Skip to main content
Top
Published in: Abdominal Radiology 6/2019

01-06-2019

Radiomics and radiogenomics of prostate cancer

Published in: Abdominal Radiology | Issue 6/2019

Login to get access

Abstract

Radiomics and radiogenomics are attractive research topics in prostate cancer. Radiomics mainly focuses on extraction of quantitative information from medical imaging, whereas radiogenomics aims to correlate these imaging features to genomic data. The purpose of this review is to provide a brief overview summarizing recent progress in the application of radiomics-based approaches in prostate cancer and to discuss the potential role of radiogenomics in prostate cancer.
Literature
1.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R, et al. (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 48(4):441–446CrossRefPubMedPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R, et al. (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 48(4):441–446CrossRefPubMedPubMedCentral
3.
go back to reference Thompson I, Thrasher JB, Aus G, et al. (2007) Guideline for the management of clinically localized prostate cancer: 2007 update. J Urol. 177(6):2106–2131CrossRefPubMed Thompson I, Thrasher JB, Aus G, et al. (2007) Guideline for the management of clinically localized prostate cancer: 2007 update. J Urol. 177(6):2106–2131CrossRefPubMed
4.
go back to reference Fernandes ET, Sundaram CP, Long R, Soltani M, Ercole CJ (1997) Biopsy Gleason score: how does it correlate with the final pathological diagnosis in prostate cancer? Br J Urol. 79(4):615–617CrossRefPubMed Fernandes ET, Sundaram CP, Long R, Soltani M, Ercole CJ (1997) Biopsy Gleason score: how does it correlate with the final pathological diagnosis in prostate cancer? Br J Urol. 79(4):615–617CrossRefPubMed
5.
go back to reference Kvåle R, Møller B, Wahlqvist R, et al. (2009) Concordance between Gleason scores of needle biopsies and radical prostatectomy specimens: a population-based study. BJU Int. 103(12):1647–1654CrossRefPubMed Kvåle R, Møller B, Wahlqvist R, et al. (2009) Concordance between Gleason scores of needle biopsies and radical prostatectomy specimens: a population-based study. BJU Int. 103(12):1647–1654CrossRefPubMed
6.
go back to reference Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA. 313(4):390–397CrossRefPubMedPubMedCentral Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA. 313(4):390–397CrossRefPubMedPubMedCentral
7.
go back to reference Aihara M, Wheeler TM, Ohori M, Scardino PT (1994) Heterogeneity of prostate cancer in radical prostatectomy specimens. Urology. 43(1):60–66 ((discussion 6-7))CrossRefPubMed Aihara M, Wheeler TM, Ohori M, Scardino PT (1994) Heterogeneity of prostate cancer in radical prostatectomy specimens. Urology. 43(1):60–66 ((discussion 6-7))CrossRefPubMed
8.
go back to reference El-Shater Bosaily A, Valerio M, Hu Y, et al. (2016) The concordance between the volume hotspot and the grade hotspot: a 3-D reconstructive model using the pathology outputs from the PROMIS trial. Prostate Cancer Prostatic Dis. 19(3):258–263CrossRefPubMedPubMedCentral El-Shater Bosaily A, Valerio M, Hu Y, et al. (2016) The concordance between the volume hotspot and the grade hotspot: a 3-D reconstructive model using the pathology outputs from the PROMIS trial. Prostate Cancer Prostatic Dis. 19(3):258–263CrossRefPubMedPubMedCentral
9.
go back to reference Boutros PC, Fraser M, Harding NJ, et al. (2015) Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet. 47(7):736–745CrossRefPubMed Boutros PC, Fraser M, Harding NJ, et al. (2015) Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet. 47(7):736–745CrossRefPubMed
10.
go back to reference Weinreb JC, Barentsz JO, Choyke PL, et al. (2016) PI-RADS prostate imaging–reporting and data system: 2015, version 2. Eur Urol. 69(1):16–40CrossRefPubMed Weinreb JC, Barentsz JO, Choyke PL, et al. (2016) PI-RADS prostate imaging–reporting and data system: 2015, version 2. Eur Urol. 69(1):16–40CrossRefPubMed
11.
go back to reference Greer MD, Brown AM, Shih JH, et al. (2017) Accuracy and agreement of PI-RADS v2 for prostate cancer mpMRI: a multireader study. J Magn Reson Imaging. 45(2):579–585CrossRefPubMed Greer MD, Brown AM, Shih JH, et al. (2017) Accuracy and agreement of PI-RADS v2 for prostate cancer mpMRI: a multireader study. J Magn Reson Imaging. 45(2):579–585CrossRefPubMed
12.
