Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 6/2010

01-06-2010 | Original Article

Targeting MARCO can lead to enhanced dendritic cell motility and anti-melanoma activity

Authors: Norimasa Matsushita, Hiroshi Komine, Annabelle Grolleau-Julius, Shari Pilon-Thomas, James J. Mulé

Published in: Cancer Immunology, Immunotherapy | Issue 6/2010

Login to get access

Abstract

We reported that murine tumor lysate-pulsed dendritic cells (TP-DC) could elicit tumor-specific CD4+ and CD8+ T cells in vitro and in vivo. In some limited cases, TP-DC treatments in vivo could also result in regression of established subcutaneous tumors and lung metastases. By gene array analysis, we reported a high level of expression of a novel member of the cell surface class A scavenger receptor family, MARCO, by murine TP-DC compared to unpulsed DC. MARCO is thought to play an important role in the immune response by mediating binding and phagocytosis, but also in the formation of lamellipodia-like structures and dendritic processes. We have now examined the biologic and therapeutic implications of MARCO expressed by TP-DC. In vitro exposure of TP-DC to a monoclonal anti-MARCO antibody resulted in a morphologic change of rounding with disappearance of dendritic-like processes. TP-DC remained viable after anti-MARCO antibody treatment; had little, if any, change in production of IL-10, IL-12p70 and TNF-alpha; but demonstrated enhanced migratory capacity in a microchemotaxis assay. The use of a selective inhibitor showed MARCO expression to be linked to the p38 mitogen-activated protein kinase (MAPK) pathway. In vivo, anti-MARCO antibody treated TP-DC showed better trafficking from the skin injection site to lymph node, enhanced generation of tumor-reactive IFN-gamma producing T cells, and improved therapeutic efficacy against B16 melanoma. These results, coupled with our finding that human monocyte-derived DC also express MARCO, could have important implications to human clinical DC vaccine trials.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fields RC, Shimizu K, Mulé JJ (1998) Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci USA 95:9482–9487CrossRefPubMed Fields RC, Shimizu K, Mulé JJ (1998) Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci USA 95:9482–9487CrossRefPubMed
2.
go back to reference Asavaroengchai W, Kotera Y, Mulé JJ (2002) Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery. Proc Natl Acad Sci USA 99:931–936CrossRefPubMed Asavaroengchai W, Kotera Y, Mulé JJ (2002) Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery. Proc Natl Acad Sci USA 99:931–936CrossRefPubMed
3.
go back to reference Chang AE, Redman BG, Whitfield JR, Nickoloff BJ, Braun TM, Lee PP, Geiger JD, Mulé JJ (2002) A phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer. Clin Cancer Res 8:1021–1032PubMed Chang AE, Redman BG, Whitfield JR, Nickoloff BJ, Braun TM, Lee PP, Geiger JD, Mulé JJ (2002) A phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer. Clin Cancer Res 8:1021–1032PubMed
4.
go back to reference Geiger JD, Hutchinson RJ, Hohenkirk LF, McKenna EA, Yanik GA, Levine JE, Chang AE, Braun TM, Mulé JJ (2001) Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 61:8513–8519PubMed Geiger JD, Hutchinson RJ, Hohenkirk LF, McKenna EA, Yanik GA, Levine JE, Chang AE, Braun TM, Mulé JJ (2001) Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 61:8513–8519PubMed
5.
go back to reference Morse MA, Coleman RE, Akabani G, Niehaus N, Coleman D, Lyerly HK (1999) Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res 59:56–58PubMed Morse MA, Coleman RE, Akabani G, Niehaus N, Coleman D, Lyerly HK (1999) Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res 59:56–58PubMed
