Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 5/2012

01-05-2012 | Original Article

Dynamic FDG PET for assessing early effects of cerebral hypoxia and resuscitation in new-born pigs

Authors: Charlotte de Lange, Eirik Malinen, Hong Qu, Kjersti Johnsrud, Arne Skretting, Ola Didrik Saugstad, Berit H. Munkeby

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 5/2012

Login to get access

Abstract

Purpose

Changes in cerebral glucose metabolism may be an early prognostic indicator of perinatal hypoxic–ischaemic injury. In this study dynamic 18F-FDG PET was used to evaluate cerebral glucose metabolism in piglets after global perinatal hypoxia and the impact of the resuscitation strategy using room air or hyperoxia.

Methods

New-born piglets (n = 16) underwent 60 min of global hypoxia followed by 30 min of resuscitation with a fraction of inspired oxygen (FiO2) of 0.21 or 1.0. Dynamic FDG PET, using a microPET system, was performed at baseline and repeated at the end of resuscitation under stabilized haemodynamic conditions. MRI at 3 T was performed for anatomic correlation. Global and regional cerebral metabolic rates of glucose (CMRgl) were assessed by Patlak analysis for the two time-points and resuscitation groups.

Results

Global hypoxia was found to cause an immediate decrease in cerebral glucose metabolism from a baseline level (mean ± SD) of 21.2 ± 7.9 to 12.6 ± 4.7 μmol/min/100 g (p <0.01). The basal ganglia, cerebellum and cortex showed the greatest decrease in CMRgl but no significant differences in global or regional CMRgl between the resuscitation groups were found.