go back to reference Langer DL, van der Kwast TH, Evans AJ, et al. (2010) Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology. 255(2):485–494CrossRefPubMed Langer DL, van der Kwast TH, Evans AJ, et al. (2010) Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology. 255(2):485–494CrossRefPubMed
13.
go back to reference Zelhof B, Pickles M, Liney G, et al. (2009) Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJU Int. 103(7):883–888CrossRefPubMed Zelhof B, Pickles M, Liney G, et al. (2009) Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJU Int. 103(7):883–888CrossRefPubMed
14.
go back to reference Gibbs P, Liney GP, Pickles MD, et al. (2009) Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Invest Radiol. 44(9):572–576CrossRefPubMed Gibbs P, Liney GP, Pickles MD, et al. (2009) Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Invest Radiol. 44(9):572–576CrossRefPubMed
15.
go back to reference Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybernet. 6:610–621CrossRef Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybernet. 6:610–621CrossRef
16.
go back to reference Srinivasan G, Shobha G, editors. Statistical texture analysis. Proceedings of world academy of science, engineering and technology; 2008. Srinivasan G, Shobha G, editors. Statistical texture analysis. Proceedings of world academy of science, engineering and technology; 2008.
17.
go back to reference Bovik AC, Clark M, Geisler WS (1990) Multichannel texture analysis using localized spatial filters. IEEE Trans Pattern Anal Mach Intell. 12(1):55–73CrossRef Bovik AC, Clark M, Geisler WS (1990) Multichannel texture analysis using localized spatial filters. IEEE Trans Pattern Anal Mach Intell. 12(1):55–73CrossRef
18.
go back to reference Busch C (1997) Wavelet based texture segmentation of multi-modal tomographic images. Comput Gr. 21(3):347–358CrossRef Busch C (1997) Wavelet based texture segmentation of multi-modal tomographic images. Comput Gr. 21(3):347–358CrossRef
19.
go back to reference Tang X (1998) Texture information in run-length matrices. IEEE Trans Image Process. 7(11):1602–1609CrossRefPubMed Tang X (1998) Texture information in run-length matrices. IEEE Trans Image Process. 7(11):1602–1609CrossRefPubMed
20.
go back to reference Sun C, Wee W (1983) Neighboring gray level dependence matrix for texture classification. Comput Vis Gr Image Process 23(3):341–352CrossRef Sun C, Wee W (1983) Neighboring gray level dependence matrix for texture classification. Comput Vis Gr Image Process 23(3):341–352CrossRef
21.
go back to reference Amadasun M, King R (1989) Texural features corresponding to textural properties. IEEE Trans Syst Man Cybern 23(3):1264–1274CrossRef Amadasun M, King R (1989) Texural features corresponding to textural properties. IEEE Trans Syst Man Cybern 23(3):1264–1274CrossRef
22.
go back to reference Orlhac F, Soussan M, Maisonobe JA, et al. (2014) Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 55(3):414–422CrossRefPubMed Orlhac F, Soussan M, Maisonobe JA, et al. (2014) Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 55(3):414–422CrossRefPubMed
23.
go back to reference Chalkidou A, O’Doherty MJ, Marsden PK (2015) False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One. 10(5):e0124165CrossRefPubMedPubMedCentral Chalkidou A, O’Doherty MJ, Marsden PK (2015) False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One. 10(5):e0124165CrossRefPubMedPubMedCentral
24.
go back to reference Trabulsi EJ, Liu XS, Smith WR, Das AK (2013) Transrectal ultrasound of the prostate. In: Gilbert BR, Fulgham PF (eds) Practical urological ultrasound. New York: Springer, pp 155–170CrossRef Trabulsi EJ, Liu XS, Smith WR, Das AK (2013) Transrectal ultrasound of the prostate. In: Gilbert BR, Fulgham PF (eds) Practical urological ultrasound. New York: Springer, pp 155–170CrossRef
25.
go back to reference Shen D, Lao Z, Zeng J, et al. (2004) Optimized prostate biopsy via a statistical atlas of cancer spatial distribution. Med Image Anal. 8(2):139–150CrossRefPubMed Shen D, Lao Z, Zeng J, et al. (2004) Optimized prostate biopsy via a statistical atlas of cancer spatial distribution. Med Image Anal. 8(2):139–150CrossRefPubMed
26.
go back to reference Zhan Y, Shen D, Zeng J, et al. (2007) Targeted prostate biopsy using statistical image analysis. IEEE Trans Med Imaging. 26(6):779–788CrossRefPubMed Zhan Y, Shen D, Zeng J, et al. (2007) Targeted prostate biopsy using statistical image analysis. IEEE Trans Med Imaging. 26(6):779–788CrossRefPubMed
27.
28.
go back to reference Wu P, Liu Y, Li Y, Liu B (2015) Robust prostate segmentation using intrinsic properties of TRUS images. IEEE Trans Med Imaging. 34(6):1321–1335CrossRefPubMed Wu P, Liu Y, Li Y, Liu B (2015) Robust prostate segmentation using intrinsic properties of TRUS images. IEEE Trans Med Imaging. 34(6):1321–1335CrossRefPubMed
29.
go back to reference Gong L, Pathak SD, Haynor DR, Cho PS, Kim Y (2004) Parametric shape modeling using deformable superellipses for prostate segmentation. IEEE Trans Med Imaging. 23(3):340–349CrossRefPubMed Gong L, Pathak SD, Haynor DR, Cho PS, Kim Y (2004) Parametric shape modeling using deformable superellipses for prostate segmentation. IEEE Trans Med Imaging. 23(3):340–349CrossRefPubMed
30.
go back to reference K. Diaz, B. Castaneda (eds) Semi-automated segmentation of the prostate gland boundary in ultrasound images using a machine learning approach. Medical Imaging (SPIE, 2008). K. Diaz, B. Castaneda (eds) Semi-automated segmentation of the prostate gland boundary in ultrasound images using a machine learning approach. Medical Imaging (SPIE, 2008).
31.
go back to reference H. Ning, D. B. Downey, A. Fenster, H. M. Ladak (eds) Prostate surface segmentation from 3D ultrasound images. Proceedings IEEE International Symposium on Biomedical Imaging (2002). H. Ning, D. B. Downey, A. Fenster, H. M. Ladak (eds) Prostate surface segmentation from 3D ultrasound images. Proceedings IEEE International Symposium on Biomedical Imaging (2002).
32.
go back to reference Cosío FA (2008) Automatic initialization of an active shape model of the prostate. Med Image Anal. 12(4):469–483CrossRefPubMed Cosío FA (2008) Automatic initialization of an active shape model of the prostate. Med Image Anal. 12(4):469–483CrossRefPubMed
33.
go back to reference Ghose S, Oliver A, Mitra J, et al. (2013) A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images. Med Image Anal. 17(6):587–600CrossRefPubMed Ghose S, Oliver A, Mitra J, et al. (2013) A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images. Med Image Anal. 17(6):587–600CrossRefPubMed
34.
go back to reference A. Zaim, T. Yi, R. Keck (eds) Feature-Based Classification of Prostate Ultrasound Images using Multiwavelet and Kernel Support Vector Machines. 2007 International Joint Conference on Neural Networks (12-17 Aug 2007). A. Zaim, T. Yi, R. Keck (eds) Feature-Based Classification of Prostate Ultrasound Images using Multiwavelet and Kernel Support Vector Machines. 2007 International Joint Conference on Neural Networks (12-17 Aug 2007).
35.
go back to reference Yan P, Xu S, Turkbey B, Kruecker J (2010) Discrete deformable model guided by partial active shape model for TRUS image segmentation. IEEE Trans Biomed Eng. 57(5):1158–1166CrossRefPubMed Yan P, Xu S, Turkbey B, Kruecker J (2010) Discrete deformable model guided by partial active shape model for TRUS image segmentation. IEEE Trans Biomed Eng. 57(5):1158–1166CrossRefPubMed
36.
go back to reference Murphy G, Haider M, Ghai S, Sreeharsha B (2013) The expanding role of MRI in prostate cancer. AJR Am J Roentgenol. 201(6):1229–1238CrossRefPubMed Murphy G, Haider M, Ghai S, Sreeharsha B (2013) The expanding role of MRI in prostate cancer. AJR Am J Roentgenol. 201(6):1229–1238CrossRefPubMed
37.
go back to reference Toth R, Bloch BN, Genega EM, et al. (2011) Accurate prostate volume estimation using multifeature active shape models on T2-weighted MRI. Acad Radiol. 18(6):745–754CrossRefPubMed Toth R, Bloch BN, Genega EM, et al. (2011) Accurate prostate volume estimation using multifeature active shape models on T2-weighted MRI. Acad Radiol. 18(6):745–754CrossRefPubMed
38.
go back to reference Chowdhury N, Toth R, Chappelow J, et al. (2012) Concurrent segmentation of the prostate on MRI and CT via linked statistical shape models for radiotherapy planning. Med Phys. 39(4):2214–2228CrossRefPubMedPubMedCentral Chowdhury N, Toth R, Chappelow J, et al. (2012) Concurrent segmentation of the prostate on MRI and CT via linked statistical shape models for radiotherapy planning. Med Phys. 39(4):2214–2228CrossRefPubMedPubMedCentral
39.
go back to reference Shiradkar R, Podder TK, Algohary A, et al. (2016) Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI. Radiat Oncol. 11(1):148CrossRefPubMedPubMedCentral Shiradkar R, Podder TK, Algohary A, et al. (2016) Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI. Radiat Oncol. 11(1):148CrossRefPubMedPubMedCentral
40.
go back to reference Pasquier D, Lacornerie T, Vermandel M, et al. (2007) Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 68(2):592–600CrossRefPubMed Pasquier D, Lacornerie T, Vermandel M, et al. (2007) Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 68(2):592–600CrossRefPubMed
41.
go back to reference Costa MJ, Delingette H, Novellas S, Ayache N (2007) Automatic segmentation of bladder and prostate using coupled 3D deformable models. Med Image Comput Comput Assist Interv. 10(Pt 1):252–260PubMed Costa MJ, Delingette H, Novellas S, Ayache N (2007) Automatic segmentation of bladder and prostate using coupled 3D deformable models. Med Image Comput Comput Assist Interv. 10(Pt 1):252–260PubMed
42.
go back to reference Klein S, van der Heide UA, Lips IM, et al. (2008) Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med Phys. 35(4):1407–1417CrossRefPubMed Klein S, van der Heide UA, Lips IM, et al. (2008) Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med Phys. 35(4):1407–1417CrossRefPubMed
43.
go back to reference Makni N, Puech P, Lopes R, et al. (2009) Combining a deformable model and a probabilistic framework for an automatic 3D segmentation of prostate on MRI. Int J Comput Assist Radiol Surg. 4(2):181–188CrossRefPubMed Makni N, Puech P, Lopes R, et al. (2009) Combining a deformable model and a probabilistic framework for an automatic 3D segmentation of prostate on MRI. Int J Comput Assist Radiol Surg. 4(2):181–188CrossRefPubMed
44.
go back to reference Chandra SS, Dowling JA, Shen KK, et al. (2012) Patient specific prostate segmentation in 3-d magnetic resonance images. IEEE Trans Med Imaging. 31(10):1955–1964CrossRefPubMed Chandra SS, Dowling JA, Shen KK, et al. (2012) Patient specific prostate segmentation in 3-d magnetic resonance images. IEEE Trans Med Imaging. 31(10):1955–1964CrossRefPubMed
45.
go back to reference Litjens G, Toth R, van de Ven W, et al. (2014) Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal. 18(2):359–373CrossRefPubMed Litjens G, Toth R, van de Ven W, et al. (2014) Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal. 18(2):359–373CrossRefPubMed
46.
go back to reference Makni N, Iancu A, Colot O, et al. (2011) Zonal segmentation of prostate using multispectral magnetic resonance images. Med Phys. 38(11):6093–6105CrossRefPubMed Makni N, Iancu A, Colot O, et al. (2011) Zonal segmentation of prostate using multispectral magnetic resonance images. Med Phys. 38(11):6093–6105CrossRefPubMed
47.
go back to reference Litjens G, Debats O, van de Ven W, Karssemeijer N, Huisman H (2012) A pattern recognition approach to zonal segmentation of the prostate on MRI. Lect Notes Comput Sc. 7511:413–420CrossRef Litjens G, Debats O, van de Ven W, Karssemeijer N, Huisman H (2012) A pattern recognition approach to zonal segmentation of the prostate on MRI. Lect Notes Comput Sc. 7511:413–420CrossRef
48.
go back to reference Maan B, van der Heijden F, Futterer JJ (2012) A new prostate segmentation approach using multispectral Magnetic Resonance Imaging and a statistical pattern classifier. Proc Spie. 8314:83142QCrossRef Maan B, van der Heijden F, Futterer JJ (2012) A new prostate segmentation approach using multispectral Magnetic Resonance Imaging and a statistical pattern classifier. Proc Spie. 8314:83142QCrossRef
50.
go back to reference Padgett K, Swallen A, Nelson A, Pollack A, Stoyanova R (2016) Robust atlas based segmentation of the prostate and peripheral zone regions on MRI utilizing multiple MRI system vendors. Med Phys. 43(6):3447CrossRef Padgett K, Swallen A, Nelson A, Pollack A, Stoyanova R (2016) Robust atlas based segmentation of the prostate and peripheral zone regions on MRI utilizing multiple MRI system vendors. Med Phys. 43(6):3447CrossRef
51.
go back to reference Cameron A, Khalvati F, Haider MA, Wong A (2016) MAPS: a quantitative radiomics approach for prostate cancer detection. IEEE Trans Biomed Eng. 63(6):1145–1156CrossRefPubMed Cameron A, Khalvati F, Haider MA, Wong A (2016) MAPS: a quantitative radiomics approach for prostate cancer detection. IEEE Trans Biomed Eng. 63(6):1145–1156CrossRefPubMed
52.
go back to reference Ginsburg SB, Algohary A, Pahwa S, et al. (2017) Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: preliminary findings from a multi-institutional study. J Magn Reson Imaging. 46(1):184–193CrossRefPubMed Ginsburg SB, Algohary A, Pahwa S, et al. (2017) Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: preliminary findings from a multi-institutional study. J Magn Reson Imaging. 46(1):184–193CrossRefPubMed
53.
go back to reference Han SM, Lee HJ, Choi JY (2008) Computer-aided prostate cancer detection using texture features and clinical features in ultrasound image. J Digit Imaging. 21(Suppl 1):S121–S133CrossRefPubMed Han SM, Lee HJ, Choi JY (2008) Computer-aided prostate cancer detection using texture features and clinical features in ultrasound image. J Digit Imaging. 21(Suppl 1):S121–S133CrossRefPubMed
54.
go back to reference Hussain L, Ahmed A, Saeed S, et al. (2018) Prostate cancer detection using machine learning techniques by employing combination of features extracting strategies. Cancer Biomark. 21(2):393–413CrossRefPubMed Hussain L, Ahmed A, Saeed S, et al. (2018) Prostate cancer detection using machine learning techniques by employing combination of features extracting strategies. Cancer Biomark. 21(2):393–413CrossRefPubMed
55.
go back to reference Khalvati F, Wong A, Haider MA (2015) Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med Imaging. 15:27CrossRefPubMedPubMedCentral Khalvati F, Wong A, Haider MA (2015) Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med Imaging. 15:27CrossRefPubMedPubMedCentral
56.
go back to reference Kwak JT, Xu S, Wood BJ, et al. (2015) Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging. Med Phys. 42(5):2368–2378CrossRefPubMedPubMedCentral Kwak JT, Xu S, Wood BJ, et al. (2015) Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging. Med Phys. 42(5):2368–2378CrossRefPubMedPubMedCentral
57.
go back to reference Lay N, Tsehay Y, Greer MD, et al. (2017) Detection of prostate cancer in multiparametric MRI using random forest with instance weighting. J Med Imaging (Bellingham). 4(2):024506CrossRef Lay N, Tsehay Y, Greer MD, et al. (2017) Detection of prostate cancer in multiparametric MRI using random forest with instance weighting. J Med Imaging (Bellingham). 4(2):024506CrossRef
58.
go back to reference Lopes R, Ayache A, Makni N, et al. (2011) Prostate cancer characterization on MR images using fractal features. Med Phys. 38(1):83–95CrossRefPubMed Lopes R, Ayache A, Makni N, et al. (2011) Prostate cancer characterization on MR images using fractal features. Med Phys. 38(1):83–95CrossRefPubMed
59.
go back to reference Madabhushi A, Feldman MD, Metaxas DN, Tomaszeweski J, Chute D (2005) Automated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI. IEEE Trans Med Imaging. 24(12):1611–1625CrossRefPubMed Madabhushi A, Feldman MD, Metaxas DN, Tomaszeweski J, Chute D (2005) Automated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI. IEEE Trans Med Imaging. 24(12):1611–1625CrossRefPubMed
60.
go back to reference Metzger GJ, Kalavagunta C, Spilseth B, et al. (2016) Detection of prostate cancer: quantitative multiparametric MR imaging models developed using registered correlative histopathology. Radiology. 279(3):805–816CrossRefPubMedPubMedCentral Metzger GJ, Kalavagunta C, Spilseth B, et al. (2016) Detection of prostate cancer: quantitative multiparametric MR imaging models developed using registered correlative histopathology. Radiology. 279(3):805–816CrossRefPubMedPubMedCentral
61.
go back to reference Mohamed SS, Li J, Salama MM, Freeman G (2009) Prostate tissue texture feature extraction for suspicious regions identification on TRUS images. J Digit Imaging. 22(5):503–518CrossRefPubMed Mohamed SS, Li J, Salama MM, Freeman G (2009) Prostate tissue texture feature extraction for suspicious regions identification on TRUS images. J Digit Imaging. 22(5):503–518CrossRefPubMed
62.
go back to reference Stember JN, Deng FM, Taneja SS, Rosenkrantz AB (2014) Pilot study of a novel tool for input-free automated identification of transition zone prostate tumors using T2- and diffusion-weighted signal and textural features. J Magn Reson Imaging. 40(2):301–305CrossRefPubMed Stember JN, Deng FM, Taneja SS, Rosenkrantz AB (2014) Pilot study of a novel tool for input-free automated identification of transition zone prostate tumors using T2- and diffusion-weighted signal and textural features. J Magn Reson Imaging. 40(2):301–305CrossRefPubMed
63.
go back to reference Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol. 59(12):1061–1069CrossRefPubMed Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol. 59(12):1061–1069CrossRefPubMed
64.
go back to reference Lv D, Guo X, Wang X, Zhang J, Fang J (2009) Computerized characterization of prostate cancer by fractal analysis in MR images. J Magn Reson Imaging. 30(1):161–168CrossRefPubMed Lv D, Guo X, Wang X, Zhang J, Fang J (2009) Computerized characterization of prostate cancer by fractal analysis in MR images. J Magn Reson Imaging. 30(1):161–168CrossRefPubMed
65.
go back to reference Wang J, Wu CJ, Bao ML, et al. (2017) Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. Eur Radiol. 27(10):4082–4090CrossRefPubMed Wang J, Wu CJ, Bao ML, et al. (2017) Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. Eur Radiol. 27(10):4082–4090CrossRefPubMed
66.
go back to reference Smith AD, Shah SN, Rini BI, Lieber ML, Remer EM (2010) Morphology, Attenuation, Size, and Structure (MASS) criteria: assessing response and predicting clinical outcome in metastatic renal cell carcinoma on antiangiogenic targeted therapy. AJR Am J Roentgenol. 194(6):1470–1478CrossRefPubMed Smith AD, Shah SN, Rini BI, Lieber ML, Remer EM (2010) Morphology, Attenuation, Size, and Structure (MASS) criteria: assessing response and predicting clinical outcome in metastatic renal cell carcinoma on antiangiogenic targeted therapy. AJR Am J Roentgenol. 194(6):1470–1478CrossRefPubMed
67.
go back to reference Fehr D, Veeraraghavan H, Wibmer A, et al. (2015) Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci USA 112(46):E6265–E6273CrossRefPubMed Fehr D, Veeraraghavan H, Wibmer A, et al. (2015) Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci USA 112(46):E6265–E6273CrossRefPubMed
68.
go back to reference Nketiah G, Elschot M, Kim E, et al. (2017) T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results. Eur Radiol. 27(7):3050–3059CrossRefPubMed Nketiah G, Elschot M, Kim E, et al. (2017) T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results. Eur Radiol. 27(7):3050–3059CrossRefPubMed
69.
go back to reference Muller BG, Shih JH, Sankineni S, et al. (2015) Prostate Cancer: Interobserver Agreement and Accuracy with the Revised Prostate Imaging Reporting and Data System at Multiparametric MR Imaging. Radiology. 277(3):741–750CrossRefPubMedPubMedCentral Muller BG, Shih JH, Sankineni S, et al. (2015) Prostate Cancer: Interobserver Agreement and Accuracy with the Revised Prostate Imaging Reporting and Data System at Multiparametric MR Imaging. Radiology. 277(3):741–750CrossRefPubMedPubMedCentral
70.
go back to reference Mazurowski MA (2015) Radiogenomics: what it is and why it is important. J Am Coll Radiol. 12(8):862–866CrossRefPubMed Mazurowski MA (2015) Radiogenomics: what it is and why it is important. J Am Coll Radiol. 12(8):862–866CrossRefPubMed
71.
go back to reference Incoronato M, Aiello M, Infante T, et al. (2017) Radiogenomic analysis of oncological data: a technical survey. Int J Mol Sci. 18(4):805CrossRefPubMedCentral Incoronato M, Aiello M, Infante T, et al. (2017) Radiogenomic analysis of oncological data: a technical survey. Int J Mol Sci. 18(4):805CrossRefPubMedCentral
72.
go back to reference Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol. 70(2):232–241CrossRefPubMed Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol. 70(2):232–241CrossRefPubMed
73.
74.
go back to reference Thawani R, McLane M, Beig N, et al. (2018) Radiomics and radiogenomics in lung cancer: A review for the clinician. Lung Cancer. 115:34–41CrossRefPubMed Thawani R, McLane M, Beig N, et al. (2018) Radiomics and radiogenomics in lung cancer: A review for the clinician. Lung Cancer. 115:34–41CrossRefPubMed
76.
go back to reference Pinker K, Shitano F, Sala E, et al. (2017) Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging. 47(3):604–620CrossRefPubMedPubMedCentral Pinker K, Shitano F, Sala E, et al. (2017) Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging. 47(3):604–620CrossRefPubMedPubMedCentral
77.
go back to reference Lambin P, Leijenaar RTH, Deist TM, et al. (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 14(12):749–762CrossRefPubMed Lambin P, Leijenaar RTH, Deist TM, et al. (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 14(12):749–762CrossRefPubMed
78.
go back to reference Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS (2018) Rapid review: radiomics and breast cancer. Breast Cancer Res Treat. 169(2):217–229CrossRefPubMed Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS (2018) Rapid review: radiomics and breast cancer. Breast Cancer Res Treat. 169(2):217–229CrossRefPubMed
79.
go back to reference Zhou M, Scott J, Chaudhury B, et al. (2018) Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol. 39(2):208–216CrossRefPubMed Zhou M, Scott J, Chaudhury B, et al. (2018) Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol. 39(2):208–216CrossRefPubMed
80.
go back to reference Litjens GJ, Elliott R, Shih NN, et al. (2016) Computer-extracted features can distinguish noncancerous confounding disease from prostatic adenocarcinoma at multiparametric MR imaging. Radiology. 278(1):135–145CrossRefPubMed Litjens GJ, Elliott R, Shih NN, et al. (2016) Computer-extracted features can distinguish noncancerous confounding disease from prostatic adenocarcinoma at multiparametric MR imaging. Radiology. 278(1):135–145CrossRefPubMed
81.
go back to reference Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology. 278(2):563–577CrossRefPubMed Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology. 278(2):563–577CrossRefPubMed
82.
go back to reference Vignati A, Mazzetti S, Giannini V, et al. (2015) Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness. Phys Med Biol. 60(7):2685–2701CrossRefPubMed Vignati A, Mazzetti S, Giannini V, et al. (2015) Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness. Phys Med Biol. 60(7):2685–2701CrossRefPubMed
83.
go back to reference Wibmer A, Hricak H, Gondo T, et al. (2015) Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol. 25(10):2840–2850CrossRefPubMedPubMedCentral Wibmer A, Hricak H, Gondo T, et al. (2015) Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol. 25(10):2840–2850CrossRefPubMedPubMedCentral
84.
go back to reference Ahmed HU, El-Shater Bosaily A, Brown LC, et al. (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 389(10071):767–768CrossRef Ahmed HU, El-Shater Bosaily A, Brown LC, et al. (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 389(10071):767–768CrossRef
85.
go back to reference Arsov C, Rabenalt R, Blondin D, et al. (2015) Prospective randomized trial comparing magnetic resonance imaging (MRI)-guided In-bore Biopsy to MRI-ultrasound fusion and transrectal ultrasound-guided prostate biopsy in patients with prior negative biopsies. Eur Urol. 68(4):713–720CrossRefPubMed Arsov C, Rabenalt R, Blondin D, et al. (2015) Prospective randomized trial comparing magnetic resonance imaging (MRI)-guided In-bore Biopsy to MRI-ultrasound fusion and transrectal ultrasound-guided prostate biopsy in patients with prior negative biopsies. Eur Urol. 68(4):713–720CrossRefPubMed
86.
go back to reference Bergdahl AG, Wilderang U, Aus G, et al. (2016) Role of magnetic resonance imaging in prostate cancer screening: a pilot study within the goteborg randomised screening trial. Eur Urol. 70(4):566–573CrossRef Bergdahl AG, Wilderang U, Aus G, et al. (2016) Role of magnetic resonance imaging in prostate cancer screening: a pilot study within the goteborg randomised screening trial. Eur Urol. 70(4):566–573CrossRef
87.
go back to reference Porpiglia F, Manfredi M, Mele F, et al. (2016) Diagnostic pathway with multiparametric magnetic resonance imaging versus standard pathway: results from a randomized prospective study in biopsy-naive patients with suspected prostate cancer. Eur Urol. 72(2):282–288CrossRefPubMed Porpiglia F, Manfredi M, Mele F, et al. (2016) Diagnostic pathway with multiparametric magnetic resonance imaging versus standard pathway: results from a randomized prospective study in biopsy-naive patients with suspected prostate cancer. Eur Urol. 72(2):282–288CrossRefPubMed
88.
go back to reference Tonttila PP, Lantto J, Paakko E, et al. (2016) Prebiopsy multiparametric magnetic resonance imaging for prostate cancer diagnosis in biopsy-naive men with suspected prostate cancer based on elevated prostate-specific antigen values: results from a randomized prospective blinded controlled trial. Eur Urol. 69(3):419–425CrossRefPubMed Tonttila PP, Lantto J, Paakko E, et al. (2016) Prebiopsy multiparametric magnetic resonance imaging for prostate cancer diagnosis in biopsy-naive men with suspected prostate cancer based on elevated prostate-specific antigen values: results from a randomized prospective blinded controlled trial. Eur Urol. 69(3):419–425CrossRefPubMed
89.
go back to reference Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 270(5235):467–470CrossRefPubMed Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 270(5235):467–470CrossRefPubMed
90.
go back to reference Marzancola MG, Sedighi A, Li PC (2016) DNA microarray-based diagnostics. Methods Mol Biol. 1368:161–178CrossRefPubMed Marzancola MG, Sedighi A, Li PC (2016) DNA microarray-based diagnostics. Methods Mol Biol. 1368:161–178CrossRefPubMed
91.
go back to reference Geybels MS, Wright JL, Bibikova M, et al. (2016) Epigenetic signature of Gleason score and prostate cancer recurrence after radical prostatectomy. Clin Epigenet. 8:97CrossRef Geybels MS, Wright JL, Bibikova M, et al. (2016) Epigenetic signature of Gleason score and prostate cancer recurrence after radical prostatectomy. Clin Epigenet. 8:97CrossRef
92.
go back to reference Poustka A, Pohl T, Barlow DP, et al. (1986) Molecular approaches to mammalian genetics. Cold Spring Harb Symp Quant Biol. 51(Pt 1):131–139CrossRefPubMed Poustka A, Pohl T, Barlow DP, et al. (1986) Molecular approaches to mammalian genetics. Cold Spring Harb Symp Quant Biol. 51(Pt 1):131–139CrossRefPubMed
93.
go back to reference Wei L, Wang J, Lampert E, et al. (2016) Intratumoral and intertumoral genomic heterogeneity of multifocal localized prostate cancer impacts molecular classifications and genomic prognosticators. Eur Urol. 71(2):183–192CrossRefPubMedPubMedCentral Wei L, Wang J, Lampert E, et al. (2016) Intratumoral and intertumoral genomic heterogeneity of multifocal localized prostate cancer impacts molecular classifications and genomic prognosticators. Eur Urol. 71(2):183–192CrossRefPubMedPubMedCentral
94.
go back to reference Wyatt AW, Azad AA, Volik SV, et al. (2016) Genomic alterations in cell-free dna and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol. 2(12):1598–1606CrossRefPubMedPubMedCentral Wyatt AW, Azad AA, Volik SV, et al. (2016) Genomic alterations in cell-free dna and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol. 2(12):1598–1606CrossRefPubMedPubMedCentral
95.
go back to reference el Bahassi M, Stambrook PJ (2014) Next-generation sequencing technologies: breaking the sound barrier of human genetics. Mutagenesis. 29(5):303–310CrossRef el Bahassi M, Stambrook PJ (2014) Next-generation sequencing technologies: breaking the sound barrier of human genetics. Mutagenesis. 29(5):303–310CrossRef
96.
go back to reference McCann SM, Jiang Y, Fan X, et al. (2016) Quantitative multiparametric MRI features and PTEN expression of peripheral zone prostate cancer: a pilot study. AJR Am J Roentgenol. 206(3):559–565CrossRefPubMed McCann SM, Jiang Y, Fan X, et al. (2016) Quantitative multiparametric MRI features and PTEN expression of peripheral zone prostate cancer: a pilot study. AJR Am J Roentgenol. 206(3):559–565CrossRefPubMed
97.
go back to reference Stoyanova R, Pollack A, Takhar M, et al. (2016) Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget. 7(33):53362–53376CrossRefPubMedPubMedCentral Stoyanova R, Pollack A, Takhar M, et al. (2016) Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget. 7(33):53362–53376CrossRefPubMedPubMedCentral
98.
go back to reference Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2(12):1636–1642CrossRefPubMed Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2(12):1636–1642CrossRefPubMed
Metadata
Title
Radiomics and radiogenomics of prostate cancer
Publication date
01-06-2019
Published in
Abdominal Radiology / Issue 6/2019
Print ISSN: 2366-004X
Electronic ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-018-1660-7

Other articles of this Issue 6/2019

Abdominal Radiology 6/2019 Go to the issue

Classics in Abdominal Radiology

Teardrop sign