6.
7.
go back to reference Steinman RM (2007) Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat Med 13:1155–1159CrossRefPubMed Steinman RM (2007) Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat Med 13:1155–1159CrossRefPubMed
8.
go back to reference Grolleau A, Misek DE, Kuick R, Hanash S, Mulé JJ (2003) Inducible expression of macrophage receptor MARCO by dendritic cells following phagocytic uptake of dead cells uncovered by oligonucleotide arrays. J Immunol 171:2879–2888PubMed Grolleau A, Misek DE, Kuick R, Hanash S, Mulé JJ (2003) Inducible expression of macrophage receptor MARCO by dendritic cells following phagocytic uptake of dead cells uncovered by oligonucleotide arrays. J Immunol 171:2879–2888PubMed
9.
go back to reference Granucci F, Petralia F, Urbano M, Citterio S, Di Tota F, Santambrogio L, Ricciardi-Castagnoli P (2003) The scavenger receptor MARCO mediates cytoskeleton rearrangements in dendritic cells and microglia. Blood 102:2940–2947CrossRefPubMed Granucci F, Petralia F, Urbano M, Citterio S, Di Tota F, Santambrogio L, Ricciardi-Castagnoli P (2003) The scavenger receptor MARCO mediates cytoskeleton rearrangements in dendritic cells and microglia. Blood 102:2940–2947CrossRefPubMed
10.
go back to reference Re F, Belyanskaya SL, Riese RJ, Cipriani B, Fischer FR, Granucci F, Ricciardi-Castagnoli P, Brosnan C, Stern LJ, Strominger JL, Santambrogio L (2002) Granulocyte-macrophage colony-stimulating factor induces an expression program in neonatal microglia that primes them for antigen presentation. J Immunol 169:2264–2273PubMed Re F, Belyanskaya SL, Riese RJ, Cipriani B, Fischer FR, Granucci F, Ricciardi-Castagnoli P, Brosnan C, Stern LJ, Strominger JL, Santambrogio L (2002) Granulocyte-macrophage colony-stimulating factor induces an expression program in neonatal microglia that primes them for antigen presentation. J Immunol 169:2264–2273PubMed
11.
go back to reference Elomaa O, Kangas M, Sahlberg C, Tuukkanen J, Sormunen R, Liakka A, Thesleff I, Kraal G, Tryggvason K (1995) Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80:603–609CrossRefPubMed Elomaa O, Kangas M, Sahlberg C, Tuukkanen J, Sormunen R, Liakka A, Thesleff I, Kraal G, Tryggvason K (1995) Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80:603–609CrossRefPubMed
12.
go back to reference van der Laan LJ, Dopp EA, Haworth R, Pikkarainen T, Kangas M, Elomaa O, Dijkstra CD, Gordon S, Tryggvason K, Kraal G (1999) Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J Immunol 162:939–947PubMed van der Laan LJ, Dopp EA, Haworth R, Pikkarainen T, Kangas M, Elomaa O, Dijkstra CD, Gordon S, Tryggvason K, Kraal G (1999) Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J Immunol 162:939–947PubMed
13.
go back to reference van der Laan LJ, Kangas M, Dopp EA, Broug-Holub E, Elomaa O, Tryggvason K, Kraal G (1997) Macrophage scavenger receptor MARCO: In vitro and in vivo regulation and involvement in the anti-bacterial host defense. Immunol Lett 57:203–208CrossRefPubMed van der Laan LJ, Kangas M, Dopp EA, Broug-Holub E, Elomaa O, Tryggvason K, Kraal G (1997) Macrophage scavenger receptor MARCO: In vitro and in vivo regulation and involvement in the anti-bacterial host defense. Immunol Lett 57:203–208CrossRefPubMed
14.
go back to reference Arredouani MS, Palecanda A, Koziel H, Huang YC, Imrich A, Sulahian TH, Ning YY, Yang Z, Pikkarainen T, Sankala M, Vargas SO, Takeya M, Tryggvason K, Kobzik L (2005) MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J Immunol 175:6058–6064PubMed Arredouani MS, Palecanda A, Koziel H, Huang YC, Imrich A, Sulahian TH, Ning YY, Yang Z, Pikkarainen T, Sankala M, Vargas SO, Takeya M, Tryggvason K, Kobzik L (2005) MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J Immunol 175:6058–6064PubMed
