Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2021

01-01-2021 | Prostate Cancer | Original Article

Augmented deep learning model for improved quantitative accuracy of MR-based PET attenuation correction in PSMA PET-MRI prostate imaging

Authors: Andrii Pozaruk, Kamlesh Pawar, Shenpeng Li, Alexandra Carey, Jeremy Cheng, Viswanath P. Sudarshan, Marian Cholewa, Jeremy Grummet, Zhaolin Chen, Gary Egan

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 1/2021

Login to get access

Abstract

Purpose

Estimation of accurate attenuation maps for whole-body positron emission tomography (PET) imaging in simultaneous PET-MRI systems is a challenging problem as it affects the quantitative nature of the modality. In this study, we aimed to improve the accuracy of estimated attenuation maps from MRI Dixon contrast images by training an augmented generative adversarial network (GANs) in a supervised manner. We augmented the GANs by perturbing the non-linear deformation field during image registration between MRI and the ground truth CT images.

Methods

We acquired the CT and the corresponding PET-MR images for a cohort of 28 prostate cancer patients. Data from 18 patients (2160 slices and later augmented to 270,000 slices) was used for training the GANs and others for validation. We calculated the error in bone and soft tissue regions for the AC μ-maps and the reconstructed PET images.

Results

For quantitative analysis, we use the average relative absolute errors and validate the proposed technique on 10 patients. The DL-based MR methods generated the pseudo-CT AC μ-maps with an accuracy of 4.5% more than standard MR-based techniques. Particularly, the proposed method demonstrates improved accuracy in the pelvic regions without affecting the uptake values. The lowest error of the AC μ-map in the pelvic region was 1.9% for μ-mapGAN + aug compared with 6.4% for μ-mapdixon, 5.9% for μ-mapdixon + bone, 2.1% for μ-mapU-Net and 2.0% for μ-mapU-Net + aug. For the reconstructed PET images, the lowest error was 2.2% for PETGAN + aug compared with 10.3% for PETdixon, 8.7% for PETdixon + bone, 2.6% for PETU-Net and 2.4% for PETU-Net + aug..

