphasis Tumor Immunol 19(3):169–175PubMed Wojtowicz-Praga S, Verma UN, Wakefield L, Esteban JM, Hartmann D, Mazumder A (1996) Modulation of B16 melanoma growth and metastasis by anti-transforming growth factor beta antibody and interleukin-2. J Immunother Emphasis Tumor Immunol 19(3):169–175PubMed
24.
go back to reference Schreiber H, Wu TH, Nachman J, Kast WM (2002) Immunodominance and tumor escape. Semin Cancer Biol 12(1):25–31PubMedCrossRef Schreiber H, Wu TH, Nachman J, Kast WM (2002) Immunodominance and tumor escape. Semin Cancer Biol 12(1):25–31PubMedCrossRef
25.
go back to reference Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273PubMedCrossRef Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273PubMedCrossRef
26.
go back to reference Riker A, Cormier J, Panelli M, Kammula U, Wang E, Abati A, Fetsch P, Lee KH, Steinberg S, Rosenberg S, Marincola F (1999) Immune selection after antigen-specific immunotherapy of melanoma. Surgery 126(2):112–120PubMedCrossRef Riker A, Cormier J, Panelli M, Kammula U, Wang E, Abati A, Fetsch P, Lee KH, Steinberg S, Rosenberg S, Marincola F (1999) Immune selection after antigen-specific immunotherapy of melanoma. Surgery 126(2):112–120PubMedCrossRef
27.
go back to reference Slingluff CL Jr, Colella TA, Thompson L, Graham DD, Skipper JC, Caldwell J, Brinckerhoff L, Kittlesen DJ, Deacon DH, Oei C, Harthun NL, Huczko EL, Hunt DF, Darrow TL, Engelhard VH (2000) Melanomas with concordant loss of multiple melanocytic differentiation proteins: immune escape that may be overcome by targeting unique or undefined antigens. Cancer Immunol Immunother 48(12):661–672PubMedCrossRef Slingluff CL Jr, Colella TA, Thompson L, Graham DD, Skipper JC, Caldwell J, Brinckerhoff L, Kittlesen DJ, Deacon DH, Oei C, Harthun NL, Huczko EL, Hunt DF, Darrow TL, Engelhard VH (2000) Melanomas with concordant loss of multiple melanocytic differentiation proteins: immune escape that may be overcome by targeting unique or undefined antigens. Cancer Immunol Immunother 48(12):661–672PubMedCrossRef
28.
go back to reference Gottlieb B, Beitel LK, Wu JH, Trifiro M (2004) The androgen receptor gene mutations database (ARDB): 2004 update. Hum Mutat 23(6):527–533PubMedCrossRef Gottlieb B, Beitel LK, Wu JH, Trifiro M (2004) The androgen receptor gene mutations database (ARDB): 2004 update. Hum Mutat 23(6):527–533PubMedCrossRef
29.
go back to reference Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, Han M, Partin AW, Vessella RL, Isaacs WB, Bova GS, Luo J (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69(1):16–22PubMedCrossRef Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, Han M, Partin AW, Vessella RL, Isaacs WB, Bova GS, Luo J (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69(1):16–22PubMedCrossRef
30.
go back to reference Olson BM, McNeel DG (2007) Antibody and T-cell responses specific for the androgen receptor in patients with prostate cancer. Prostate 67(16):1729–1739PubMedCrossRef Olson BM, McNeel DG (2007) Antibody and T-cell responses specific for the androgen receptor in patients with prostate cancer. Prostate 67(16):1729–1739PubMedCrossRef
31.
go back to reference Sauma S, Gammon M, Bednarek M, Cunningham B, Biddison W, Hermes J, Porter G, Tamhankar S, Hawkins J, Bush B et al (1993) Recognition by HLA-A2-restricted cytotoxic T lymphocytes of endogenously generated and exogenously provided synthetic peptide analogues of the influenza A virus matrix protein. Hum Immunol 37(4):252–258PubMedCrossRef Sauma S, Gammon M, Bednarek M, Cunningham B, Biddison W, Hermes J, Porter G, Tamhankar S, Hawkins J, Bush B et al (1993) Recognition by HLA-A2-restricted cytotoxic T lymphocytes of endogenously generated and exogenously provided synthetic peptide analogues of the influenza A virus matrix protein. Hum Immunol 37(4):252–258PubMedCrossRef
32.
go back to reference Olson BM, Frye TP, Johnson LE, Fong L, Knutson KL, Disis ML, McNeel DG (2010) HLA-A2-restricted T-cell epitopes specific for prostatic acid phosphatase. Cancer Immunol Immunother 59(6):943–953PubMedCrossRef Olson BM, Frye TP, Johnson LE, Fong L, Knutson KL, Disis ML, McNeel DG (2010) HLA-A2-restricted T-cell epitopes specific for prostatic acid phosphatase. Cancer Immunol Immunother 59(6):943–953PubMedCrossRef
33.
go back to reference Pajot A, Michel ML, Fazilleau N, Pancre V, Auriault C, Ojcius DM, Lemonnier FA, Lone YC (2004) A mouse model of human adaptive immune functions: HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice. Eur J Immunol 34(11):3060–3069PubMedCrossRef Pajot A, Michel ML, Fazilleau N, Pancre V, Auriault C, Ojcius DM, Lemonnier FA, Lone YC (2004) A mouse model of human adaptive immune functions: HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice. Eur J Immunol 34(11):3060–3069PubMedCrossRef
34.