15.
go back to reference Elshourbagy NA, Li X, Terrett J, Vanhorn S, Gross MS, Adamou JE, Anderson KM, Webb CL, Lysko PG (2000) Molecular characterization of a human scavenger receptor, human MARCO. Eur J Biochem 267:919–926CrossRefPubMed Elshourbagy NA, Li X, Terrett J, Vanhorn S, Gross MS, Adamou JE, Anderson KM, Webb CL, Lysko PG (2000) Molecular characterization of a human scavenger receptor, human MARCO. Eur J Biochem 267:919–926CrossRefPubMed
16.
go back to reference Kraal G, van der Laan LJ, Elomaa O, Tryggvason K (2000) The macrophage receptor MARCO. Microbes Infect 2:313–316CrossRefPubMed Kraal G, van der Laan LJ, Elomaa O, Tryggvason K (2000) The macrophage receptor MARCO. Microbes Infect 2:313–316CrossRefPubMed
17.
go back to reference Mukhopadhyay S, Chen Y, Sankala M, Peiser L, Pikkarainen T, Kraal G, Tryggvason K, Gordon S (2006) MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for Neisseria meningitidis. Eur J Immunol 36:940–949CrossRefPubMed Mukhopadhyay S, Chen Y, Sankala M, Peiser L, Pikkarainen T, Kraal G, Tryggvason K, Gordon S (2006) MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for Neisseria meningitidis. Eur J Immunol 36:940–949CrossRefPubMed
18.
go back to reference Palecanda A, Paulauskis J, Al-Mutairi E, Imrich A, Qin G, Suzuki H, Kodama T, Tryggvason K, Koziel H, Kobzik L (1999) Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J Exp Med 189:1497–1506CrossRefPubMed Palecanda A, Paulauskis J, Al-Mutairi E, Imrich A, Qin G, Suzuki H, Kodama T, Tryggvason K, Koziel H, Kobzik L (1999) Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J Exp Med 189:1497–1506CrossRefPubMed
19.
go back to reference Arredouani M, Yang Z, Ning Y, Qin G, Soininen R, Tryggvason K, Kobzik L (2004) The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J Exp Med 200:267–272CrossRefPubMed Arredouani M, Yang Z, Ning Y, Qin G, Soininen R, Tryggvason K, Kobzik L (2004) The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J Exp Med 200:267–272CrossRefPubMed
20.
go back to reference Yoshimatsu M, Terasaki Y, Sakashita N, Kiyota E, Sato H, van der Laan LJ, Takeya M (2004) Induction of macrophage scavenger receptor MARCO in nonalcoholic steatohepatitis indicates possible involvement of endotoxin in its pathogenic process. Int J Exp Pathol 85:335–343CrossRefPubMed Yoshimatsu M, Terasaki Y, Sakashita N, Kiyota E, Sato H, van der Laan LJ, Takeya M (2004) Induction of macrophage scavenger receptor MARCO in nonalcoholic steatohepatitis indicates possible involvement of endotoxin in its pathogenic process. Int J Exp Pathol 85:335–343CrossRefPubMed
21.
go back to reference Nakamura K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M (2002) Characterization of mouse melanoma cell lines by their mortal malignancy using an experimental metastatic model. Life Sci 70:791–798CrossRefPubMed Nakamura K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M (2002) Characterization of mouse melanoma cell lines by their mortal malignancy using an experimental metastatic model. Life Sci 70:791–798CrossRefPubMed
22.
go back to reference Kirk CJ, Hartigan-O’Connor D, Nickoloff BJ, Chamberlain JS, Giedlin M, Aukerman L, Mulé JJ (2001) T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy. Cancer Res 61:2062–2070PubMed Kirk CJ, Hartigan-O’Connor D, Nickoloff BJ, Chamberlain JS, Giedlin M, Aukerman L, Mulé JJ (2001) T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy. Cancer Res 61:2062–2070PubMed
23.