Conclusion

Dynamic FDG PET detected decreased cerebral glucose metabolism early after perinatal hypoxia in piglets. The decrease in CMRgl may indicate early changes of mild cerebral hypoxia–ischaemia. No significant effect of hyperoxic resuscitation on the degree of hypometabolism was found in this early phase after hypoxia. Cerebral FDG PET can provide new insights into mechanisms of perinatal hypoxic–ischaemic injury where early detection plays an important role in instituting therapy.
Literature
1.
go back to reference Vento M, Sastre J, Asensi MA, Vina J. Room-air resuscitation causes less damage to heart and kidney than 100% oxygen. Am J Respir Crit Care Med. 2005;172:1393–8.PubMedCrossRef Vento M, Sastre J, Asensi MA, Vina J. Room-air resuscitation causes less damage to heart and kidney than 100% oxygen. Am J Respir Crit Care Med. 2005;172:1393–8.PubMedCrossRef
2.
go back to reference Munkeby BH, Borke WB, Bjornland K, Sikkeland LI, Borge GI, Lømo J, et al. Resuscitation of hypoxic piglets with 100% O2 increases pulmonary metalloproteinases and IL-8. Pediatr Res. 2005;58:542–8.PubMedCrossRef Munkeby BH, Borke WB, Bjornland K, Sikkeland LI, Borge GI, Lømo J, et al. Resuscitation of hypoxic piglets with 100% O2 increases pulmonary metalloproteinases and IL-8. Pediatr Res. 2005;58:542–8.PubMedCrossRef
3.
go back to reference Saugstad OD, Ramji S, Soll RF, Vento M. Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. Neonatology. 2008;94:176–82.PubMedCrossRef Saugstad OD, Ramji S, Soll RF, Vento M. Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. Neonatology. 2008;94:176–82.PubMedCrossRef
5.
go back to reference Biban P, Filipovic-Grcic B, Biarent D, Manzoni P. New cardiopulmonary resuscitation guidelines 2010: managing the newly born in delivery room. Early Hum Dev. 2011;87 Suppl 1:S9–S11.PubMedCrossRef Biban P, Filipovic-Grcic B, Biarent D, Manzoni P. New cardiopulmonary resuscitation guidelines 2010: managing the newly born in delivery room. Early Hum Dev. 2011;87 Suppl 1:S9–S11.PubMedCrossRef
6.
7.
go back to reference Fatemi A, Wilson MA, Johnston MV. Hypoxic-ischemic encephalopathy in the term infant. Clin Perinatol. 2009;36:835–58.PubMedCrossRef Fatemi A, Wilson MA, Johnston MV. Hypoxic-ischemic encephalopathy in the term infant. Clin Perinatol. 2009;36:835–58.PubMedCrossRef
8.
go back to reference Perlman JM. Summary proceedings from the neurology group on hypoxic-ischemic encephalopathy. Pediatrics. 2006;117:S28–33.PubMedCrossRef Perlman JM. Summary proceedings from the neurology group on hypoxic-ischemic encephalopathy. Pediatrics. 2006;117:S28–33.PubMedCrossRef
9.
go back to reference Shalak L, Perlman JM. Hypoxic-ischemic brain injury in the term infant – current concepts. Early Hum Dev. 2004;80:125–41.PubMedCrossRef Shalak L, Perlman JM. Hypoxic-ischemic brain injury in the term infant – current concepts. Early Hum Dev. 2004;80:125–41.PubMedCrossRef
10.
go back to reference Barkovich AJ, Baranski K, Vigneron D, Partridge JC, Hallam DK, Hajnal BL, et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR Am J Neuroradiol. 1999;20:1399–405.PubMed Barkovich AJ, Baranski K, Vigneron D, Partridge JC, Hallam DK, Hajnal BL, et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR Am J Neuroradiol. 1999;20:1399–405.PubMed
11.
go back to reference Boichot C, Walker PM, Durand C, Grimaldi M, Chapuis S, Gouyon JB, et al. Term neonate prognoses after perinatal asphyxia: contributions of MR imaging, MR spectroscopy, relaxation times, and apparent diffusion coefficients. Radiology. 2006;239:839–48.PubMedCrossRef Boichot C, Walker PM, Durand C, Grimaldi M, Chapuis S, Gouyon JB, et al. Term neonate prognoses after perinatal asphyxia: contributions of MR imaging, MR spectroscopy, relaxation times, and apparent diffusion coefficients. Radiology. 2006;239:839–48.PubMedCrossRef
12.
go back to reference Ilves P, Lintrop M, Metsvaht T, Vaher U, Talvik T. Cerebral blood-flow velocities in predicting outcome of asphyxiated newborn infants. Acta Paediatr. 2004;93:523–8.PubMedCrossRef Ilves P, Lintrop M, Metsvaht T, Vaher U, Talvik T. Cerebral blood-flow velocities in predicting outcome of asphyxiated newborn infants. Acta Paediatr. 2004;93:523–8.PubMedCrossRef
13.
go back to reference Rutherford M, Biarge MM, Allsop J, Counsell S, Cowan F. MRI of perinatal brain injury. Pediatr Radiol. 2010;40:819–33.PubMedCrossRef Rutherford M, Biarge MM, Allsop J, Counsell S, Cowan F. MRI of perinatal brain injury. Pediatr Radiol. 2010;40:819–33.PubMedCrossRef
14.
go back to reference Munkeby BH, De Lange C, Emblem KE, Bjørnerud A, Kro GA, Andresen J, et al. A piglet model for detection of hypoxic-ischemic brain injury with magnetic resonance imaging. Acta Radiol. 2008;49:1049–57.PubMedCrossRef Munkeby BH, De Lange C, Emblem KE, Bjørnerud A, Kro GA, Andresen J, et al. A piglet model for detection of hypoxic-ischemic brain injury with magnetic resonance imaging. Acta Radiol. 2008;49:1049–57.PubMedCrossRef
15.
go back to reference Blennow M, Ingvar M, Lagercrantz H, Stone-Elander S, Eriksson L, Forssberg H, et al. Early [18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period. Acta Paediatr. 1995;84:1289–95.PubMedCrossRef Blennow M, Ingvar M, Lagercrantz H, Stone-Elander S, Eriksson L, Forssberg H, et al. Early [18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period. Acta Paediatr. 1995;84:1289–95.PubMedCrossRef
16.
go back to reference Thorngren-Jerneck K, Ohlsson T, Sandell A, Erlandsson K, Strand SE, Ryding E, et al. Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res. 2001;49:495–501.PubMedCrossRef Thorngren-Jerneck K, Ohlsson T, Sandell A, Erlandsson K, Strand SE, Ryding E, et al. Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res. 2001;49:495–501.PubMedCrossRef
17.
go back to reference Kannan S, Chugani HT. Applications of positron emission tomography in the newborn nursery. Semin Perinatol. 2010;34:39–45.PubMedCrossRef Kannan S, Chugani HT. Applications of positron emission tomography in the newborn nursery. Semin Perinatol. 2010;34:39–45.PubMedCrossRef
18.
go back to reference Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.PubMedCrossRef Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.PubMedCrossRef
19.
go back to reference Heiss WD, Emunds HG, Herholz K. Cerebral glucose metabolism as a predictor of rehabilitation after ischemic stroke. Stroke. 1993;24:1784–8.PubMedCrossRef Heiss WD, Emunds HG, Herholz K. Cerebral glucose metabolism as a predictor of rehabilitation after ischemic stroke. Stroke. 1993;24:1784–8.PubMedCrossRef
20.
go back to reference Batista CE, Chugani HT, Juhasz C, Behen ME, Shankaran S. Transient hypermetabolism of the basal ganglia following perinatal hypoxia. Pediatr Neurol. 2007;36:330–3.PubMedCrossRef Batista CE, Chugani HT, Juhasz C, Behen ME, Shankaran S. Transient hypermetabolism of the basal ganglia following perinatal hypoxia. Pediatr Neurol. 2007;36:330–3.PubMedCrossRef
21.
go back to reference Doyle LW, Nahmias C, Firnau G, Kenyon DB, Garnett ES, Sinclair JC. Regional cerebral glucose metabolism of newborn infants measured by positron emission tomography. Dev Med Child Neurol. 1983;25:143–51.PubMedCrossRef Doyle LW, Nahmias C, Firnau G, Kenyon DB, Garnett ES, Sinclair JC. Regional cerebral glucose metabolism of newborn infants measured by positron emission tomography. Dev Med Child Neurol. 1983;25:143–51.PubMedCrossRef
22.
go back to reference Suhonen-Polvi H, Kero P, Korvenranta H, Ruotsalainen U, Haaparanta M, Bergman J, et al. Repeated fluorodeoxyglucose positron emission tomography of the brain in infants with suspected hypoxic-ischaemic brain injury. Eur J Nucl Med. 1993;20:759–65.PubMedCrossRef Suhonen-Polvi H, Kero P, Korvenranta H, Ruotsalainen U, Haaparanta M, Bergman J, et al. Repeated fluorodeoxyglucose positron emission tomography of the brain in infants with suspected hypoxic-ischaemic brain injury. Eur J Nucl Med. 1993;20:759–65.PubMedCrossRef
23.
go back to reference Thorngren-Jerneck K, Hellstrom-Westas L, Ryding E, Rosen I. Cerebral glucose metabolism and early EEG/aEEG in term newborn infants with hypoxic-ischemic encephalopathy. Pediatr Res. 2003;54:854–60.PubMedCrossRef Thorngren-Jerneck K, Hellstrom-Westas L, Ryding E, Rosen I. Cerebral glucose metabolism and early EEG/aEEG in term newborn infants with hypoxic-ischemic encephalopathy. Pediatr Res. 2003;54:854–60.PubMedCrossRef
24.
go back to reference Thorp PS, Levin SD, Garnett ES, Nahmias C, Firnau G, Toi A, et al. Patterns of cerebral glucose metabolism using 18FDG and positron tomography in the neurologic investigation of the full term newborn infant. Neuropediatrics. 1988;19:146–53.PubMedCrossRef Thorp PS, Levin SD, Garnett ES, Nahmias C, Firnau G, Toi A, et al. Patterns of cerebral glucose metabolism using 18FDG and positron tomography in the neurologic investigation of the full term newborn infant. Neuropediatrics. 1988;19:146–53.PubMedCrossRef
25.
go back to reference Thorngren-Jerneck K, Ley D, Hellstrom-Westas L, Hernandez-Andrade E, Lingman G, Ohlsson T, et al. Reduced postnatal cerebral glucose metabolism measured by PET after asphyxia in near term fetal lambs. J Neurosci Res. 2001;66:844–50.PubMedCrossRef Thorngren-Jerneck K, Ley D, Hellstrom-Westas L, Hernandez-Andrade E, Lingman G, Ohlsson T, et al. Reduced postnatal cerebral glucose metabolism measured by PET after asphyxia in near term fetal lambs. J Neurosci Res. 2001;66:844–50.PubMedCrossRef
26.
go back to reference Gilland E, Bona E, Hagberg H. Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunostaining after hypoxia-ischemia in the immature rat brain. J Cereb Blood Flow Metab. 1998;18:222–8.PubMedCrossRef Gilland E, Bona E, Hagberg H. Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunostaining after hypoxia-ischemia in the immature rat brain. J Cereb Blood Flow Metab. 1998;18:222–8.PubMedCrossRef
27.
go back to reference Vannucci RC, Christensen MA, Stein DT. Regional cerebral glucose utilization in the immature rat: effect of hypoxia-ischemia. Pediatr Res. 1989;26:208–14.PubMedCrossRef Vannucci RC, Christensen MA, Stein DT. Regional cerebral glucose utilization in the immature rat: effect of hypoxia-ischemia. Pediatr Res. 1989;26:208–14.PubMedCrossRef
28.
go back to reference de Lange C, Brabrand K, Emblem KE, Bjornerud A, Løberg EM, Saugstad OD, et al. Cerebral perfusion in perinatal hypoxia and resuscitation assessed by transcranial contrast-enhanced ultrasound and 3 T MRI in newborn pigs. Invest Radiol. 2011;46:686–96.PubMed de Lange C, Brabrand K, Emblem KE, Bjornerud A, Løberg EM, Saugstad OD, et al. Cerebral perfusion in perinatal hypoxia and resuscitation assessed by transcranial contrast-enhanced ultrasound and 3 T MRI in newborn pigs. Invest Radiol. 2011;46:686–96.PubMed
29.
go back to reference Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5:584–90.PubMedCrossRef Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5:584–90.PubMedCrossRef
30.
go back to reference Poulsen PH, Smith DF, Ostergaard L, Danielsen EH, Gee A, Hansen SB, et al. In vivo estimation of cerebral blood flow, oxygen consumption and glucose metabolism in the pig by [15O]water injection, [15O]oxygen inhalation and dual injections of [18F]fluorodeoxyglucose. J Neurosci Methods. 1997;77:199–209.PubMedCrossRef Poulsen PH, Smith DF, Ostergaard L, Danielsen EH, Gee A, Hansen SB, et al. In vivo estimation of cerebral blood flow, oxygen consumption and glucose metabolism in the pig by [15O]water injection, [15O]oxygen inhalation and dual injections of [18F]fluorodeoxyglucose. J Neurosci Methods. 1997;77:199–209.PubMedCrossRef
31.
go back to reference Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35:1581–8.PubMedCrossRef Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35:1581–8.PubMedCrossRef
32.
go back to reference Shi Y, Jin RB, Zhao JN, Tang SF, Li HQ, Li TY. Brain positron emission tomography in preterm and term newborn infants. Early Hum Dev. 2009;85:429–32.PubMedCrossRef Shi Y, Jin RB, Zhao JN, Tang SF, Li HQ, Li TY. Brain positron emission tomography in preterm and term newborn infants. Early Hum Dev. 2009;85:429–32.PubMedCrossRef
33.
go back to reference Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, et al. Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab. 1985;5:163–78.PubMedCrossRef Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, et al. Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab. 1985;5:163–78.PubMedCrossRef
34.
go back to reference Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, et al. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab. 1985;5:179–92.PubMedCrossRef Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, et al. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab. 1985;5:179–92.PubMedCrossRef
35.
go back to reference Johnston MV, Trescher WH, Ishida A, Nakajima W. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res. 2001;49:735–41.PubMedCrossRef Johnston MV, Trescher WH, Ishida A, Nakajima W. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res. 2001;49:735–41.PubMedCrossRef
36.
go back to reference Hankins GD, Speer M. Defining the pathogenesis and pathophysiology of neonatal encephalopathy and cerebral palsy. Obstet Gynecol. 2003;102:628–36.PubMedCrossRef Hankins GD, Speer M. Defining the pathogenesis and pathophysiology of neonatal encephalopathy and cerebral palsy. Obstet Gynecol. 2003;102:628–36.PubMedCrossRef
37.
go back to reference Vannucci RC, Yager JY, Vannucci SJ. Cerebral glucose and energy utilization during the evolution of hypoxic-ischemic brain damage in the immature rat. J Cereb Blood Flow Metab. 1994;14:279–88.PubMedCrossRef Vannucci RC, Yager JY, Vannucci SJ. Cerebral glucose and energy utilization during the evolution of hypoxic-ischemic brain damage in the immature rat. J Cereb Blood Flow Metab. 1994;14:279–88.PubMedCrossRef
Metadata
Title
Dynamic FDG PET for assessing early effects of cerebral hypoxia and resuscitation in new-born pigs
Authors
Charlotte de Lange
Eirik Malinen
Hong Qu
Kjersti Johnsrud
Arne Skretting
Ola Didrik Saugstad
Berit H. Munkeby
Publication date
01-05-2012
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 5/2012
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-011-2055-y

Other articles of this Issue 5/2012

European Journal of Nuclear Medicine and Molecular Imaging 5/2012 Go to the issue