Conclusion

The proposed technique to augment the training datasets for training of the GAN results in improved accuracy of the estimated μ-map and consequently the PET quantification compared to the state of the art.
Literature
1.
go back to reference Hofmann M, Pichler B, Schölkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol I. 2009;36:93–104.CrossRef Hofmann M, Pichler B, Schölkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol I. 2009;36:93–104.CrossRef
2.
go back to reference Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015;60:R115.CrossRef Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015;60:R115.CrossRef
3.
go back to reference Chen Z, Jamadar SD, Li S, Sforazzini F, Baran J, Ferris N, et al. From simultaneous to synergistic MR-PET brain imaging: a review of hybrid MR-PET imaging methodologies. Hum Brain Mapp. 2018;39:5126–44.CrossRef Chen Z, Jamadar SD, Li S, Sforazzini F, Baran J, Ferris N, et al. From simultaneous to synergistic MR-PET brain imaging: a review of hybrid MR-PET imaging methodologies. Hum Brain Mapp. 2018;39:5126–44.CrossRef
4.
go back to reference Izquierdo-Garcia D, Catana C. MR imaging–guided attenuation correction of PET data in PET/MR imaging. PET Clinics. 2016;11:129–49.CrossRef Izquierdo-Garcia D, Catana C. MR imaging–guided attenuation correction of PET data in PET/MR imaging. PET Clinics. 2016;11:129–49.CrossRef
5.
go back to reference Arabi H, Zaidi H. Magnetic resonance imaging-guided attenuation correction in whole-body PET/MRI using a sorted atlas approach. Med Image Anal. 2016;31:1–15.CrossRef Arabi H, Zaidi H. Magnetic resonance imaging-guided attenuation correction in whole-body PET/MRI using a sorted atlas approach. Med Image Anal. 2016;31:1–15.CrossRef
6.
go back to reference Baran J, Chen Z, Sforazzini F, Ferris N, Jamadar S, Schmitt B, et al. Accurate hybrid template–based and MR-based attenuation correction using UTE images for simultaneous PET/MR brain imaging applications. BMC Med Imaging. 2018;18:41.CrossRef Baran J, Chen Z, Sforazzini F, Ferris N, Jamadar S, Schmitt B, et al. Accurate hybrid template–based and MR-based attenuation correction using UTE images for simultaneous PET/MR brain imaging applications. BMC Med Imaging. 2018;18:41.CrossRef
7.
go back to reference Izquierdo-Garcia D, Hansen AE, Förster S, Benoit D, Schachoff S, Fürst S, et al. An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous PET/MR brain imaging. J Nucl Med. 2014;55:1825–30.CrossRef Izquierdo-Garcia D, Hansen AE, Förster S, Benoit D, Schachoff S, Fürst S, et al. An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous PET/MR brain imaging. J Nucl Med. 2014;55:1825–30.CrossRef
8.
go back to reference Sekine T, Buck A, Delso G, Ter Voert EE, Huellner M, Veit-Haibach P, et al. Evaluation of atlas-based attenuation correction for integrated PET/MR in human brain: application of a head atlas and comparison to true CT-based attenuation correction. J Nucl Med. 2016;57:215–20.CrossRef Sekine T, Buck A, Delso G, Ter Voert EE, Huellner M, Veit-Haibach P, et al. Evaluation of atlas-based attenuation correction for integrated PET/MR in human brain: application of a head atlas and comparison to true CT-based attenuation correction. J Nucl Med. 2016;57:215–20.CrossRef
9.
go back to reference Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation-and atlas-based methods. J Nucl Med. 2011;52:1392–9.CrossRef Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation-and atlas-based methods. J Nucl Med. 2011;52:1392–9.CrossRef
10.
go back to reference Salomon A, Goedicke A, Schweizer B, Aach T, Schulz V. Simultaneous reconstruction of activity and attenuation for PET/MR. IEEE Trans Med Imaging. 2011;30:804–13.CrossRef Salomon A, Goedicke A, Schweizer B, Aach T, Schulz V. Simultaneous reconstruction of activity and attenuation for PET/MR. IEEE Trans Med Imaging. 2011;30:804–13.CrossRef
11.
go back to reference Schick F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol. 2005;15:946–59.CrossRef Schick F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol. 2005;15:946–59.CrossRef
12.
go back to reference Gaertner FC, Fürst S, Schwaiger M. PET/MR: a paradigm shift. Cancer Imaging. 2013;13:36.CrossRef Gaertner FC, Fürst S, Schwaiger M. PET/MR: a paradigm shift. Cancer Imaging. 2013;13:36.CrossRef
13.
go back to reference Lenzo N, Meyrick D, Turner J. Review of gallium-68 PSMA PET/CT imaging in the management of prostate cancer. Diagnostics. 2018;8:16.CrossRef Lenzo N, Meyrick D, Turner J. Review of gallium-68 PSMA PET/CT imaging in the management of prostate cancer. Diagnostics. 2018;8:16.CrossRef
14.
go back to reference Rhee H, Blazak J, Tham CM, Ng KL, Shepherd B, Lawson M, et al. Pilot study: use of gallium-68 PSMA PET for detection of metastatic lesions in patients with renal tumour. EJNMMI Res. 2016;6:76.CrossRef Rhee H, Blazak J, Tham CM, Ng KL, Shepherd B, Lawson M, et al. Pilot study: use of gallium-68 PSMA PET for detection of metastatic lesions in patients with renal tumour. EJNMMI Res. 2016;6:76.CrossRef
15.
go back to reference Greenspan H, Van Ginneken B, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 2016;35:1153–9.CrossRef Greenspan H, Van Ginneken B, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 2016;35:1153–9.CrossRef
16.
go back to reference Li H. Deep learning for image denoising. Int J Signal Process Image Process Pattern Recognit. 2014;7:171–80. Li H. Deep learning for image denoising. Int J Signal Process Image Process Pattern Recognit. 2014;7:171–80.
17.
go back to reference Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature. 2018;555:487.CrossRef Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature. 2018;555:487.CrossRef
18.
go back to reference Pawar K, Chen Z, Shah NJ, Egan GF. A deep learning framework for transforming image reconstruction into pixel classification. IEEE Access. 2019;7:177690–702.CrossRef Pawar K, Chen Z, Shah NJ, Egan GF. A deep learning framework for transforming image reconstruction into pixel classification. IEEE Access. 2019;7:177690–702.CrossRef
19.
go back to reference Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention: Springer; 2015. p. 234–41. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention: Springer; 2015. p. 234–41.
20.
go back to reference Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 1125–34. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 1125–34.
21.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. Advances in neural information processing systems; 2014. p. 2672–80. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. Advances in neural information processing systems; 2014. p. 2672–80.
22.
go back to reference Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA. Context encoders: feature learning by inpainting. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 2536–44. Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA. Context encoders: feature learning by inpainting. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 2536–44.
23.
go back to reference Zhang R, Isola P, Efros AA. Colorful image colorization. European conference on computer vision: Springer; 2016. p. 649–66. Zhang R, Isola P, Efros AA. Colorful image colorization. European conference on computer vision: Springer; 2016. p. 649–66.
24.
go back to reference Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging–based attenuation correction for PET/MR imaging. Radiology. 2017;286:676–84.CrossRef Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging–based attenuation correction for PET/MR imaging. Radiology. 2017;286:676–84.CrossRef
25.
go back to reference Leynes AP, Yang J, Wiesinger F, Kaushik SS, Shanbhag DD, Seo Y, et al. Zero-echo-time and Dixon deep pseudo-CT (ZeDD CT): direct generation of pseudo-CT images for pelvic PET/MRI attenuation correction using deep convolutional neural networks with multiparametric MRI. J Nucl Med. 2018;59:852–8.CrossRef Leynes AP, Yang J, Wiesinger F, Kaushik SS, Shanbhag DD, Seo Y, et al. Zero-echo-time and Dixon deep pseudo-CT (ZeDD CT): direct generation of pseudo-CT images for pelvic PET/MRI attenuation correction using deep convolutional neural networks with multiparametric MRI. J Nucl Med. 2018;59:852–8.CrossRef
26.
go back to reference Torrado-Carvajal A, Vera-Olmos J, Izquierdo-Garcia D, Catalano OA, Morales MA, Margolin J, et al. Dixon-VIBE deep learning (DIVIDE) pseudo-CT synthesis for pelvis PET/MR attenuation correction. J Nucl Med. 2019;60:429–35.CrossRef Torrado-Carvajal A, Vera-Olmos J, Izquierdo-Garcia D, Catalano OA, Morales MA, Margolin J, et al. Dixon-VIBE deep learning (DIVIDE) pseudo-CT synthesis for pelvis PET/MR attenuation correction. J Nucl Med. 2019;60:429–35.CrossRef
27.
go back to reference Dong X, Wang T, Lei Y, Higgins K, Liu T, Curran WJ, et al. Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging. Phys Med Biol. 2019;64:215016.CrossRef Dong X, Wang T, Lei Y, Higgins K, Liu T, Curran WJ, et al. Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging. Phys Med Biol. 2019;64:215016.CrossRef
28.
go back to reference Varadhan R, Karangelis G, Krishnan K, Hui S. A framework for deformable image registration validation in radiotherapy clinical applications. J Appl Clin Med Phys. 2013;14:192–213.CrossRef Varadhan R, Karangelis G, Krishnan K, Hui S. A framework for deformable image registration validation in radiotherapy clinical applications. J Appl Clin Med Phys. 2013;14:192–213.CrossRef
30.
go back to reference Avants BB, Tustison N, Song G. Advanced normalization tools (ANTS). Insight J. 2009;2:1–35. Avants BB, Tustison N, Song G. Advanced normalization tools (ANTS). Insight J. 2009;2:1–35.
33.
go back to reference Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167. 2015. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167. 2015.
34.
go back to reference Goscinski WJ, McIntosh P, Felzmann UC, Maksimenko A, Hall CJ, Gureyev T, et al. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research. Front Neuroinform. 2014;8:30.CrossRef Goscinski WJ, McIntosh P, Felzmann UC, Maksimenko A, Hall CJ, Gureyev T, et al. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research. Front Neuroinform. 2014;8:30.CrossRef
35.
go back to reference Kinehan P, Fletcher J. PET/CT standardized uptake values (SUVs) in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31:496–505.CrossRef Kinehan P, Fletcher J. PET/CT standardized uptake values (SUVs) in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31:496–505.CrossRef
36.
go back to reference Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221–48.CrossRef Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221–48.CrossRef
37.
go back to reference Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys. 2019;29:102–27.CrossRef Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys. 2019;29:102–27.CrossRef
38.
go back to reference Lei Y, Fu Y, Wang T, Qiu RL, Curran WJ, Liu T, et al. Deep learning in multi-organ segmentation. arXiv preprint arXiv:200110619. 2020. Lei Y, Fu Y, Wang T, Qiu RL, Curran WJ, Liu T, et al. Deep learning in multi-organ segmentation. arXiv preprint arXiv:200110619. 2020.
39.
go back to reference Hesamian MH, Jia W, He X, Kennedy P. Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging. 2019;32:582–96.CrossRef Hesamian MH, Jia W, He X, Kennedy P. Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging. 2019;32:582–96.CrossRef
40.
go back to reference Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X. Deep learning in medical image registration: A Review. arXiv preprint arXiv:191212318. 2019. Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X. Deep learning in medical image registration: A Review. arXiv preprint arXiv:191212318. 2019.
41.
go back to reference Pawar K, Chen Z, Shah NJ, Egan GF. Suppressing motion artefacts in MRI using an Inception-ResNet network with motion simulation augmentation. NMR in Biomedicine. 2019:e4225. Pawar K, Chen Z, Shah NJ, Egan GF. Suppressing motion artefacts in MRI using an Inception-ResNet network with motion simulation augmentation. NMR in Biomedicine. 2019:e4225.
42.
go back to reference Lv J, Yang M, Zhang J, Wang X. Respiratory motion correction for free-breathing 3D abdominal MRI using CNN-based image registration: a feasibility study. Br J Radiol. 2018;91:20170788.CrossRef Lv J, Yang M, Zhang J, Wang X. Respiratory motion correction for free-breathing 3D abdominal MRI using CNN-based image registration: a feasibility study. Br J Radiol. 2018;91:20170788.CrossRef
43.
go back to reference Lee H, Yune S, Mansouri M, Kim M, Tajmir SH, Guerrier CE, et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng. 2019;3:173.CrossRef Lee H, Yune S, Mansouri M, Kim M, Tajmir SH, Guerrier CE, et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng. 2019;3:173.CrossRef
Metadata
Title
Augmented deep learning model for improved quantitative accuracy of MR-based PET attenuation correction in PSMA PET-MRI prostate imaging
Authors
Andrii Pozaruk
Kamlesh Pawar
Shenpeng Li
Alexandra Carey
Jeremy Cheng
Viswanath P. Sudarshan
Marian Cholewa
Jeremy Grummet
Zhaolin Chen
Gary Egan
Publication date
01-01-2021
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 1/2021
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-020-04816-9

Other articles of this Issue 1/2021

European Journal of Nuclear Medicine and Molecular Imaging 1/2021 Go to the issue