go back to reference Rescigno M, Martino M, Sutherland CL, Gold MR, Ricciardi-Castagnoli P (1998) Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med 188:2175–2180CrossRefPubMed Rescigno M, Martino M, Sutherland CL, Gold MR, Ricciardi-Castagnoli P (1998) Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med 188:2175–2180CrossRefPubMed
24.
go back to reference Nakahara T, Moroi Y, Uchi H, Furue M (2006) Differential role of MAPK signaling in human dendritic cell maturation and Th1/Th2 engagement. J Dermatol Sci 42:1–11CrossRefPubMed Nakahara T, Moroi Y, Uchi H, Furue M (2006) Differential role of MAPK signaling in human dendritic cell maturation and Th1/Th2 engagement. J Dermatol Sci 42:1–11CrossRefPubMed
25.
go back to reference West MA, Wallin RPA, Matthews SP, Svensson HG, Zaru R, Ljunggren H-G, Prescott AR, Watts C (2004) Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305:1153–1157CrossRefPubMed West MA, Wallin RPA, Matthews SP, Svensson HG, Zaru R, Ljunggren H-G, Prescott AR, Watts C (2004) Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305:1153–1157CrossRefPubMed
26.
go back to reference Arrighi J-F, Rebsamen M, Rousset F, Kindler V, Hauser C (2001) A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-α, and contact sensitizers. J Immunol 166:3837–3845PubMed Arrighi J-F, Rebsamen M, Rousset F, Kindler V, Hauser C (2001) A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-α, and contact sensitizers. J Immunol 166:3837–3845PubMed
27.
go back to reference Escors D, Lopes L, Lin R, Hiscott J, Akira S, Davis RJ, Collins MK (2008) Targeting dendritic cell signaling to regulate the response to immunization. Blood 111:3050–3061CrossRefPubMed Escors D, Lopes L, Lin R, Hiscott J, Akira S, Davis RJ, Collins MK (2008) Targeting dendritic cell signaling to regulate the response to immunization. Blood 111:3050–3061CrossRefPubMed
28.
go back to reference Rosen H, Gordon S (1987) Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and inflammatory cell recruitment in vivo. J Exp Med 166:1685–1701CrossRefPubMed Rosen H, Gordon S (1987) Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and inflammatory cell recruitment in vivo. J Exp Med 166:1685–1701CrossRefPubMed
29.
go back to reference Adema GJ, de Vries JM, Punt CJA, Figdor CG (2005) Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr Opin Immunol 17:170–174CrossRefPubMed Adema GJ, de Vries JM, Punt CJA, Figdor CG (2005) Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr Opin Immunol 17:170–174CrossRefPubMed
30.
go back to reference Verdijk P, Aarntzen EH, Punt CJ, de Vries IJ, Figdor CG (2008) Maximizing dendritic cell migration in cancer immunotherapy. Expert Opin Biol Ther 8:865–874CrossRefPubMed Verdijk P, Aarntzen EH, Punt CJ, de Vries IJ, Figdor CG (2008) Maximizing dendritic cell migration in cancer immunotherapy. Expert Opin Biol Ther 8:865–874CrossRefPubMed
31.
go back to reference Lambert LA, Gibson GR, Maloney M, Durell B, Noelle RJ, Barth RJ Jr (2001) Intranodal immunization with tumor lysate-pulsed dendritic cells enhances protective antitumor immunity. Cancer Res 61:641–646PubMed Lambert LA, Gibson GR, Maloney M, Durell B, Noelle RJ, Barth RJ Jr (2001) Intranodal immunization with tumor lysate-pulsed dendritic cells enhances protective antitumor immunity. Cancer Res 61:641–646PubMed
32.
go back to reference el Khoury J, Thomas CA, Loike JD, Hickman SE, Cao L, Silverstein SC (1994) Macrophages adhere to glucose-modified basement membrane collagen IV via their scavenger receptors. J Biol Chem 269:10197–10200PubMed el Khoury J, Thomas CA, Loike JD, Hickman SE, Cao L, Silverstein SC (1994) Macrophages adhere to glucose-modified basement membrane collagen IV via their scavenger receptors. J Biol Chem 269:10197–10200PubMed
33.
