Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 9/2009

01-09-2009 | Editorial

Darwinian molecular imaging

Authors: Bertrand Tavitian, Uwe Haberkorn

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 9/2009

Login to get access

Excerpt

On 12 February 2009, we celebrated the 200th anniversary of Charles Darwin’s birthday. His theory of evolution through natural selection [1] is a most famous biological concept, with a notoriety as wide as Albert Einstein’s concept of relativity in physics. If, as Dobzhansky provocatively stated, “Nothing in biology makes sense except in the light of evolution” [2], then it is worthwhile that we, as molecular imaging practitioners and scientists, should ask ourselves how much Darwinian is molecular imaging today. What use of Darwin’s theory of evolution through natural selection is made in the fields of molecular imaging and nuclear medicine? Is the evolution theory conceptually useful or a mere theoretical notion occasionally discussed by basic researchers in molecular imaging? Could the introduction of Darwinian concepts be operant to evolve more efficient and better molecular imaging? Now 200 years after his birth and 150 years after the first edition of his famous book, one of the greatest successes in scientific publishing ever (the first edition sold out in just 1 day), it appears timely for molecular imaging to take stock of Darwin’s heritage. …
Literature
1.
go back to reference Darwin C. The origin of species. London: Penguin; 1968. Darwin C. The origin of species. London: Penguin; 1968.
2.
go back to reference Dobzhansky T. Nothing in biology makes sense except in the light of evolution. The American Biology Teacher 1973;35:125–9. Dobzhansky T. Nothing in biology makes sense except in the light of evolution. The American Biology Teacher 1973;35:125–9.
3.
go back to reference Darwin C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray; 1859. Darwin C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray; 1859.
5.
go back to reference Schrödinger E. What is life? The physical aspect of the living. New York: The Macmillan Company; 1946. Schrödinger E. What is life? The physical aspect of the living. New York: The Macmillan Company; 1946.
7.
go back to reference Gold L, Polisky B, Uhlenbeck O, Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem 1995;64:763–97.PubMedCrossRef Gold L, Polisky B, Uhlenbeck O, Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem 1995;64:763–97.PubMedCrossRef
8.
go back to reference Robertson DL, Joyce GF. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 1990;344:467–8.PubMedCrossRef Robertson DL, Joyce GF. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 1990;344:467–8.PubMedCrossRef
9.
go back to reference Watson JD, Crick FH. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 1953;171:737–8.PubMedCrossRef Watson JD, Crick FH. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 1953;171:737–8.PubMedCrossRef
10.
go back to reference Green R, Ellington AD, Szostak JW. In vitro genetic analysis of the Tetrahymena self-splicing intron. Nature 1990;347:406–8.PubMedCrossRef Green R, Ellington AD, Szostak JW. In vitro genetic analysis of the Tetrahymena self-splicing intron. Nature 1990;347:406–8.PubMedCrossRef
11.
go back to reference Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H. Sequence-specific DNA binding by the c-Myc protein. Science 1990;250:1149–51.PubMedCrossRef Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H. Sequence-specific DNA binding by the c-Myc protein. Science 1990;250:1149–51.PubMedCrossRef
12.
go back to reference Blackwell TK, Weintraub H. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 1990;250:1104–10.PubMedCrossRef Blackwell TK, Weintraub H. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 1990;250:1104–10.PubMedCrossRef
13.
go back to reference Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990;346:818–22.PubMedCrossRef Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990;346:818–22.PubMedCrossRef
14.
go back to reference Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990;249:505–10.PubMedCrossRef Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990;249:505–10.PubMedCrossRef
15.
go back to reference Carothers JM, Szostak JW. In vitro selection of functional oligonucleotides and the origins of biochemical activity. In: Klussmann S, editor. The aptamer handbook. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KgaA; 2006. p. 3–28. Carothers JM, Szostak JW. In vitro selection of functional oligonucleotides and the origins of biochemical activity. In: Klussmann S, editor. The aptamer handbook. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KgaA; 2006. p. 3–28.
