Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 3/2019

01-03-2019 | Original Article

Comprehensive anatomical and functional imaging in patients with type I neurofibromatosis using simultaneous FDG-PET/MRI

Authors: Christian Philipp Reinert, Martin Ulrich Schuhmann, Benjamin Bender, Isabel Gugel, Christian la Fougère, Jürgen Schäfer, Sergios Gatidis

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 3/2019

Login to get access

Abstract

Purpose

To demonstrate the clinical use of FDG-PET/MRI for monitoring enlargement and metabolism of plexiform neurofibromas (PNF) in patients with neurofibromatosis type 1 (NF1), in whom the development of a malignant peripheral nerve sheath tumor (MPNST) is often a life limiting event.

Methods

NF1 patients who underwent a simultaneous FDG-PET/MRI examination in our institution from September 2012 to February 2018 were included. Indication was suspicion of malignant transformation of a PNF to MPNST. A maximum of six peripheral nerve lesions per patient were defined as targets. Standardized uptake values (SUV) and apparent diffusion coefficients (ADC) were measured. The presence of target sign and contrast-medium enhancement was visually recorded. Growth rates were estimated comparing prior or follow-up examinations and correlated with FDG uptake and ADC values. The presence of CNS lesions in cerebral T2 weighted images was recorded.

Results

In 28 NF1 patients a total number of 83 peripheral nerve tumors, 75 benign PNFs and eight MPNSTs, were selected as target lesions. The SUVs of MPNSTs were significantly higher than the SUVs of PNF (3.84 ± 3.98 [SUVmean MPNSTs] vs. 1.85 ± 1.03 [SUVmean PNF], P < .01). Similarly, lesion SUVmean-to-liver SUVmean ratios significantly differed between MPNSTs and PNF (3.20 ± 2.70 [MPNSTs] vs. 1.23 ± 0.61 [PNF]; P < .01). For differentiation between still benign PNF and MPNSTs, we defined SUVmax ≥ 2.78 as a significant cut-off value. Growth rate of PNF correlated significantly positively with SUVmean (rs = .41; P = .003). MRI parameters like ADCmean (1.87 ± 0.24 × 10−3 mm2/s [PNF] vs. 1.76 ± 0.11 × 10−3 mm2/s [MPNSTs]; P > .05], contrast medium enhancement (P = .50) and target sign (P = .86) did not differ between groups.

Conclusion

Simultaneous FDG-PET/MRI is a comprehensive imaging modality for monitoring PNF in NF1 patients. The combined acquisition of both morphologic information in MRI and metabolic information in PET enables the correlation of lesion growth rates with metabolic activity and to define SUV thresholds of significance to identify malignant transformation, which is of utmost clinical significance.
Literature
2.
go back to reference Ferner RE, et al. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet. 2007;44(2):81–8.CrossRefPubMed Ferner RE, et al. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet. 2007;44(2):81–8.CrossRefPubMed
3.
go back to reference Ducatman BS, et al. Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer. 1986;57(10):2006–21.CrossRefPubMed Ducatman BS, et al. Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer. 1986;57(10):2006–21.CrossRefPubMed
5.
go back to reference Combemale P, et al. Utility of 18F-FDG PET with a semi-quantitative index in the detection of sarcomatous transformation in patients with neurofibromatosis type 1. PLoS One. 2014;9(2):e85954.CrossRefPubMedPubMedCentral Combemale P, et al. Utility of 18F-FDG PET with a semi-quantitative index in the detection of sarcomatous transformation in patients with neurofibromatosis type 1. PLoS One. 2014;9(2):e85954.CrossRefPubMedPubMedCentral
6.
go back to reference Canavese F, Krajbich JI. Resection of plexiform neurofibromas in children with neurofibromatosis type 1. J Pediatr Orthop. 2011;31(3):303–11.CrossRefPubMed Canavese F, Krajbich JI. Resection of plexiform neurofibromas in children with neurofibromatosis type 1. J Pediatr Orthop. 2011;31(3):303–11.CrossRefPubMed
7.
go back to reference Wu JS, Hochman MG. Soft-tissue tumors and tumorlike lesions: a systematic imaging approach. Radiology. 2009;253(2):297–316.CrossRefPubMed Wu JS, Hochman MG. Soft-tissue tumors and tumorlike lesions: a systematic imaging approach. Radiology. 2009;253(2):297–316.CrossRefPubMed
8.
go back to reference Piscitelli O, et al. Neurofibromatosis type 1 and cerebellar T2-hyperintensities: the relationship to cognitive functioning. Dev Med Child Neurol. 2012;54(1):49–51.CrossRefPubMed Piscitelli O, et al. Neurofibromatosis type 1 and cerebellar T2-hyperintensities: the relationship to cognitive functioning. Dev Med Child Neurol. 2012;54(1):49–51.CrossRefPubMed
9.
go back to reference Gayre GS, et al. Long-term visual outcome in patients with anterior visual pathway gliomas. J Neuroophthalmol. 2001;21(1):1–7.CrossRefPubMed Gayre GS, et al. Long-term visual outcome in patients with anterior visual pathway gliomas. J Neuroophthalmol. 2001;21(1):1–7.CrossRefPubMed
10.
go back to reference Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(17):1842–50.CrossRefPubMed Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(17):1842–50.CrossRefPubMed
11.
go back to reference Broski SM, et al. Evaluation of 18F-FDG PET and MRI in differentiating benign and malignant peripheral nerve sheath tumors. Skelet Radiol. 2016;45(8):1097–105.CrossRef Broski SM, et al. Evaluation of 18F-FDG PET and MRI in differentiating benign and malignant peripheral nerve sheath tumors. Skelet Radiol. 2016;45(8):1097–105.CrossRef
12.
go back to reference Demehri S, et al. Conventional and functional MR imaging of peripheral nerve sheath tumors: initial experience. AJNR Am J Neuroradiol. 2014;35(8):1615–20.CrossRefPubMedPubMedCentral Demehri S, et al. Conventional and functional MR imaging of peripheral nerve sheath tumors: initial experience. AJNR Am J Neuroradiol. 2014;35(8):1615–20.CrossRefPubMedPubMedCentral
13.
go back to reference Gatidis S, et al. Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous (1)(8)F-Fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: a direct comparison to (1)(8)F-Fluorodeoxyglucose positron emission tomography/computed tomography. Investig Radiol. 2016;51(1):7–14.CrossRef Gatidis S, et al. Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous (1)(8)F-Fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: a direct comparison to (1)(8)F-Fluorodeoxyglucose positron emission tomography/computed tomography. Investig Radiol. 2016;51(1):7–14.CrossRef
14.
go back to reference Lu-Emerson C, Plotkin SR. The neurofibromatoses. Part 1: NF1. Rev Neurol Dis. 2009;6(2):E47–53.PubMed Lu-Emerson C, Plotkin SR. The neurofibromatoses. Part 1: NF1. Rev Neurol Dis. 2009;6(2):E47–53.PubMed
15.
go back to reference Chawla SC, et al. Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol. 2010;40(5):681–6.CrossRefPubMed Chawla SC, et al. Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol. 2010;40(5):681–6.CrossRefPubMed
16.
go back to reference Boellaard R, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.CrossRefPubMed Boellaard R, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.CrossRefPubMed
17.
go back to reference Schafer JF, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273(1):220–31.CrossRefPubMed Schafer JF, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273(1):220–31.CrossRefPubMed
19.
go back to reference Vanderhoek M, Perlman SB, Jeraj R. Impact of the definition of peak standardized uptake value on quantification of treatment response. J Nucl Med. 2012;53(1):4–11.CrossRefPubMed Vanderhoek M, Perlman SB, Jeraj R. Impact of the definition of peak standardized uptake value on quantification of treatment response. J Nucl Med. 2012;53(1):4–11.CrossRefPubMed
20.
go back to reference Neubauer H, et al. Diagnostic value of diffusion-weighted MRI for tumor characterization, differentiation and monitoring in pediatric patients with neuroblastic tumors. Rofo. 2017;189(7):640–50.CrossRefPubMed Neubauer H, et al. Diagnostic value of diffusion-weighted MRI for tumor characterization, differentiation and monitoring in pediatric patients with neuroblastic tumors. Rofo. 2017;189(7):640–50.CrossRefPubMed
21.
go back to reference Billiet T, et al. Characterizing the microstructural basis of "unidentified bright objects" in neurofibromatosis type 1: a combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis. Neuroimage Clin. 2014;4:649–58.CrossRefPubMedPubMedCentral Billiet T, et al. Characterizing the microstructural basis of "unidentified bright objects" in neurofibromatosis type 1: a combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis. Neuroimage Clin. 2014;4:649–58.CrossRefPubMedPubMedCentral
22.
go back to reference Salamon J, et al. 18F-FDG PET/CT for detection of malignant peripheral nerve sheath tumours in neurofibromatosis type 1: tumour-to-liver ratio is superior to an SUVmax cut-off. Eur Radiol. 2014;24(2):405–12.CrossRefPubMed Salamon J, et al. 18F-FDG PET/CT for detection of malignant peripheral nerve sheath tumours in neurofibromatosis type 1: tumour-to-liver ratio is superior to an SUVmax cut-off. Eur Radiol. 2014;24(2):405–12.CrossRefPubMed
23.
go back to reference Derlin T, et al. Comparative effectiveness of 18F-FDG PET/CT versus whole-body MRI for detection of malignant peripheral nerve sheath tumors in neurofibromatosis type 1. Clin Nucl Med. 2013;38(1):e19–25.CrossRefPubMed Derlin T, et al. Comparative effectiveness of 18F-FDG PET/CT versus whole-body MRI for detection of malignant peripheral nerve sheath tumors in neurofibromatosis type 1. Clin Nucl Med. 2013;38(1):e19–25.CrossRefPubMed
24.
go back to reference Van Der Gucht A, et al. Metabolic tumour burden measured by 18F-FDG PET/CT predicts malignant transformation in patients with Neurofibromatosis Type-1. PLoS One. 2016;11(3):e0151809.CrossRef Van Der Gucht A, et al. Metabolic tumour burden measured by 18F-FDG PET/CT predicts malignant transformation in patients with Neurofibromatosis Type-1. PLoS One. 2016;11(3):e0151809.CrossRef
25.
go back to reference Warbey VS, et al. [18F]FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging. 2009;36(5):751–7.CrossRefPubMed Warbey VS, et al. [18F]FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging. 2009;36(5):751–7.CrossRefPubMed
26.
go back to reference Bredella MA, et al. Value of PET in the assessment of patients with neurofibromatosis type 1. AJR Am J Roentgenol. 2007;189(4):928–35.CrossRefPubMed Bredella MA, et al. Value of PET in the assessment of patients with neurofibromatosis type 1. AJR Am J Roentgenol. 2007;189(4):928–35.CrossRefPubMed
27.
go back to reference Ferner RE, et al. [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol. 2008;19(2):390–4.CrossRefPubMed Ferner RE, et al. [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol. 2008;19(2):390–4.CrossRefPubMed
28.
go back to reference Ferner RE, et al. Evaluation of (18)fluorodeoxyglucose positron emission tomography ((18)FDG PET) in the detection of malignant peripheral nerve sheath tumours arising from within plexiform neurofibromas in neurofibromatosis 1. J Neurol Neurosurg Psychiatry. 2000;68(3):353–7.CrossRefPubMedPubMedCentral Ferner RE, et al. Evaluation of (18)fluorodeoxyglucose positron emission tomography ((18)FDG PET) in the detection of malignant peripheral nerve sheath tumours arising from within plexiform neurofibromas in neurofibromatosis 1. J Neurol Neurosurg Psychiatry. 2000;68(3):353–7.CrossRefPubMedPubMedCentral
29.
go back to reference Chirindel A, et al. 18F-FDG PET/CT qualitative and quantitative evaluation in neurofibromatosis type 1 patients for detection of malignant transformation: comparison of early to delayed imaging with and without liver activity normalization. J Nucl Med. 2015;56(3):379–85.CrossRefPubMed Chirindel A, et al. 18F-FDG PET/CT qualitative and quantitative evaluation in neurofibromatosis type 1 patients for detection of malignant transformation: comparison of early to delayed imaging with and without liver activity normalization. J Nucl Med. 2015;56(3):379–85.CrossRefPubMed
30.
go back to reference Benz MR, et al. Utilization of positron emission tomography in the management of patients with sarcoma. Curr Opin Oncol. 2009;21(4):345–51.CrossRefPubMed Benz MR, et al. Utilization of positron emission tomography in the management of patients with sarcoma. Curr Opin Oncol. 2009;21(4):345–51.CrossRefPubMed
31.
go back to reference Benz MR, et al. Quantitative F18-fluorodeoxyglucose positron emission tomography accurately characterizes peripheral nerve sheath tumors as malignant or benign. Cancer. 2010;116(2):451–8.CrossRefPubMed Benz MR, et al. Quantitative F18-fluorodeoxyglucose positron emission tomography accurately characterizes peripheral nerve sheath tumors as malignant or benign. Cancer. 2010;116(2):451–8.CrossRefPubMed
32.
33.
go back to reference de Langen AJ, et al. Repeatability of 18F-FDG uptake measurements in tumors: a metaanalysis. J Nucl Med. 2012;53(5):701–8.CrossRefPubMed de Langen AJ, et al. Repeatability of 18F-FDG uptake measurements in tumors: a metaanalysis. J Nucl Med. 2012;53(5):701–8.CrossRefPubMed
34.
go back to reference Laffon E, et al. Is liver SUV stable over time in (1)(8)F-FDG PET imaging? J Nucl Med Technol. 2011;39(4):258–63.CrossRefPubMed Laffon E, et al. Is liver SUV stable over time in (1)(8)F-FDG PET imaging? J Nucl Med Technol. 2011;39(4):258–63.CrossRefPubMed
35.
go back to reference Combemale P, et al. Utility of 18F-FDG PET with a semi-quantitative index in the detection of sarcomatous transformation in patients with neurofibromatosis type 1. PLoS One. 2014. 9(2):e85954. Combemale P, et al. Utility of 18F-FDG PET with a semi-quantitative index in the detection of sarcomatous transformation in patients with neurofibromatosis type 1. PLoS One. 2014. 9(2):e85954.
36.
go back to reference Nagata S, et al. Diffusion-weighted imaging of soft tissue tumors: usefulness of the apparent diffusion coefficient for differential diagnosis. Radiat Med. 2008;26(5):287–95.CrossRefPubMed Nagata S, et al. Diffusion-weighted imaging of soft tissue tumors: usefulness of the apparent diffusion coefficient for differential diagnosis. Radiat Med. 2008;26(5):287–95.CrossRefPubMed
37.
go back to reference Einarsdóttir H, et al. Diffusion-weighted MRI of soft tissue tumours. Eur Radiol. 2004;14(6):959–63.CrossRefPubMed Einarsdóttir H, et al. Diffusion-weighted MRI of soft tissue tumours. Eur Radiol. 2004;14(6):959–63.CrossRefPubMed
38.
go back to reference Razek A, et al. Assessment of soft tissue tumours of the extremities with diffusion echoplanar MR imaging. Radiol Med. 2012;117(1):96–101.CrossRefPubMed Razek A, et al. Assessment of soft tissue tumours of the extremities with diffusion echoplanar MR imaging. Radiol Med. 2012;117(1):96–101.CrossRefPubMed
39.
go back to reference Masayuki M, et al. Soft-tissue tumors evaluated by line-scan diffusion-weighted imaging: influence of myxoid matrix on the apparent diffusion coefficient. J Magn Reson Imaging. 2007;25(6):1199–204.CrossRef Masayuki M, et al. Soft-tissue tumors evaluated by line-scan diffusion-weighted imaging: influence of myxoid matrix on the apparent diffusion coefficient. J Magn Reson Imaging. 2007;25(6):1199–204.CrossRef
40.
go back to reference Petscavage-Thomas JM, et al. Soft-tissue myxomatous lesions: review of salient imaging features with pathologic comparison. Radiographics. 2014;34(4):964–80.CrossRefPubMed Petscavage-Thomas JM, et al. Soft-tissue myxomatous lesions: review of salient imaging features with pathologic comparison. Radiographics. 2014;34(4):964–80.CrossRefPubMed
41.
go back to reference Rodriguez FJ, et al. Pathology of peripheral nerve sheath tumors: diagnostic overview and update on selected diagnostic problems. Acta Neuropathol. 2012;123(3):295–319.CrossRefPubMedPubMedCentral Rodriguez FJ, et al. Pathology of peripheral nerve sheath tumors: diagnostic overview and update on selected diagnostic problems. Acta Neuropathol. 2012;123(3):295–319.CrossRefPubMedPubMedCentral
42.
go back to reference Feany MB, Anthony DC, Fletcher CD. Nerve sheath tumours with hybrid features of neurofibroma and schwannoma: a conceptual challenge. Histopathology. 1998;32(5):405–10.CrossRefPubMed Feany MB, Anthony DC, Fletcher CD. Nerve sheath tumours with hybrid features of neurofibroma and schwannoma: a conceptual challenge. Histopathology. 1998;32(5):405–10.CrossRefPubMed
43.
go back to reference Matsumine A, et al. Differentiation between neurofibromas and malignant peripheral nerve sheath tumors in neurofibromatosis 1 evaluated by MRI. J Cancer Res Clin Oncol. 2009;135(7):891–900.CrossRefPubMed Matsumine A, et al. Differentiation between neurofibromas and malignant peripheral nerve sheath tumors in neurofibromatosis 1 evaluated by MRI. J Cancer Res Clin Oncol. 2009;135(7):891–900.CrossRefPubMed
44.
go back to reference Bhargava R, et al. MR imaging differentiation of benign and malignant peripheral nerve sheath tumors: use of the target sign. Pediatr Radiol. 1997;27(2):124–9.CrossRefPubMed Bhargava R, et al. MR imaging differentiation of benign and malignant peripheral nerve sheath tumors: use of the target sign. Pediatr Radiol. 1997;27(2):124–9.CrossRefPubMed
45.
go back to reference Suh JS, et al. Peripheral (extracranial) nerve tumors: correlation of MR imaging and histologic findings. Radiology. 1992;183(2):341–6.CrossRefPubMed Suh JS, et al. Peripheral (extracranial) nerve tumors: correlation of MR imaging and histologic findings. Radiology. 1992;183(2):341–6.CrossRefPubMed
46.
go back to reference Lin J, Martel W. Cross-sectional imaging of peripheral nerve sheath tumors: characteristic signs on CT, MR imaging, and sonography. AJR Am J Roentgenol. 2001;176(1):75–82.CrossRefPubMed Lin J, Martel W. Cross-sectional imaging of peripheral nerve sheath tumors: characteristic signs on CT, MR imaging, and sonography. AJR Am J Roentgenol. 2001;176(1):75–82.CrossRefPubMed
47.
go back to reference Sevick RJ, et al. Evolution of white matter lesions in neurofibromatosis type 1: MR findings. AJR Am J Roentgenol. 1992;159(1):171–5.CrossRefPubMed Sevick RJ, et al. Evolution of white matter lesions in neurofibromatosis type 1: MR findings. AJR Am J Roentgenol. 1992;159(1):171–5.CrossRefPubMed
48.
go back to reference Sekine T, et al. Reduction of (18)F-FDG dose in clinical PET/MR imaging by using silicon photomultiplier detectors. Radiology. 2018;286(1):249–59.CrossRefPubMed Sekine T, et al. Reduction of (18)F-FDG dose in clinical PET/MR imaging by using silicon photomultiplier detectors. Radiology. 2018;286(1):249–59.CrossRefPubMed
49.
go back to reference Taron J, et al. Simultaneous multislice diffusion-weighted imaging in whole-body positron emission tomography/magnetic resonance imaging for multiparametric examination in oncological patients. Eur Radiol. 2018;28(8):3372–83.CrossRefPubMed Taron J, et al. Simultaneous multislice diffusion-weighted imaging in whole-body positron emission tomography/magnetic resonance imaging for multiparametric examination in oncological patients. Eur Radiol. 2018;28(8):3372–83.CrossRefPubMed
50.
go back to reference Kustner T, et al. Self-navigated 4D cartesian imaging of periodic motion in the body trunk using partial k-space compressed sensing. Magn Reson Med. 2017;78(2):632–44.CrossRefPubMed Kustner T, et al. Self-navigated 4D cartesian imaging of periodic motion in the body trunk using partial k-space compressed sensing. Magn Reson Med. 2017;78(2):632–44.CrossRefPubMed
51.
go back to reference Watson KL, et al. Patterns of recurrence and survival in sporadic, neurofibromatosis type 1-associated, and radiation-associated malignant peripheral nerve sheath tumors. J Neurosurg. 2017;126(1):319–29.CrossRefPubMed Watson KL, et al. Patterns of recurrence and survival in sporadic, neurofibromatosis type 1-associated, and radiation-associated malignant peripheral nerve sheath tumors. J Neurosurg. 2017;126(1):319–29.CrossRefPubMed
52.
go back to reference Kar M, et al. Malignant peripheral nerve sheath tumors (MPNST)--clinicopathological study and treatment outcome of twenty-four cases. World J Surg Oncol. 2006;4:55.CrossRefPubMedPubMedCentral Kar M, et al. Malignant peripheral nerve sheath tumors (MPNST)--clinicopathological study and treatment outcome of twenty-four cases. World J Surg Oncol. 2006;4:55.CrossRefPubMedPubMedCentral
53.
go back to reference Sekine T, et al. Evaluation of atlas-based attenuation correction for integrated PET/MR in human brain: application of a head atlas and comparison to true CT-based attenuation correction. J Nucl Med. 2016;57(2):215–20.CrossRefPubMed Sekine T, et al. Evaluation of atlas-based attenuation correction for integrated PET/MR in human brain: application of a head atlas and comparison to true CT-based attenuation correction. J Nucl Med. 2016;57(2):215–20.CrossRefPubMed
Metadata
Title
Comprehensive anatomical and functional imaging in patients with type I neurofibromatosis using simultaneous FDG-PET/MRI
Authors
Christian Philipp Reinert
Martin Ulrich Schuhmann
Benjamin Bender
Isabel Gugel
Christian la Fougère
Jürgen Schäfer
Sergios Gatidis
Publication date
01-03-2019
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 3/2019
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-018-4227-5

Other articles of this Issue 3/2019

European Journal of Nuclear Medicine and Molecular Imaging 3/2019 Go to the issue