go back to reference Karlsson MC, Guinamard R, Bolland S, Sankala M, Steinman RM, Ravetch JV (2003) Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J Exp Med 198:333–340CrossRefPubMed Karlsson MC, Guinamard R, Bolland S, Sankala M, Steinman RM, Ravetch JV (2003) Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J Exp Med 198:333–340CrossRefPubMed
34.
go back to reference Arredouani MS, Franco F, Imrich A, Fedulov A, Lu X, Perkins D, Soininen R, Tryggvason K, Shapiro SD, Kobzik L (2007) Scavenger receptors SR-AI/II and MARCO limit pulmonary dendritic cell migration and allergic airway inflammation. J Immunol 178:5912–5920PubMed Arredouani MS, Franco F, Imrich A, Fedulov A, Lu X, Perkins D, Soininen R, Tryggvason K, Shapiro SD, Kobzik L (2007) Scavenger receptors SR-AI/II and MARCO limit pulmonary dendritic cell migration and allergic airway inflammation. J Immunol 178:5912–5920PubMed
35.
go back to reference Kotera Y, Shimizu K, Mulé JJ (2001) Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res 61:8105–8109PubMed Kotera Y, Shimizu K, Mulé JJ (2001) Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res 61:8105–8109PubMed
36.
go back to reference Inaba K, Pack M, Inaba M, Sakuta H, Isdell F, Steinman RM (1997) High levels of a major histocompatibility complex II-self peptide complex on dendritic cells from the T cell areas of lymph nodes. J Exp Med 186:665–672CrossRefPubMed Inaba K, Pack M, Inaba M, Sakuta H, Isdell F, Steinman RM (1997) High levels of a major histocompatibility complex II-self peptide complex on dendritic cells from the T cell areas of lymph nodes. J Exp Med 186:665–672CrossRefPubMed
37.
go back to reference Wilson HL, O’Neill HC (2003) Murine dendritic cell development: difficulties associated with subset analysis. Immunol Cell Biol 81:239–246CrossRefPubMed Wilson HL, O’Neill HC (2003) Murine dendritic cell development: difficulties associated with subset analysis. Immunol Cell Biol 81:239–246CrossRefPubMed
38.
go back to reference Takahashi K, Kenji A, Norihiro T, Eisaku K, Takashi O, Kazuhiko H, Tadashi Y, Tadaatsu A (2001) Morphological interactions of interdigitating dendritic cells with B and T cells in human mesenteric lymph nodes. Am J Pathol 159:131–138PubMed Takahashi K, Kenji A, Norihiro T, Eisaku K, Takashi O, Kazuhiko H, Tadashi Y, Tadaatsu A (2001) Morphological interactions of interdigitating dendritic cells with B and T cells in human mesenteric lymph nodes. Am J Pathol 159:131–138PubMed
39.
go back to reference Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Kodama T (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296CrossRefPubMed Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Kodama T (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296CrossRefPubMed
40.
go back to reference Brummelkamp T, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553CrossRefPubMed Brummelkamp T, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553CrossRefPubMed
41.
go back to reference Mulé JJ (2000) Dendritic cells: at the clinical crossroads (Invited Commentary). J Clin Invest 105:707–708CrossRefPubMed Mulé JJ (2000) Dendritic cells: at the clinical crossroads (Invited Commentary). J Clin Invest 105:707–708CrossRefPubMed
Metadata
Title
Targeting MARCO can lead to enhanced dendritic cell motility and anti-melanoma activity
Authors
Norimasa Matsushita
Hiroshi Komine
Annabelle Grolleau-Julius
Shari Pilon-Thomas
James J. Mulé
Publication date
01-06-2010
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 6/2010
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-009-0813-5

Other articles of this Issue 6/2010

Cancer Immunology, Immunotherapy 6/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine