Skip to main content
Top
Published in: Abdominal Radiology 6/2019

01-06-2019 | Prostate Cancer | Pelvis

Revisiting quantitative multi-parametric MRI of benign prostatic hyperplasia and its differentiation from transition zone cancer

Authors: Aritrick Chatterjee, Alexander J. Gallan, Dianning He, Xiaobing Fan, Devkumar Mustafi, Ambereen Yousuf, Tatjana Antic, Gregory S. Karczmar, Aytekin Oto

Published in: Abdominal Radiology | Issue 6/2019

Login to get access

Abstract

Purpose

This study investigates the multiparametric MRI (mpMRI) appearance of different types of benign prostatic hyperplasia (BPH) and whether quantitative mpMRI is effective in differentiating between prostate cancer (PCa) and BPH.

Materials and methods

Patients (n = 60) with confirmed PCa underwent preoperative 3T MRI. T2-weighted, multi-echo T2-weighted, diffusion weighted and dynamic contrast enhanced images (DCE) were obtained prior to undergoing prostatectomy. PCa and BPH (cystic, glandular or stromal) were identified in the transition zone and matched with MRI. Quantitative mpMRI metrics: T2, ADC and DCE-MRI parameters using an empirical mathematical model were measured.

Results

ADC values were significantly lower (p < 0.001) in PCa compared to all BPH types and can differentiate between PCa and BPH with high accuracy (AUC = 0.87, p < 0.001). T2 values were significantly lower (p < 0.001) in PCa compared to cystic BPH only, while glandular (p = 0.27) and stromal BPH (p = 0.99) showed no significant difference from PCa. BPH mimics PCa in the transition zone on DCE-MRI evidenced by no significant difference between them. mpMRI values of glandular (ADC = 1.31 ± 0.22 µm2/ms, T2 = 115.7 ± 37.3 ms) and cystic BPH (ADC = 1.92 ± 0.43 µm2/ms, T2 = 242.8 ± 117.9 ms) are significantly different. There was no significant difference in ADC (p = 0.72) and T2 (p = 0.46) between glandular and stromal BPH.

Conclusions

Multiparametric MRI and specifically quantitative ADC values can be used for differentiating PCa and BPH, improving PCa diagnosis in the transition zone. However, DCE-MRI metrics are not effective in distinguishing PCa and BPH. Glandular BPH are not hyperintense on ADC and T2 as previously thought and have similar quantitative mpMRI measurements to stromal BPH. Glandular and cystic BPH appear differently on mpMRI and are histologically different.
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians. 2018; 68(1):7-30. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians. 2018; 68(1):7-30.
2.
go back to reference McNeal JE, Redwine EA, Freiha FS, Stamey TA. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. The American journal of surgical pathology. 1988; 12(12):897-906. McNeal JE, Redwine EA, Freiha FS, Stamey TA. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. The American journal of surgical pathology. 1988; 12(12):897-906.
3.
go back to reference McNeal J, Noldus J. Limitations of transition zone needle biopsy findings in the prediction of transition zone cancer and tissue composition of benign nodular hyperplasia. Urology. 1996; 48(5):751-6.CrossRefPubMed McNeal J, Noldus J. Limitations of transition zone needle biopsy findings in the prediction of transition zone cancer and tissue composition of benign nodular hyperplasia. Urology. 1996; 48(5):751-6.CrossRefPubMed
5.
go back to reference Berry SJ, Coffey DS, Walsh PC, Ewing LL. The development of human benign prostatic hyperplasia with age. J Urol. 1984; 132(3):474-9.CrossRefPubMed Berry SJ, Coffey DS, Walsh PC, Ewing LL. The development of human benign prostatic hyperplasia with age. J Urol. 1984; 132(3):474-9.CrossRefPubMed
6.
go back to reference Schiebler ML, Tomaszewski JE, Bezzi M, et al. Prostatic carcinoma and benign prostatic hyperplasia: correlation of high-resolution MR and histopathologic findings. Radiology. 1989; 172(1):131-7.CrossRefPubMed Schiebler ML, Tomaszewski JE, Bezzi M, et al. Prostatic carcinoma and benign prostatic hyperplasia: correlation of high-resolution MR and histopathologic findings. Radiology. 1989; 172(1):131-7.CrossRefPubMed
7.
go back to reference Turnbull LW, Buckley DL, Turnbull LS, Liney GP, Knowles AJ. Differentiation of prostatic carcinoma and benign prostatic hyperplasia: Correlation between dynamic Gd-DTPA-enhanced MR imaging and histopathology. Journal of Magnetic Resonance Imaging. 1999; 9(2):311-6.CrossRefPubMed Turnbull LW, Buckley DL, Turnbull LS, Liney GP, Knowles AJ. Differentiation of prostatic carcinoma and benign prostatic hyperplasia: Correlation between dynamic Gd-DTPA-enhanced MR imaging and histopathology. Journal of Magnetic Resonance Imaging. 1999; 9(2):311-6.CrossRefPubMed
8.
go back to reference Oto A, Kayhan A, Jiang Y, et al. Prostate Cancer: Differentiation of Central Gland Cancer from Benign Prostatic Hyperplasia by Using Diffusion-weighted and Dynamic Contrast-enhanced MR Imaging. Radiology. 2010; 257(3):715-23.CrossRefPubMed Oto A, Kayhan A, Jiang Y, et al. Prostate Cancer: Differentiation of Central Gland Cancer from Benign Prostatic Hyperplasia by Using Diffusion-weighted and Dynamic Contrast-enhanced MR Imaging. Radiology. 2010; 257(3):715-23.CrossRefPubMed
9.
go back to reference Kitzing YX, Prando A, Varol C, Karczmar GS, Maclean F, Oto A. Benign Conditions That Mimic Prostate Carcinoma: MR Imaging Features with Histopathologic Correlation. RadioGraphics. 2016; 36(1):162-75.CrossRefPubMed Kitzing YX, Prando A, Varol C, Karczmar GS, Maclean F, Oto A. Benign Conditions That Mimic Prostate Carcinoma: MR Imaging Features with Histopathologic Correlation. RadioGraphics. 2016; 36(1):162-75.CrossRefPubMed
10.
go back to reference Epstein JI, Paull G, Eggleston JC, Walsh PC. Prognosis of Untreated Stage A1 Prostatic Carcinoma: A Study of 94 Cases with Extended Followup. The Journal of urology. 1986; 136(4):837-9.CrossRefPubMed Epstein JI, Paull G, Eggleston JC, Walsh PC. Prognosis of Untreated Stage A1 Prostatic Carcinoma: A Study of 94 Cases with Extended Followup. The Journal of urology. 1986; 136(4):837-9.CrossRefPubMed
11.
go back to reference Blute ML, Zincke H, Farrow GM. Long-Term Followup of Young Patients with Stage a Adenocarcinoma of the Prostate. The Journal of urology. 1986; 136(4):840-3.CrossRefPubMed Blute ML, Zincke H, Farrow GM. Long-Term Followup of Young Patients with Stage a Adenocarcinoma of the Prostate. The Journal of urology. 1986; 136(4):840-3.CrossRefPubMed
12.
go back to reference Kim CK, Park BK, Lee HM, Kwon GY. Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3T using a phased-array coil: preliminary results. Invest Radiol. 2007; 42(12):842-7.CrossRefPubMed Kim CK, Park BK, Lee HM, Kwon GY. Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3T using a phased-array coil: preliminary results. Invest Radiol. 2007; 42(12):842-7.CrossRefPubMed
13.
go back to reference Tamada T, Sone T, Jo Y, et al. Apparent diffusion coefficient values in peripheral and transition zones of the prostate: Comparison between normal and malignant prostatic tissues and correlation with histologic grade. J Magn Reson Imaging. 2008; 28(3):720-6.CrossRefPubMed Tamada T, Sone T, Jo Y, et al. Apparent diffusion coefficient values in peripheral and transition zones of the prostate: Comparison between normal and malignant prostatic tissues and correlation with histologic grade. J Magn Reson Imaging. 2008; 28(3):720-6.CrossRefPubMed
14.
go back to reference Ishida J, Sugimura K, Okizuka H, et al. Benign prostatic hyperplasia: value of MR imaging for determining histologic type. Radiology. 1994; 190(2):329-31.CrossRefPubMed Ishida J, Sugimura K, Okizuka H, et al. Benign prostatic hyperplasia: value of MR imaging for determining histologic type. Radiology. 1994; 190(2):329-31.CrossRefPubMed
15.
go back to reference Thai JN, Narayanan HA, George AK, et al. Validation of PI-RADS Version 2 in Transition Zone Lesions for the Detection of Prostate Cancer. Radiology. 2018; 288(2):485-91.CrossRefPubMedPubMedCentral Thai JN, Narayanan HA, George AK, et al. Validation of PI-RADS Version 2 in Transition Zone Lesions for the Detection of Prostate Cancer. Radiology. 2018; 288(2):485-91.CrossRefPubMedPubMedCentral
16.
go back to reference Weinreb JC. Organized Chaos: Does PI-RADS Version 2 Work in the Transition Zone? Radiology. 2018; 288(2):492-4.CrossRefPubMed Weinreb JC. Organized Chaos: Does PI-RADS Version 2 Work in the Transition Zone? Radiology. 2018; 288(2):492-4.CrossRefPubMed
17.
go back to reference Chatterjee A, He D, Fan X, et al. Performance of ultrafast DCE-MRI for diagnosis of prostate cancer. Academic Radiology. 2018; 25(3):349-58.CrossRefPubMed Chatterjee A, He D, Fan X, et al. Performance of ultrafast DCE-MRI for diagnosis of prostate cancer. Academic Radiology. 2018; 25(3):349-58.CrossRefPubMed
18.
go back to reference He D, Chatterjee A, Fan X, et al. Feasibility of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using Low-Dose Gadolinium: Comparative Performance With Standard Dose in Prostate Cancer Diagnosis. Investigative Radiology. 2018; 53(10):609-15.PubMed He D, Chatterjee A, Fan X, et al. Feasibility of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using Low-Dose Gadolinium: Comparative Performance With Standard Dose in Prostate Cancer Diagnosis. Investigative Radiology. 2018; 53(10):609-15.PubMed
19.
go back to reference Fan X, Medved M, River JN, et al. New model for analysis of dynamic contrast‐enhanced MRI data distinguishes metastatic from nonmetastatic transplanted rodent prostate tumors. Magnetic resonance in medicine. 2004; 51(3):487-94.CrossRefPubMed Fan X, Medved M, River JN, et al. New model for analysis of dynamic contrast‐enhanced MRI data distinguishes metastatic from nonmetastatic transplanted rodent prostate tumors. Magnetic resonance in medicine. 2004; 51(3):487-94.CrossRefPubMed
20.
go back to reference Akin O, Sala E, Moskowitz CS, et al. Transition Zone Prostate Cancers: Features, Detection, Localization, and Staging at Endorectal MR Imaging. Radiology. 2006; 239(3):784-92.CrossRefPubMed Akin O, Sala E, Moskowitz CS, et al. Transition Zone Prostate Cancers: Features, Detection, Localization, and Staging at Endorectal MR Imaging. Radiology. 2006; 239(3):784-92.CrossRefPubMed
21.
go back to reference Kayhan A, Fan X, Oommen J, Oto A. Multi-parametric MR imaging of transition zone prostate cancer: Imaging features, detection and staging. World Journal of Radiology. 2010; 2(5):180-7.CrossRefPubMedPubMedCentral Kayhan A, Fan X, Oommen J, Oto A. Multi-parametric MR imaging of transition zone prostate cancer: Imaging features, detection and staging. World Journal of Radiology. 2010; 2(5):180-7.CrossRefPubMedPubMedCentral
22.
go back to reference Sato C, Naganawa S, Nakamura T, et al. Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate. Journal of Magnetic Resonance Imaging. 2005; 21(3):258-62.CrossRefPubMed Sato C, Naganawa S, Nakamura T, et al. Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate. Journal of Magnetic Resonance Imaging. 2005; 21(3):258-62.CrossRefPubMed
23.
go back to reference Noworolski SM, Vigneron DB, Chen AP, Kurhanewicz J. Combined Dynamic Contrast-Enhanced MRI and MR Diffusion Imaging to Distinguish Between Glandular and Stromal Prostatic Tissues. Magnetic Resonance Imaging. 2008; 26(8):1071-80.CrossRefPubMedPubMedCentral Noworolski SM, Vigneron DB, Chen AP, Kurhanewicz J. Combined Dynamic Contrast-Enhanced MRI and MR Diffusion Imaging to Distinguish Between Glandular and Stromal Prostatic Tissues. Magnetic Resonance Imaging. 2008; 26(8):1071-80.CrossRefPubMedPubMedCentral
24.
go back to reference Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS Prostate Imaging – Reporting and Data System: 2015, Version 2. European Urology. 2016; 69(1):16-40.CrossRefPubMed Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS Prostate Imaging – Reporting and Data System: 2015, Version 2. European Urology. 2016; 69(1):16-40.CrossRefPubMed
25.
go back to reference Li H, Sugimura K, Kaji Y, et al. Conventional MRI Capabilities in the Diagnosis of Prostate Cancer in the Transition Zone. American Journal of Roentgenology. 2006; 186(3):729-42.CrossRefPubMed Li H, Sugimura K, Kaji Y, et al. Conventional MRI Capabilities in the Diagnosis of Prostate Cancer in the Transition Zone. American Journal of Roentgenology. 2006; 186(3):729-42.CrossRefPubMed
26.
go back to reference Guneyli S, Ward E, Thomas S, et al. Magnetic resonance imaging of benign prostatic hyperplasia. Diagnostic and Interventional Radiology. 2016; 22(3):215-9.CrossRefPubMedPubMedCentral Guneyli S, Ward E, Thomas S, et al. Magnetic resonance imaging of benign prostatic hyperplasia. Diagnostic and Interventional Radiology. 2016; 22(3):215-9.CrossRefPubMedPubMedCentral
27.
go back to reference Kozlowski P, Chang SD, Jones EC, Berean KW, Chen H, Goldenberg SL. Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis—Correlation with biopsy and histopathology. Journal of Magnetic Resonance Imaging. 2006; 24(1):108-13.CrossRefPubMed Kozlowski P, Chang SD, Jones EC, Berean KW, Chen H, Goldenberg SL. Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis—Correlation with biopsy and histopathology. Journal of Magnetic Resonance Imaging. 2006; 24(1):108-13.CrossRefPubMed
28.
go back to reference Rosenkrantz AB, Kim S, Campbell N, Gaing B, Deng F-M, Taneja SS. Transition Zone Prostate Cancer: Revisiting the Role of Multiparametric MRI at 3 T. American Journal of Roentgenology. 2015; 204(3):W266-W72.CrossRefPubMed Rosenkrantz AB, Kim S, Campbell N, Gaing B, Deng F-M, Taneja SS. Transition Zone Prostate Cancer: Revisiting the Role of Multiparametric MRI at 3 T. American Journal of Roentgenology. 2015; 204(3):W266-W72.CrossRefPubMed
29.
go back to reference Chesnais AL, Niaf E, Bratan F, et al. Differentiation of transitional zone prostate cancer from benign hyperplasia nodules: Evaluation of discriminant criteria at multiparametric MRI. Clinical Radiology. 2013; 68(6):e323-e30.CrossRefPubMed Chesnais AL, Niaf E, Bratan F, et al. Differentiation of transitional zone prostate cancer from benign hyperplasia nodules: Evaluation of discriminant criteria at multiparametric MRI. Clinical Radiology. 2013; 68(6):e323-e30.CrossRefPubMed
30.
go back to reference Schlemmer H-P, Merkle J, Grobholz R, et al. Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? European Radiology. 2004; 14(2):309-17.CrossRefPubMed Schlemmer H-P, Merkle J, Grobholz R, et al. Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? European Radiology. 2004; 14(2):309-17.CrossRefPubMed
31.
go back to reference Verma S, Turkbey B, Muradyan N, et al. Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. AJR Am J Roentgenol. 2012; 198(6):1277-88.CrossRefPubMedPubMedCentral Verma S, Turkbey B, Muradyan N, et al. Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. AJR Am J Roentgenol. 2012; 198(6):1277-88.CrossRefPubMedPubMedCentral
32.
go back to reference Bourne RM, Kurniawan N, Cowin G, et al. Microscopic diffusivity compartmentation in formalin-fixed prostate tissue. Magn Reson Med. 2012; 68(2):614-20.CrossRefPubMed Bourne RM, Kurniawan N, Cowin G, et al. Microscopic diffusivity compartmentation in formalin-fixed prostate tissue. Magn Reson Med. 2012; 68(2):614-20.CrossRefPubMed
33.
go back to reference Chatterjee A, Watson G, Myint E, Sved P, McEntee M, Bourne R. Changes in Epithelium, Stroma, and Lumen Space Correlate More Strongly with Gleason Pattern and Are Stronger Predictors of Prostate ADC Changes than Cellularity Metrics. Radiology. 2015; 277(3):751-62.CrossRefPubMed Chatterjee A, Watson G, Myint E, Sved P, McEntee M, Bourne R. Changes in Epithelium, Stroma, and Lumen Space Correlate More Strongly with Gleason Pattern and Are Stronger Predictors of Prostate ADC Changes than Cellularity Metrics. Radiology. 2015; 277(3):751-62.CrossRefPubMed
34.
go back to reference Langer DL, van der Kwast TH, Evans AJ, et al. Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology. 2010; 255(2):485-94.CrossRefPubMed Langer DL, van der Kwast TH, Evans AJ, et al. Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology. 2010; 255(2):485-94.CrossRefPubMed
35.
go back to reference Bartsch G, Muller HR, Oberholzer M, Rohr HP. Light microscopic stereological analysis of the normal human prostate and of benign prostatic hyperplasia. J Urol. 1979; 122(4):487-91.CrossRefPubMed Bartsch G, Muller HR, Oberholzer M, Rohr HP. Light microscopic stereological analysis of the normal human prostate and of benign prostatic hyperplasia. J Urol. 1979; 122(4):487-91.CrossRefPubMed
36.
go back to reference Siegel YI, Zaidel L, Hammel I, Korczak D, Lindner A. Morphometric evaluation of benign prostatic hyperplasia. Eur Urol. 1990; 18(1):71-3.CrossRefPubMed Siegel YI, Zaidel L, Hammel I, Korczak D, Lindner A. Morphometric evaluation of benign prostatic hyperplasia. Eur Urol. 1990; 18(1):71-3.CrossRefPubMed
37.
38.
go back to reference Panagiotaki E, Chan RW, Dikaios N, et al. Microstructural Characterization of Normal and Malignant Human Prostate Tissue With Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumours Magnetic Resonance Imaging. Investigative Radiology. 2015; 50(4):218-27.CrossRefPubMed Panagiotaki E, Chan RW, Dikaios N, et al. Microstructural Characterization of Normal and Malignant Human Prostate Tissue With Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumours Magnetic Resonance Imaging. Investigative Radiology. 2015; 50(4):218-27.CrossRefPubMed
39.
go back to reference Sabouri S, Chang SD, Savdie R, et al. Luminal Water Imaging: A New MR Imaging T2 Mapping Technique for Prostate Cancer Diagnosis. Radiology. 2017; 284(2):451-9.CrossRefPubMedPubMedCentral Sabouri S, Chang SD, Savdie R, et al. Luminal Water Imaging: A New MR Imaging T2 Mapping Technique for Prostate Cancer Diagnosis. Radiology. 2017; 284(2):451-9.CrossRefPubMedPubMedCentral
40.
go back to reference Chatterjee A, Bourne R, Wang S, et al. Diagnosis of Prostate Cancer with Noninvasive Estimation of Prostate Tissue Composition by Using Hybrid Multidimensional MR Imaging: A Feasibility Study. Radiology. 2018; 287(3):864-72.CrossRefPubMedPubMedCentral Chatterjee A, Bourne R, Wang S, et al. Diagnosis of Prostate Cancer with Noninvasive Estimation of Prostate Tissue Composition by Using Hybrid Multidimensional MR Imaging: A Feasibility Study. Radiology. 2018; 287(3):864-72.CrossRefPubMedPubMedCentral
41.
go back to reference Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: Standardized quantities and symbols. Journal of Magnetic Resonance Imaging. 1999; 10(3):223-32.CrossRefPubMed Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: Standardized quantities and symbols. Journal of Magnetic Resonance Imaging. 1999; 10(3):223-32.CrossRefPubMed
42.
go back to reference Buckley DL. Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magnetic Resonance in Medicine. 2002; 47(3):601-6.CrossRefPubMed Buckley DL. Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magnetic Resonance in Medicine. 2002; 47(3):601-6.CrossRefPubMed
43.
go back to reference Isebaert S, De Keyzer F, Haustermans K, et al. Evaluation of semi-quantitative dynamic contrast-enhanced MRI parameters for prostate cancer in correlation to whole-mount histopathology. European Journal of Radiology. 2012; 81(3):e217-e22.CrossRefPubMed Isebaert S, De Keyzer F, Haustermans K, et al. Evaluation of semi-quantitative dynamic contrast-enhanced MRI parameters for prostate cancer in correlation to whole-mount histopathology. European Journal of Radiology. 2012; 81(3):e217-e22.CrossRefPubMed
44.
go back to reference Jansen SA, Fan X, Medved M, et al. Characterizing early contrast uptake of ductal carcinoma in situ with high temporal resolution dynamic contrast-enhanced MRI of the breast: a pilot study. Phys Med Biol. 2010; 55(19):473–85.CrossRef Jansen SA, Fan X, Medved M, et al. Characterizing early contrast uptake of ductal carcinoma in situ with high temporal resolution dynamic contrast-enhanced MRI of the breast: a pilot study. Phys Med Biol. 2010; 55(19):473–85.CrossRef
45.
go back to reference Fan X, Medved M, Karczmar GS, et al. Diagnosis of suspicious breast lesions using an empirical mathematical model for dynamic contrast-enhanced MRI. Magnetic Resonance Imaging. 2007; 25(5):593-603.CrossRefPubMed Fan X, Medved M, Karczmar GS, et al. Diagnosis of suspicious breast lesions using an empirical mathematical model for dynamic contrast-enhanced MRI. Magnetic Resonance Imaging. 2007; 25(5):593-603.CrossRefPubMed
Metadata
Title
Revisiting quantitative multi-parametric MRI of benign prostatic hyperplasia and its differentiation from transition zone cancer
Authors
Aritrick Chatterjee
Alexander J. Gallan
Dianning He
Xiaobing Fan
Devkumar Mustafi
Ambereen Yousuf
Tatjana Antic
Gregory S. Karczmar
Aytekin Oto
Publication date
01-06-2019
Publisher
Springer US
Published in
Abdominal Radiology / Issue 6/2019
Print ISSN: 2366-004X
Electronic ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-019-01936-1

Other articles of this Issue 6/2019

Abdominal Radiology 6/2019 Go to the issue