go back to reference Johannsen A, Genolet R, Legler DF, Luther SA, Luescher IF (2010) Definition of key variables for the induction of optimal NY-ESO-1-specific T cells in HLA transgene mice. J Immunol 185(6):3445–3455PubMedCrossRef Johannsen A, Genolet R, Legler DF, Luther SA, Luescher IF (2010) Definition of key variables for the induction of optimal NY-ESO-1-specific T cells in HLA transgene mice. J Immunol 185(6):3445–3455PubMedCrossRef
35.
go back to reference Parker K, Bednarek M, Coligan J (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163PubMed Parker K, Bednarek M, Coligan J (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163PubMed
36.
go back to reference Rammensee HG, Friede T, Stevanoviic S (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41(4):178–228PubMedCrossRef Rammensee HG, Friede T, Stevanoviic S (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41(4):178–228PubMedCrossRef
37.
go back to reference McNeel DG, Nguyen LD, Ellis WJ, Higano CS, Lange PH, Disis ML (2001) Naturally occurring prostate cancer antigen-specific T cell responses of a Th1 phenotype can be detected in patients with prostate cancer. Prostate 47(3):222–229PubMedCrossRef McNeel DG, Nguyen LD, Ellis WJ, Higano CS, Lange PH, Disis ML (2001) Naturally occurring prostate cancer antigen-specific T cell responses of a Th1 phenotype can be detected in patients with prostate cancer. Prostate 47(3):222–229PubMedCrossRef
38.
go back to reference Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219PubMedCrossRef Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219PubMedCrossRef
39.
go back to reference Zhang S, Zhang H, Zhao J (2009) The role of CD4 T cell help for CD8 CTL activation. Biochem Biophys Res Commun 384(4):405–408PubMedCrossRef Zhang S, Zhang H, Zhao J (2009) The role of CD4 T cell help for CD8 CTL activation. Biochem Biophys Res Commun 384(4):405–408PubMedCrossRef
40.
go back to reference Duvall MG, Precopio ML, Ambrozak DA, Jaye A, McMichael AJ, Whittle HC, Roederer M, Rowland-Jones SL, Koup RA (2008) Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur J Immunol 38(2):350–363PubMedCrossRef Duvall MG, Precopio ML, Ambrozak DA, Jaye A, McMichael AJ, Whittle HC, Roederer M, Rowland-Jones SL, Koup RA (2008) Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur J Immunol 38(2):350–363PubMedCrossRef
41.
go back to reference Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, Asher TE, Douek DC, Harari A, Pantaleo G, Bailer R, Graham BS, Roederer M, Koup RA (2007) Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med 204(6):1405–1416PubMedCrossRef Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, Asher TE, Douek DC, Harari A, Pantaleo G, Bailer R, Graham BS, Roederer M, Koup RA (2007) Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med 204(6):1405–1416PubMedCrossRef
42.
go back to reference Rizzuto GA, Merghoub T, Hirschhorn-Cymerman D, Liu C, Lesokhin AM, Sahawneh D, Zhong H, Panageas KS, Perales MA, Altan-Bonnet G, Wolchok JD, Houghton AN (2009) Self-antigen-specific CD8+ T cell precursor frequency determines the quality of the antitumor immune response. J Exp Med 206(4):849–866PubMedCrossRef Rizzuto GA, Merghoub T, Hirschhorn-Cymerman D, Liu C, Lesokhin AM, Sahawneh D, Zhong H, Panageas KS, Perales MA, Altan-Bonnet G, Wolchok JD, Houghton AN (2009) Self-antigen-specific CD8+ T cell precursor frequency determines the quality of the antitumor immune response. J Exp Med 206(4):849–866PubMedCrossRef
43.
go back to reference Seder RA, Darrah PA, Roederer M (2008) T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8(4):247–258PubMedCrossRef Seder RA, Darrah PA, Roederer M (2008) T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8(4):247–258PubMedCrossRef
44.
go back to reference Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF, Ritter E, Ku GY, Jungbluth AA, Segal NH, Rasalan TS, Manukian G, Xu Y, Roman RA, Terzulli SL, Heywood M, Pogoriler E, Ritter G, Old LJ, Allison JP, Wolchok JD (2008) CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci USA 105(51):20410–20415PubMedCrossRef Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF, Ritter E, Ku GY, Jungbluth AA, Segal NH, Rasalan TS, Manukian G, Xu Y, Roman RA, Terzulli SL, Heywood M, Pogoriler E, Ritter G, Old LJ, Allison JP, Wolchok JD (2008) CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci USA 105(51):20410–20415PubMedCrossRef
45.
go back to reference Feltkamp MC, Vierboom MP, Kast WM, Melief CJ (1994) Efficient MHC class I-peptide binding is required but does not ensure MHC class I-restricted immunogenicity. Mol Immunol 31(18):1391–1401PubMedCrossRef Feltkamp MC, Vierboom MP, Kast WM, Melief CJ (1994) Efficient MHC class I-peptide binding is required but does not ensure MHC class I-restricted immunogenicity. Mol Immunol 31(18):1391–1401PubMedCrossRef
Metadata
Title
CD8+ T cells specific for the androgen receptor are common in patients with prostate cancer and are able to lyse prostate tumor cells
Authors
Brian M. Olson
Douglas G. McNeel
Publication date
01-06-2011
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 6/2011
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-011-0987-5

Other articles of this Issue 6/2011

Cancer Immunology, Immunotherapy 6/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine