Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 7/2007

01-07-2007 | Original Article

CD20-specific antibody-targeted chemotherapy of non-Hodgkin’s B-cell lymphoma using calicheamicin-conjugated rituximab

Authors: John F. DiJoseph, Maureen M. Dougher, Douglas C. Armellino, Lyka Kalyandrug, Arthur Kunz, Erwin R. Boghaert, Philip R. Hamann, Nitin K. Damle

Published in: Cancer Immunology, Immunotherapy | Issue 7/2007

Login to get access

Abstract

Tumor-targeted delivery of a potent cytotoxic agent, calicheamicin, using its immunoconjugates is a clinically validated therapeutic strategy. Rituximab is a human CD20-specific chimeric antibody extensively used in B-NHL therapy. We investigated whether conjugation to calicheamicin can improve the anti-tumor activity of rituximab against human B-cell lymphoma (BCL) xenografts in preclinical models. BCL cells were cultured with rituximab or its calicheamicin conjugates and their in vitro growth was monitored. BCL cells were injected s.c. to establish localized xenografts in nude mice or i.v. to establish disseminated BCL in severe combined immunodeficient (scid) mice. I.p. treatment with rituximab or its calicheamicin conjugates was initiated and its effect on s.c. BCL growth or survival of mice with disseminated BCL was monitored. Conjugation of calicheamicin to rituximab vastly enhanced its growth inhibitory activity against BCL in vitro. Conjugation to calicheamicin had no deleterious effect on the effector functional activity of rituximab. Calicheamicin conjugated to rituximab with an acid-labile linker exhibited greater anti-tumor activity against s.c. BCL xenografts and improved survival of mice with disseminated BCL over that of unconjugated rituximab. Anti-tumor activities of rituximab conjugated to calicheamicin via an acid-stable linker were similar to that of unconjugated rituximab. Superior anti-tumor efficacy exhibited by a calicheamicin immunoconjugate of rituximab with an acid-labile linker over that of rituximab demonstrates the therapeutic potential of CD20-specific antibody-targeted chemotherapy strategy in the treatment of B-NHL.
Literature
1.
go back to reference Damle NK (2004) Tumor-targeted chemotherapy with immunoconjugates of calicheamicin. Expert Opin Biol Ther 4:1445–1452PubMedCrossRef Damle NK (2004) Tumor-targeted chemotherapy with immunoconjugates of calicheamicin. Expert Opin Biol Ther 4:1445–1452PubMedCrossRef
2.
go back to reference Bross PF, Beitz J, Chen G et al (2001) Gemtuzumab ozogamicin: approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7:1490–1496PubMed Bross PF, Beitz J, Chen G et al (2001) Gemtuzumab ozogamicin: approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7:1490–1496PubMed
3.
go back to reference Sievers EL, Appelbaum FR, Spielberger RT et al (1999) Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93:3678–3684PubMed Sievers EL, Appelbaum FR, Spielberger RT et al (1999) Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93:3678–3684PubMed
4.
go back to reference Sievers E, Larson R, Stadmauer E et al (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 19:3244–3254PubMed Sievers E, Larson R, Stadmauer E et al (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 19:3244–3254PubMed
5.
go back to reference Hamann PR, Hinman LM, Hollander I et al (2002) A potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconj Chem 13:47–58CrossRef Hamann PR, Hinman LM, Hollander I et al (2002) A potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconj Chem 13:47–58CrossRef
6.
go back to reference Lee M, Dunne T, Chang C et al. (1992) Calicheamicins, a novel family of antibiotics. 4. Structural elucidations of calicheamicins. J Am Chem Soc 114:985–987CrossRef Lee M, Dunne T, Chang C et al. (1992) Calicheamicins, a novel family of antibiotics. 4. Structural elucidations of calicheamicins. J Am Chem Soc 114:985–987CrossRef
7.
go back to reference Zein N, Sinha A, McGahren W, Ellestad G (1988) Calicheamicin γI: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 240:1198–1201PubMedCrossRef Zein N, Sinha A, McGahren W, Ellestad G (1988) Calicheamicin γI: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 240:1198–1201PubMedCrossRef
8.
go back to reference Grillo-Lopez A (2003) Rituximab (Rituxan/MabThera): the first decade (1993–2003). Expert Rev Anticancer Ther 3:767–779PubMedCrossRef Grillo-Lopez A (2003) Rituximab (Rituxan/MabThera): the first decade (1993–2003). Expert Rev Anticancer Ther 3:767–779PubMedCrossRef
9.
go back to reference Ghobrial I, Witzig T (2004) Radioimmunotherapy: a new treatment modality for B-cell non-Hodgkin’s lymphoma. Oncology 18:623–630PubMed Ghobrial I, Witzig T (2004) Radioimmunotherapy: a new treatment modality for B-cell non-Hodgkin’s lymphoma. Oncology 18:623–630PubMed
10.
go back to reference Uchida J, Hamaguchi Y, Oliver JA et al (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199:1659–1669PubMedCrossRef Uchida J, Hamaguchi Y, Oliver JA et al (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199:1659–1669PubMedCrossRef
11.
go back to reference Gaetano ND, Cittera E, Nota R et al (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171:1581–1587PubMed Gaetano ND, Cittera E, Nota R et al (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171:1581–1587PubMed
12.
go back to reference Manches O, Lui G, Chaperot L et al (2003) In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood 101:949–954PubMedCrossRef Manches O, Lui G, Chaperot L et al (2003) In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood 101:949–954PubMedCrossRef
13.
go back to reference Hainsworth JD, Litchy S, Burris HA et al (2002) Rituximab as first-line and maintenance therapy for patients with indolent non-Hodgkin’s lymphoma. J Clin Oncology 20:4261–4267CrossRef Hainsworth JD, Litchy S, Burris HA et al (2002) Rituximab as first-line and maintenance therapy for patients with indolent non-Hodgkin’s lymphoma. J Clin Oncology 20:4261–4267CrossRef
14.
go back to reference Edwards JC, Szczepanski L, Szechinski J et al (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350:2572–2581PubMedCrossRef Edwards JC, Szczepanski L, Szechinski J et al (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350:2572–2581PubMedCrossRef
15.
go back to reference DiJoseph JF, Armellino DC, Boghaert E et al (2004) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B lymphoid malignancies. Blood 103:1807–1814PubMedCrossRef DiJoseph JF, Armellino DC, Boghaert E et al (2004) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B lymphoid malignancies. Blood 103:1807–1814PubMedCrossRef
16.
go back to reference Advani A, Giné E, Gisselbrecht C et al (2005) Preliminary report of a phase 1 study of cmc-544, an antibody-targeted chemotherapy agent, in patients with b-cell non-Hodgkin’s lymphoma (NHL). Blood 106(11): abstract No. 230 Advani A, Giné E, Gisselbrecht C et al (2005) Preliminary report of a phase 1 study of cmc-544, an antibody-targeted chemotherapy agent, in patients with b-cell non-Hodgkin’s lymphoma (NHL). Blood 106(11): abstract No. 230
17.
go back to reference DiJoseph JF, Dougher MM, Kalyandrug LB et al (2006) Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin’s B-cell lymphoma. Clin Cancer Res 12:242–249PubMedCrossRef DiJoseph JF, Dougher MM, Kalyandrug LB et al (2006) Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin’s B-cell lymphoma. Clin Cancer Res 12:242–249PubMedCrossRef
18.
go back to reference DiJoseph JF, Goad ME, Dougher MM et al (2004) Potent and specific anti-tumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin Cancer Res 10:8620–8629PubMedCrossRef DiJoseph JF, Goad ME, Dougher MM et al (2004) Potent and specific anti-tumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin Cancer Res 10:8620–8629PubMedCrossRef
19.
go back to reference Flavell DJ, Noss A, Pulford KAF, Ling N, Flavell SU (1997) Systemic therapy with 3BIT, a triple combination cocktail of anti-CD19, -CD22, and -CD38-saporin immunotoxins, is curative of human B-cell lymphoma in severe combined immunodeficient mice. Cancer Res 57:4824–4829PubMed Flavell DJ, Noss A, Pulford KAF, Ling N, Flavell SU (1997) Systemic therapy with 3BIT, a triple combination cocktail of anti-CD19, -CD22, and -CD38-saporin immunotoxins, is curative of human B-cell lymphoma in severe combined immunodeficient mice. Cancer Res 57:4824–4829PubMed
20.
go back to reference Flavell DJ, Boehm DA, Emery L, Noss A, Ramsay A, Flavell SU (1995) Therapy of human B-cell lymphoma bearing SCID mice is more effective with anti-CD19- and anti-CD38-saporin immunotoxins used alone in combination than with either immunotoxin alone. Int J Cancer 62:337–344PubMedCrossRef Flavell DJ, Boehm DA, Emery L, Noss A, Ramsay A, Flavell SU (1995) Therapy of human B-cell lymphoma bearing SCID mice is more effective with anti-CD19- and anti-CD38-saporin immunotoxins used alone in combination than with either immunotoxin alone. Int J Cancer 62:337–344PubMedCrossRef
21.
go back to reference Hinman LM, Hamann PR, Wallace R, Menendez AT, Dur FE, Upeslacis J (2003) Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res 53:3336–3342 Hinman LM, Hamann PR, Wallace R, Menendez AT, Dur FE, Upeslacis J (2003) Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res 53:3336–3342
22.
go back to reference Hamann P, Hinman L, Beyer C et al (2002) An anti-CD33 antibody–calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconj. Chem 13:40–46CrossRef Hamann P, Hinman L, Beyer C et al (2002) An anti-CD33 antibody–calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconj. Chem 13:40–46CrossRef
23.
go back to reference DiJoseph JF, Popplewell A, Tickle S et al (2005) Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother 54:11–24PubMedCrossRef DiJoseph JF, Popplewell A, Tickle S et al (2005) Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother 54:11–24PubMedCrossRef
24.
go back to reference Press OW, Farr AG, Borroz KI, Anderson SK, Martin PJ (1989) Endocytosis and degradation of monoclonal antibodies targeting human B-cell malignancies. Cancer Res 49:4906–4912PubMed Press OW, Farr AG, Borroz KI, Anderson SK, Martin PJ (1989) Endocytosis and degradation of monoclonal antibodies targeting human B-cell malignancies. Cancer Res 49:4906–4912PubMed
25.
go back to reference Vangeepuram N, Ong GL, Mattes MJ (1997) Processing of antibodies bound to B-cell lymphomas and lymphoblastoid cell lines. Cancer 80(Suppl):2425–2430PubMedCrossRef Vangeepuram N, Ong GL, Mattes MJ (1997) Processing of antibodies bound to B-cell lymphomas and lymphoblastoid cell lines. Cancer 80(Suppl):2425–2430PubMedCrossRef
26.
go back to reference Law CL, Cerveny CG, Gordon KA et al (2004) Efficient elimination of B-lineage lymphomas by anti-CD20–Auristatin conjugates. Clin Cancer Res 10:7842–7851PubMedCrossRef Law CL, Cerveny CG, Gordon KA et al (2004) Efficient elimination of B-lineage lymphomas by anti-CD20–Auristatin conjugates. Clin Cancer Res 10:7842–7851PubMedCrossRef
27.
go back to reference Vervoordeldonk SF, Merle PA, van Leeuwen EF, van der Schoot CE, von dem Borne AE, Slaper-Cortenbach IC (1994) Fc gamma receptor II (CD32) on malignant B cells influences modulation induced by anti-CD19 monoclonal antibody. Blood 83:1632–1639PubMed Vervoordeldonk SF, Merle PA, van Leeuwen EF, van der Schoot CE, von dem Borne AE, Slaper-Cortenbach IC (1994) Fc gamma receptor II (CD32) on malignant B cells influences modulation induced by anti-CD19 monoclonal antibody. Blood 83:1632–1639PubMed
28.
go back to reference Van Den Herik-Oudijk IE, Westerdaal NA, Henriquez NV, Capel PJ, Van De Winkel JG (1994) Functional analysis of human Fc gamma RII (CD32) isoforms expressed in B lymphocytes. J Immunol 152:574–585 Van Den Herik-Oudijk IE, Westerdaal NA, Henriquez NV, Capel PJ, Van De Winkel JG (1994) Functional analysis of human Fc gamma RII (CD32) isoforms expressed in B lymphocytes. J Immunol 152:574–585
29.
go back to reference Flieger D, Renoth S, Beier I, Sauerbruch T, Schmidt-Wolf I (2000) Mechanism of cytotoxicity induced by chimeric mouse human monoclonal antibody IDEC-C2B8 in CD20-expressing lymphoma cell lines. Cell Immunol 205:55–63CrossRef Flieger D, Renoth S, Beier I, Sauerbruch T, Schmidt-Wolf I (2000) Mechanism of cytotoxicity induced by chimeric mouse human monoclonal antibody IDEC-C2B8 in CD20-expressing lymphoma cell lines. Cell Immunol 205:55–63CrossRef
30.
go back to reference Miettinen HM, Matter K, Hunzinker W et al (1992) Fc receptor endocytosis is controlled by a cytoplasmic domain determinant that actively prevents coated pit localization. J Cell Biol 116:875–888PubMedCrossRef Miettinen HM, Matter K, Hunzinker W et al (1992) Fc receptor endocytosis is controlled by a cytoplasmic domain determinant that actively prevents coated pit localization. J Cell Biol 116:875–888PubMedCrossRef
31.
go back to reference Costello LC, Franklin RB (2005) ‘Why do tumour cells glycolyse?’: from glycolysis through citrate to lipogenesis. Mol Cell Biochem 280:1–8PubMedCrossRef Costello LC, Franklin RB (2005) ‘Why do tumour cells glycolyse?’: from glycolysis through citrate to lipogenesis. Mol Cell Biochem 280:1–8PubMedCrossRef
32.
go back to reference Boghaert ER, Khanke K, Sridharan L et al (2006) Tumoricidal effect of calicheamicin immuno-conjugates using a passive targeting strategy. Int J Oncol 28:675–684PubMed Boghaert ER, Khanke K, Sridharan L et al (2006) Tumoricidal effect of calicheamicin immuno-conjugates using a passive targeting strategy. Int J Oncol 28:675–684PubMed
33.
go back to reference Harder T, Engelhardt (2004) Membrane domains in lymphocytes-from lipid rafts to protein scaffolds. Traffic 5:265–275 Harder T, Engelhardt (2004) Membrane domains in lymphocytes-from lipid rafts to protein scaffolds. Traffic 5:265–275
34.
go back to reference Polyak MJ, Tailor SH, Deans JP (1998) Identification of a cytoplasmic region of CD20 required for its redistribution to a detergent-insoluble membrane compartment. J Immunol 161:3242–3248PubMed Polyak MJ, Tailor SH, Deans JP (1998) Identification of a cytoplasmic region of CD20 required for its redistribution to a detergent-insoluble membrane compartment. J Immunol 161:3242–3248PubMed
35.
go back to reference Fujimoto M, Kuwano Y, Wananabe R et al (2006) B cell antigen receptor and CD40 differentially regulate CD22 tyrosine phosphorylation. J Immunol 176:873–879PubMed Fujimoto M, Kuwano Y, Wananabe R et al (2006) B cell antigen receptor and CD40 differentially regulate CD22 tyrosine phosphorylation. J Immunol 176:873–879PubMed
36.
go back to reference Gaetano ND, Cittera E, Nota R et al (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171:1581–1587PubMed Gaetano ND, Cittera E, Nota R et al (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171:1581–1587PubMed
37.
go back to reference Cragg MS, Glennie MJ (2004) Antibody specificity controls effector mechanisms of anti-CD20 reagents. Blood 103:2738–2743 PubMedCrossRef Cragg MS, Glennie MJ (2004) Antibody specificity controls effector mechanisms of anti-CD20 reagents. Blood 103:2738–2743 PubMedCrossRef
38.
go back to reference Cragg MS, Morgan SM, Claude Chan HT et al (2003) Complement-mediated lysis by anti-CD20 mAb correlated with segregation into lipid rafts. Blood 101:1045–1052PubMedCrossRef Cragg MS, Morgan SM, Claude Chan HT et al (2003) Complement-mediated lysis by anti-CD20 mAb correlated with segregation into lipid rafts. Blood 101:1045–1052PubMedCrossRef
Metadata
Title
CD20-specific antibody-targeted chemotherapy of non-Hodgkin’s B-cell lymphoma using calicheamicin-conjugated rituximab
Authors
John F. DiJoseph
Maureen M. Dougher
Douglas C. Armellino
Lyka Kalyandrug
Arthur Kunz
Erwin R. Boghaert
Philip R. Hamann
Nitin K. Damle
Publication date
01-07-2007
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 7/2007
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-006-0260-5

Other articles of this Issue 7/2007

Cancer Immunology, Immunotherapy 7/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine