Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 13/2022

19-07-2022 | Mild Cognitive Impairment | Original Article

Long-term test-retest of cerebral [18F]MK-6240 binding and longitudinal evaluation of extracerebral tracer uptake in healthy controls and amnestic MCI patients

Authors: Greet Vanderlinden, Nathalie Mertens, Laura Michiels, Robin Lemmens, Michel Koole, Mathieu Vandenbulcke, Koen Van Laere

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 13/2022

Login to get access

Abstract

Purpose

Neurofibrillary tangles (NFTs) in Alzheimer’s disease can be accurately quantified in vivo using [18F]MK-6240 PET. Short-term [18F]MK-6240 test-retest (TRT) is about 6%, but also long-term stability of cerebral uptake is of importance for longitudinal studies. Furthermore, although there is very little cerebral off-target binding, [18F]MK-6240 shows variable extracerebral uptake (ECU) assumed to represent off-target binding to leptomeningeal melanocytes. Here, we examined 6-month TRT of [18F]MK-6240 in healthy controls (HC) and investigated ECU in HC and patients with amnestic mild cognitive impairment (aMCI) with up to 2 years of follow-up. We also explored demographic factors that may be associated to ECU, including age, sex, education, smoking, and disease status.

Methods

A total cohort of 40 HC (57 ± 19 years, 21F/19 M) and 24 aMCI (72 ± 8 years, 14F/10 M) underwent baseline [18F]MK-6240 PET-MR (GE Signa), 90–120 min post injection. [18F]MK-6240 was quantified by standardized uptake value ratios (SUVR) in predefined volumes-of-interest relative to the cerebellar cortex. Ten HC (56 ± 12 years, 8F/2 M) underwent a 6-month follow-up [18F]MK-6240 to assess TRT. Also, 10 aMCI (72 ± 6 years, 5F/5 M) underwent a 2-year follow-up [18F]MK-6240 PET-MR. Longitudinal changes in ECU were assessed in both cohorts. ECU was quantified as the mean SUVR of the skull parcel (FreeSurfer 6.0) that includes the meninges.

Results

The mean gray matter [18F]MK-6240 SUVR TRT and absolute TRT in HC were 1.6 ± 3.4% and 2.4 ± 2.8%, respectively. We found no significant 6-month or 2-year differences in ECU in HC (4.4 ± 20%) and aMCI (7.9 ± 19%), respectively. In the total cohort, ECU was significantly correlated to age (rs =  − 0.48; p < 0.0001), and a multivariate analysis also showed sex differences (higher ECU in women).

Conclusion

[18F]MK-6240 shows excellent 6-month TRT, which confirms its suitability for quantification of longitudinal NFT changes. The ECU of [18F]MK-6240 is variable between subjects, influenced by age and sex, but remains stable within subjects over a 2-year time period.
Literature
1.
go back to reference Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Budd Haeberlein S, et al. NIA-AA Research framework: toward a biological definition of Alzheimer’s disease HHS public access author manuscript. Alzheimers Dement. 2018;14(4):535–62.CrossRef Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Budd Haeberlein S, et al. NIA-AA Research framework: toward a biological definition of Alzheimer’s disease HHS public access author manuscript. Alzheimers Dement. 2018;14(4):535–62.CrossRef
2.
go back to reference Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.CrossRef Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.CrossRef
3.
go back to reference Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-beta proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14(4):225–36.CrossRef Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-beta proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14(4):225–36.CrossRef
4.
go back to reference Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E, et al. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol Psychiatry. 2019;24(8):1112–34.CrossRef Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E, et al. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol Psychiatry. 2019;24(8):1112–34.CrossRef
5.
go back to reference Lemoine L, Leuzy A, Chiotis K, Rodriguez-Vieitez E, Nordberg A. Tau positron emission tomography imaging in tauopathies: the added hurdle of off-target binding. Alzheimers Dement (Amst). 2018;10:232–6.CrossRef Lemoine L, Leuzy A, Chiotis K, Rodriguez-Vieitez E, Nordberg A. Tau positron emission tomography imaging in tauopathies: the added hurdle of off-target binding. Alzheimers Dement (Amst). 2018;10:232–6.CrossRef
6.
go back to reference Lohith TG, Bennacef I, Vandenberghe R, Vandenbulcke M, Salinas CA, Declercq R, et al. Brain imaging of Alzheimer dementia patients and elderly controls with 18 F-MK-6240, a PET tracer targeting neurofibrillary tangles. J Nucl Med. 2019;60:107–14.CrossRef Lohith TG, Bennacef I, Vandenberghe R, Vandenbulcke M, Salinas CA, Declercq R, et al. Brain imaging of Alzheimer dementia patients and elderly controls with 18 F-MK-6240, a PET tracer targeting neurofibrillary tangles. J Nucl Med. 2019;60:107–14.CrossRef
7.
go back to reference Gogola A, Minhas DS, Villemagne VL, Cohen AD, Mountz JM, Pascoal TA, et al. Direct comparison of the tau PET tracers [18 F]flortaucipir and [18 F]MK-6240 in human subjects. J Nucl Med. 2022;63(1):108–16.CrossRef Gogola A, Minhas DS, Villemagne VL, Cohen AD, Mountz JM, Pascoal TA, et al. Direct comparison of the tau PET tracers [18 F]flortaucipir and [18 F]MK-6240 in human subjects. J Nucl Med. 2022;63(1):108–16.CrossRef
8.
go back to reference Aguero C, Dhaynaut M, Normandin MD, Amaral AC, Guehl NJ, Neelamegam R, et al. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun. 2019;7(1):37.CrossRef Aguero C, Dhaynaut M, Normandin MD, Amaral AC, Guehl NJ, Neelamegam R, et al. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun. 2019;7(1):37.CrossRef
9.
go back to reference Betthauser TJ, Cody KA, Zammit MD, Murali D, Converse AK, Barnhart TE, et al. In vivo characterization and quantification of neurofibrillary tau PET radioligand 18 F-MK-6240 in humans from Alzheimer disease dementia to young controls. J Nucl Med. 2019;60(1):93–9.CrossRef Betthauser TJ, Cody KA, Zammit MD, Murali D, Converse AK, Barnhart TE, et al. In vivo characterization and quantification of neurofibrillary tau PET radioligand 18 F-MK-6240 in humans from Alzheimer disease dementia to young controls. J Nucl Med. 2019;60(1):93–9.CrossRef
10.
go back to reference Guehl NJ, Wooten DW, Yokell DL, Moon SH, Dhaynaut M, Katz S, et al. Evaluation of pharmacokinetic modeling strategies for in-vivo quantification of tau with the radiotracer [18 F]MK6240 in human subjects. Eur J Nucl Med Mol Imaging. 2019;46:2099–111.CrossRef Guehl NJ, Wooten DW, Yokell DL, Moon SH, Dhaynaut M, Katz S, et al. Evaluation of pharmacokinetic modeling strategies for in-vivo quantification of tau with the radiotracer [18 F]MK6240 in human subjects. Eur J Nucl Med Mol Imaging. 2019;46:2099–111.CrossRef
11.
go back to reference Pascoal TA, Shin M, Kang MS, Chamoun M, Chartrand D, Mathotaarachchi S, et al. In vivo quantification of neurofibrillary tangles with [18 F]MK-6240. Alzheimer’s Res Ther. 2018;10(1):74.CrossRef Pascoal TA, Shin M, Kang MS, Chamoun M, Chartrand D, Mathotaarachchi S, et al. In vivo quantification of neurofibrillary tangles with [18 F]MK-6240. Alzheimer’s Res Ther. 2018;10(1):74.CrossRef
12.
go back to reference Koole M, Lohith TG, Valentine JL, Bennacef I, Declercq R, Reynders T, et al. Preclinical safety evaluation and human dosimetry of [18 F]MK-6240, a novel PET tracer for imaging neurofibrillary tangles. Mol Imaging Biol. 2020;22(1):173–80.CrossRef Koole M, Lohith TG, Valentine JL, Bennacef I, Declercq R, Reynders T, et al. Preclinical safety evaluation and human dosimetry of [18 F]MK-6240, a novel PET tracer for imaging neurofibrillary tangles. Mol Imaging Biol. 2020;22(1):173–80.CrossRef
13.
go back to reference Malarte ML, Nordberg A, Lemoine L. Characterization of MK6240, a tau PET tracer, in autopsy brain tissue from Alzheimer’s disease cases. Eur J Nucl Med Mol Imaging. 2021;48(4):1093–102.CrossRef Malarte ML, Nordberg A, Lemoine L. Characterization of MK6240, a tau PET tracer, in autopsy brain tissue from Alzheimer’s disease cases. Eur J Nucl Med Mol Imaging. 2021;48(4):1093–102.CrossRef
14.
go back to reference Hostetler ED, Walji AM, Zeng Z, Miller P, Bennacef I, Salinas C, et al. Preclinical characterization of 18 F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med. 2016;57:1599–606.CrossRef Hostetler ED, Walji AM, Zeng Z, Miller P, Bennacef I, Salinas C, et al. Preclinical characterization of 18 F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med. 2016;57:1599–606.CrossRef
15.
go back to reference Vanhaute H, Ceccarini J, Michiels L, Koole M, Sunaert S, Lemmens R, et al. In vivo synaptic density loss is related to tau deposition in amnestic mild cognitive impairment. Neurology. 2020;95(5):e545–53.CrossRef Vanhaute H, Ceccarini J, Michiels L, Koole M, Sunaert S, Lemmens R, et al. In vivo synaptic density loss is related to tau deposition in amnestic mild cognitive impairment. Neurology. 2020;95(5):e545–53.CrossRef
16.
go back to reference Pascoal TA, Therriault J, Benedet AL, Savard M, Lussier FZ, Chamoun M, et al. 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. Brain. 2020;143(9):2818–30.CrossRef Pascoal TA, Therriault J, Benedet AL, Savard M, Lussier FZ, Chamoun M, et al. 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. Brain. 2020;143(9):2818–30.CrossRef
17.
go back to reference Salinas C, Lohith TG, Purohit A, Struyk A, Sur C, Bennacef I, et al. Test–retest characteristic of [18F]MK-6240 quantitative outcomes in cognitively normal adults and subjects with Alzheimer’s disease. J Cereb Blood Flow Metab. 2020;40(11):2179–87.CrossRef Salinas C, Lohith TG, Purohit A, Struyk A, Sur C, Bennacef I, et al. Test–retest characteristic of [18F]MK-6240 quantitative outcomes in cognitively normal adults and subjects with Alzheimer’s disease. J Cereb Blood Flow Metab. 2020;40(11):2179–87.CrossRef
18.
go back to reference Smith R, Strandberg O, Leuzy A, Betthauser TJ, Johnson SC, Pereira JB, et al. Sex differences in off-target binding using tau positron emission tomography. NeuroImage Clin. 2021;31:102708.CrossRef Smith R, Strandberg O, Leuzy A, Betthauser TJ, Johnson SC, Pereira JB, et al. Sex differences in off-target binding using tau positron emission tomography. NeuroImage Clin. 2021;31:102708.CrossRef
19.
go back to reference Mertens N, Michiels L, Vanderlinden G, Vandenbulcke M, Lemmens R, Van Laere K, et al. Impact of meningeal uptake and partial volume correction techniques on [18 F] MK-6240 binding in aMCI patients and healthy controls. J Cereb Blood Flow Metab. 2022;41(11):1–11. Mertens N, Michiels L, Vanderlinden G, Vandenbulcke M, Lemmens R, Van Laere K, et al. Impact of meningeal uptake and partial volume correction techniques on [18 F] MK-6240 binding in aMCI patients and healthy controls. J Cereb Blood Flow Metab. 2022;41(11):1–11.
20.
go back to reference Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7(3):270–9.CrossRef Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7(3):270–9.CrossRef
21.
go back to reference Collier TL, Yokell DL, Livni E, Rice PA, Celen S, Serdons K, et al. cGMP production of the radiopharmaceutical [18 F]MK-6240 for PET imaging of human neurofibrillary tangles. J Label Compd Radiopharm. 2017;60:263–9.CrossRef Collier TL, Yokell DL, Livni E, Rice PA, Celen S, Serdons K, et al. cGMP production of the radiopharmaceutical [18 F]MK-6240 for PET imaging of human neurofibrillary tangles. J Label Compd Radiopharm. 2017;60:263–9.CrossRef
22.
go back to reference Schramm G, Koole M, Willekens SMA, Rezaei A, Van Weehaeghe D, Delso G, et al. Regional accuracy of ZTE-based attenuation correction in static [18F]FDG and dynamic [18F]PE2I Brain PET/MR. Front Phys. 2019;7:211.CrossRef Schramm G, Koole M, Willekens SMA, Rezaei A, Van Weehaeghe D, Delso G, et al. Regional accuracy of ZTE-based attenuation correction in static [18F]FDG and dynamic [18F]PE2I Brain PET/MR. Front Phys. 2019;7:211.CrossRef
23.
go back to reference Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.CrossRef Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.CrossRef
24.
go back to reference Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cortex. 2004;14:11–22.CrossRef Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cortex. 2004;14:11–22.CrossRef
25.
go back to reference Fischl B, Salat D, Busa E, Albert M, Dieterich M, Haselgrove C. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.CrossRef Fischl B, Salat D, Busa E, Albert M, Dieterich M, Haselgrove C. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.CrossRef
26.
go back to reference Cselényi Z, Jönhagen ME, Forsberg A, Halldin C, Schou M, Johnström P, et al. Clinical validation of 18 F-AZD4694, an Amyloid-b-specific PET radioligand. J Nucl Med. 2012;53:415–24.CrossRef Cselényi Z, Jönhagen ME, Forsberg A, Halldin C, Schou M, Johnström P, et al. Clinical validation of 18 F-AZD4694, an Amyloid-b-specific PET radioligand. J Nucl Med. 2012;53:415–24.CrossRef
27.
go back to reference Timmers T, Ossenkoppele R, Visser D, Tuncel H, Wolters EE, Cj Verfaillie S, et al. Test-retest repeatability of [18F]Flortaucipir PET in Alzheimer’s disease and cognitively normal individuals. J Cereb Blood Flow Metab. 2020;40(12):2464–74.CrossRef Timmers T, Ossenkoppele R, Visser D, Tuncel H, Wolters EE, Cj Verfaillie S, et al. Test-retest repeatability of [18F]Flortaucipir PET in Alzheimer’s disease and cognitively normal individuals. J Cereb Blood Flow Metab. 2020;40(12):2464–74.CrossRef
28.
go back to reference Gudjohnsen SAH, Atacho DAM, Gesbert F, Raposo G, Hurbain I, Larue L, et al. Meningeal melanocytes in the mouse: distribution and dependence on Mitf. Front Neuroanat. 2015;9(149). Gudjohnsen SAH, Atacho DAM, Gesbert F, Raposo G, Hurbain I, Larue L, et al. Meningeal melanocytes in the mouse: distribution and dependence on Mitf. Front Neuroanat. 2015;9(149).
29.
go back to reference May H, Peled N, Dar G, Abbas J, Hershkovitz I. Hyperostosis frontalis interna: what does it tell us about our health? Am J Hum Biol. 2011;23(3):392–7.CrossRef May H, Peled N, Dar G, Abbas J, Hershkovitz I. Hyperostosis frontalis interna: what does it tell us about our health? Am J Hum Biol. 2011;23(3):392–7.CrossRef
30.
go back to reference Murugan NA, Chiotis K, Rodriguez-Vieitez E, Lemoine L, Ågren H, Nordberg A. Cross-interaction of tau PET tracers with monoamine oxidase B: evidence from in silico modelling and in vivo imaging. Eur J Nucl Med Mol Imaging. 2019;46:1369–82.CrossRef Murugan NA, Chiotis K, Rodriguez-Vieitez E, Lemoine L, Ågren H, Nordberg A. Cross-interaction of tau PET tracers with monoamine oxidase B: evidence from in silico modelling and in vivo imaging. Eur J Nucl Med Mol Imaging. 2019;46:1369–82.CrossRef
31.
go back to reference Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R, et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature. 1996;379(6567):733–6.CrossRef Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R, et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature. 1996;379(6567):733–6.CrossRef
32.
go back to reference Kolinger GD, Vállez García D, Lohith TG, Hostetler ED, Sur C, Struyk A, et al. A dual-time-window protocol to reduce acquisition time of dynamic tau PET imaging using [18F]MK-6240. EJNMMI Res. 2021;11(1):49.CrossRef Kolinger GD, Vállez García D, Lohith TG, Hostetler ED, Sur C, Struyk A, et al. A dual-time-window protocol to reduce acquisition time of dynamic tau PET imaging using [18F]MK-6240. EJNMMI Res. 2021;11(1):49.CrossRef
Metadata
Title
Long-term test-retest of cerebral [18F]MK-6240 binding and longitudinal evaluation of extracerebral tracer uptake in healthy controls and amnestic MCI patients
Authors
Greet Vanderlinden
Nathalie Mertens
Laura Michiels
Robin Lemmens
Michel Koole
Mathieu Vandenbulcke
Koen Van Laere
Publication date
19-07-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 13/2022
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05907-5

Other articles of this Issue 13/2022

European Journal of Nuclear Medicine and Molecular Imaging 13/2022 Go to the issue