16.
go back to reference Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins. Anal Biochem 2001;294:126–31.PubMedCrossRef Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins. Anal Biochem 2001;294:126–31.PubMedCrossRef
17.
go back to reference Babendure JR, Adams SR, Tsien RY. Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc 2003;125:14716–7.PubMedCrossRef Babendure JR, Adams SR, Tsien RY. Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc 2003;125:14716–7.PubMedCrossRef
18.
go back to reference Babendure JR, Babendure JL, Ding JH, Tsien RY. Control of mammalian translation by mRNA structure near caps. RNA 2006;12:851–61.PubMedCrossRef Babendure JR, Babendure JL, Ding JH, Tsien RY. Control of mammalian translation by mRNA structure near caps. RNA 2006;12:851–61.PubMedCrossRef
19.
go back to reference Werstuck G, Green MR. Controlling gene expression in living cells through small molecule-RNA interactions. Science 1998;282:296–8.PubMedCrossRef Werstuck G, Green MR. Controlling gene expression in living cells through small molecule-RNA interactions. Science 1998;282:296–8.PubMedCrossRef
20.
go back to reference Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 2007;7:3065–70.PubMedCrossRef Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 2007;7:3065–70.PubMedCrossRef
21.
go back to reference Charlton J, Sennello J, Smith D. In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol 1997;4:809–16.PubMedCrossRef Charlton J, Sennello J, Smith D. In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol 1997;4:809–16.PubMedCrossRef
22.
go back to reference Hicke BJ, Stephens AW, Gould T, Chang YF, Lynott CK, Heil J, et al. Tumor targeting by an aptamer. J Nucl Med 2006;47:668–78.PubMed Hicke BJ, Stephens AW, Gould T, Chang YF, Lynott CK, Heil J, et al. Tumor targeting by an aptamer. J Nucl Med 2006;47:668–78.PubMed
23.
go back to reference Gambhir SS. Using radiolabeled DNA as an imaging agent to recognize protein targets. J Nucl Med 2006;47:557–8.PubMed Gambhir SS. Using radiolabeled DNA as an imaging agent to recognize protein targets. J Nucl Med 2006;47:557–8.PubMed
24.
go back to reference McCauley TG, Kurz JC, Merlino PG, Lewis SD, Gilbert M, Epstein DM, et al. Pharmacologic and pharmacokinetic assessment of anti-TGFbeta2 aptamers in rabbit plasma and aqueous humor. Pharm Res 2006;23:303–11.PubMedCrossRef McCauley TG, Kurz JC, Merlino PG, Lewis SD, Gilbert M, Epstein DM, et al. Pharmacologic and pharmacokinetic assessment of anti-TGFbeta2 aptamers in rabbit plasma and aqueous humor. Pharm Res 2006;23:303–11.PubMedCrossRef
25.
go back to reference Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985;228:1315–7.PubMedCrossRef Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985;228:1315–7.PubMedCrossRef
27.
go back to reference Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkilä P, et al. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 1999;17:768–74.PubMedCrossRef Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkilä P, et al. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 1999;17:768–74.PubMedCrossRef
28.
go back to reference Pasqualini R. Vascular targeting with phage peptide libraries. Q J Nucl Med 1999;43:159–62.PubMed Pasqualini R. Vascular targeting with phage peptide libraries. Q J Nucl Med 1999;43:159–62.PubMed
29.
go back to reference Burg MA, Pasqualini R, Arap W, Ruoslahti E, Stallcup WB. NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res 1999;59:2869–74.PubMed Burg MA, Pasqualini R, Arap W, Ruoslahti E, Stallcup WB. NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res 1999;59:2869–74.PubMed
30.
go back to reference Oyama T, Sykes KF, Samli KN, Minna JD, Johnston SA, Brown KC. Isolation of lung tumor specific peptides from a random peptide library: generation of diagnostic and cell-targeting reagents. Cancer Lett 2003;202:219–30.PubMedCrossRef Oyama T, Sykes KF, Samli KN, Minna JD, Johnston SA, Brown KC. Isolation of lung tumor specific peptides from a random peptide library: generation of diagnostic and cell-targeting reagents. Cancer Lett 2003;202:219–30.PubMedCrossRef
31.
go back to reference Zitzmann S, Mier W, Schad A, Kinscherf R, Askoxylakis V, Krämer S, et al. A new prostate carcinoma binding peptide (DUP-1) for tumor imaging and therapy. Clin Cancer Res 2005;11:139–46.PubMed Zitzmann S, Mier W, Schad A, Kinscherf R, Askoxylakis V, Krämer S, et al. A new prostate carcinoma binding peptide (DUP-1) for tumor imaging and therapy. Clin Cancer Res 2005;11:139–46.PubMed
32.
go back to reference Askoxylakis V, Zitzmann S, Mier W, Graham K, Krämer S, von Wegner F, et al. Preclinical evaluation of the breast cancer cell-binding peptide, p160. Clin Cancer Res 2005;11:6705–12.PubMedCrossRef Askoxylakis V, Zitzmann S, Mier W, Graham K, Krämer S, von Wegner F, et al. Preclinical evaluation of the breast cancer cell-binding peptide, p160. Clin Cancer Res 2005;11:6705–12.PubMedCrossRef
33.
go back to reference Askoxylakis V, Mier W, Zitzmann S, Ehemann V, Zhang J, Kramer S, et al. Characterization and development of a peptide (p160) with affinity for neuroblastoma cells. J Nucl Med 2006;47:981–8.PubMed Askoxylakis V, Mier W, Zitzmann S, Ehemann V, Zhang J, Kramer S, et al. Characterization and development of a peptide (p160) with affinity for neuroblastoma cells. J Nucl Med 2006;47:981–8.PubMed
34.
go back to reference Zitzmann S, Krämer S, Mier W, Hebling U, Altmann A, Rother A, et al. Identification and evaluation of a new tumor cell-binding peptide, FROP-1. J Nucl Med 2007;48:965–72.PubMedCrossRef Zitzmann S, Krämer S, Mier W, Hebling U, Altmann A, Rother A, et al. Identification and evaluation of a new tumor cell-binding peptide, FROP-1. J Nucl Med 2007;48:965–72.PubMedCrossRef
35.
36.
go back to reference Viti F, Tarli L, Giovannoni L, Zardi L, Neri D. Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res 1999;59:347–52.PubMed Viti F, Tarli L, Giovannoni L, Zardi L, Neri D. Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res 1999;59:347–52.PubMed
37.
go back to reference Santimaria M, Moscatelli G, Viale GL, Giovannoni L, Neri G, Viti F, et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 2003;9:571–9.PubMed Santimaria M, Moscatelli G, Viale GL, Giovannoni L, Neri G, Viti F, et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 2003;9:571–9.PubMed
38.
go back to reference Rossin R, Berndorff D, Friebe M, Dinkelborg LM, Welch MJ. Small-animal PET of tumor angiogenesis using a (76)Br-labeled human recombinant antibody fragment to the ED-B domain of fibronectin. J Nucl Med 2007;48:1172–9.PubMedCrossRef Rossin R, Berndorff D, Friebe M, Dinkelborg LM, Welch MJ. Small-animal PET of tumor angiogenesis using a (76)Br-labeled human recombinant antibody fragment to the ED-B domain of fibronectin. J Nucl Med 2007;48:1172–9.PubMedCrossRef
39.
go back to reference Berndorff D, Borkowski S, Moosmayer D, Viti F, Müller-Tiemann B, Sieger S, et al. Imaging of tumor angiogenesis using 99mTc-labeled human recombinant anti-ED-B fibronectin antibody fragments. J Nucl Med 2006;47:1707–16.PubMed Berndorff D, Borkowski S, Moosmayer D, Viti F, Müller-Tiemann B, Sieger S, et al. Imaging of tumor angiogenesis using 99mTc-labeled human recombinant anti-ED-B fibronectin antibody fragments. J Nucl Med 2006;47:1707–16.PubMed
40.
go back to reference El-Emir E, Dearling JL, Huhalov A, Robson MP, Boxer G, Neri D, et al. Characterisation and radioimmunotherapy of L19-SIP, an anti-angiogenic antibody against the extra domain B of fibronectin, in colorectal tumour models. Br J Cancer 2007;96:1862–70.PubMedCrossRef El-Emir E, Dearling JL, Huhalov A, Robson MP, Boxer G, Neri D, et al. Characterisation and radioimmunotherapy of L19-SIP, an anti-angiogenic antibody against the extra domain B of fibronectin, in colorectal tumour models. Br J Cancer 2007;96:1862–70.PubMedCrossRef
41.
go back to reference Deutscher SL, Figueroa SD, Kumar SR. Tumor targeting and SPECT imaging properties of an (111)In-labeled galectin-3 binding peptide in prostate carcinoma. Nucl Med Biol 2009;36:137–46.PubMedCrossRef Deutscher SL, Figueroa SD, Kumar SR. Tumor targeting and SPECT imaging properties of an (111)In-labeled galectin-3 binding peptide in prostate carcinoma. Nucl Med Biol 2009;36:137–46.PubMedCrossRef
42.
go back to reference Nothelfer EM, Zitzmann-Kolbe S, Garcia-Boy R, Krämer S, Herold-Mende C, Altmann A, et al. Identification and characterization of a peptide with affinity to head and neck cancer. J Nucl Med 2009;50:426–34.PubMedCrossRef Nothelfer EM, Zitzmann-Kolbe S, Garcia-Boy R, Krämer S, Herold-Mende C, Altmann A, et al. Identification and characterization of a peptide with affinity to head and neck cancer. J Nucl Med 2009;50:426–34.PubMedCrossRef
43.
go back to reference Lu Z, Murray KS, Van Cleave V, LaVallie ER, Stahl ML, McCoy JM. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein-protein interactions. Biotechnology (N Y) 1995;13:366–72.CrossRef Lu Z, Murray KS, Van Cleave V, LaVallie ER, Stahl ML, McCoy JM. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein-protein interactions. Biotechnology (N Y) 1995;13:366–72.CrossRef
44.
go back to reference Thai CK, Dai H, Sastry MS, Sarikaya M, Schwartz DT, Baneyx F. Identification and characterization of Cu(2)O- and ZnO-binding polypeptides by Escherichia coli cell surface display: toward an understanding of metal oxide binding. Biotechnol Bioeng 2004;87:129–37.PubMedCrossRef Thai CK, Dai H, Sastry MS, Sarikaya M, Schwartz DT, Baneyx F. Identification and characterization of Cu(2)O- and ZnO-binding polypeptides by Escherichia coli cell surface display: toward an understanding of metal oxide binding. Biotechnol Bioeng 2004;87:129–37.PubMedCrossRef
45.
go back to reference Zitzmann S, Krämer S, Mier W, Mahmut M, Fleig J, Altmann A, et al. Identification of a new prostate-specific cyclic peptide with the bacterial FliTrx system. J Nucl Med 2005;46:782–5.PubMed Zitzmann S, Krämer S, Mier W, Mahmut M, Fleig J, Altmann A, et al. Identification of a new prostate-specific cyclic peptide with the bacterial FliTrx system. J Nucl Med 2005;46:782–5.PubMed
46.
go back to reference Mattheakis LC, Bhatt RR, Dower WJ. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci U S A 1994;91:9022–6.PubMedCrossRef Mattheakis LC, Bhatt RR, Dower WJ. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci U S A 1994;91:9022–6.PubMedCrossRef
47.
go back to reference Lipovsek D, Plückthun A. In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 2004;290:51–67.PubMedCrossRef Lipovsek D, Plückthun A. In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 2004;290:51–67.PubMedCrossRef
48.
go back to reference Zahnd C, Amstutz P, Plückthun A. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 2007;4:269–79.PubMedCrossRef Zahnd C, Amstutz P, Plückthun A. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 2007;4:269–79.PubMedCrossRef
49.
go back to reference Hanes J, Schaffitzel C, Knappik A, Plückthun A. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 2000;18:1287–92.PubMedCrossRef Hanes J, Schaffitzel C, Knappik A, Plückthun A. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 2000;18:1287–92.PubMedCrossRef
50.
go back to reference Roberts RW, Szostak JW. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 1997;94:12297–302.PubMedCrossRef Roberts RW, Szostak JW. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 1997;94:12297–302.PubMedCrossRef
51.
52.
go back to reference Baggio R, Burgstaller P, Hale SP, Putney AR, Lane M, Lipovsek D, et al. Identification of epitope-like consensus motifs using mRNA display. J Mol Recognit 2002;15:126–34.PubMedCrossRef Baggio R, Burgstaller P, Hale SP, Putney AR, Lane M, Lipovsek D, et al. Identification of epitope-like consensus motifs using mRNA display. J Mol Recognit 2002;15:126–34.PubMedCrossRef
53.
go back to reference Chan S, Gabra H, Hill F, Evan G, Sikora K. A novel tumour marker related to the c-myc oncogene product. Mol Cell Probes 1987;1:73–82.PubMedCrossRef Chan S, Gabra H, Hill F, Evan G, Sikora K. A novel tumour marker related to the c-myc oncogene product. Mol Cell Probes 1987;1:73–82.PubMedCrossRef
54.
go back to reference Wilson DS, Keefe AD, Szostak JW. The use of mRNA display to select high-affinity protein-binding peptides. Proc Natl Acad Sci U S A 2001;98:3750–5.PubMedCrossRef Wilson DS, Keefe AD, Szostak JW. The use of mRNA display to select high-affinity protein-binding peptides. Proc Natl Acad Sci U S A 2001;98:3750–5.PubMedCrossRef
55.
go back to reference Dennett DC. Darwin’s dangerous idea. New York: Simon and Schuster; 1995. Dennett DC. Darwin’s dangerous idea. New York: Simon and Schuster; 1995.
56.
go back to reference Cadwell RC, Joyce GF. Mutagenic PCR. PCR Methods Appl 1994;3:S136–40.PubMed Cadwell RC, Joyce GF. Mutagenic PCR. PCR Methods Appl 1994;3:S136–40.PubMed
57.
go back to reference Reidhaar-Olson J, Bowie J, Breyer RM, Hu JC, Knight KL, Lim WA, et al. Random mutagenesis of protein sequences using oligonucleotide cassettes. Methods Enzymol 1991;208:564–86.PubMedCrossRef Reidhaar-Olson J, Bowie J, Breyer RM, Hu JC, Knight KL, Lim WA, et al. Random mutagenesis of protein sequences using oligonucleotide cassettes. Methods Enzymol 1991;208:564–86.PubMedCrossRef
58.
Metadata
Title
Darwinian molecular imaging
Authors
Bertrand Tavitian
Uwe Haberkorn
Publication date
01-09-2009
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 9/2009
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-009-1192-z

Other articles of this Issue 9/2009

European Journal of Nuclear Medicine and Molecular Imaging 9/2009 Go to the issue